cse371/mat371 LOGIC

Professor Anita Wasilewska

Fall 2017

LECTURE 5b

Chapter 5

HILBERT PROOF SYSTEMS: Completeness of Classical Propositional Logic

PART 1: Introduction

PART 2: Proof of the Main Lemma

PART 3: Proof 1: Constructive Proof of Completeness

Theorem

PART 4: Proof 2: General Proof of Completeness

Theorem

PART 4

Proof 2: General Proof of Completeness Theorem

Proof 2 A Counter- Model Existence Method

We prove now the **Completeness Theorem** by proving the opposite implication:

If
$$\not\vdash A$$
, then $\not\models A$

The **proof** consists of defining a method that uses the information that *A* is **not provable** in order to define a **counter-model** for *A*

We hence call it a counter-model existence method.

The construction of a counter-model for any non-provable *A* presented in this proof is less constructive then in the case of our first proof.

It can be generalized to the case of predicate logic, and many of non-classical logics; propositional and predicate.

It is hence a much more general method then the first one and this is the reason we present it here.

We remind that $\not\models A$ means that there is a variable truth assignment $v: VAR \longrightarrow \{T, F\}$, such that as we are in classical semantics $v^*(A) = F$

We assume that A does not have a proof in S, i.e. $\not\vdash A$ we use this information in order to define a general method of constructing v, such that $v^*(A) = F$

This is done in the following steps.

Step 1

Definition of a special set of formulas Δ^*

We use the information $\not\vdash A$ to define a set of formulas \triangle^* such that $\neg A \in \triangle^*$

Step 2

Definition of the counter - model

We define the variable truth assignment $v: VAR \longrightarrow \{T, F\}$ as follows:

$$v(a) = \begin{cases} T & \text{if } \Delta^* + a \\ F & \text{if } \Delta^* + \neg a \end{cases}$$

Step 3

We prove that v is a **counter-model** for A
We first prove a following more general property of v

Property

The set Δ^* and \mathbf{v} defined in the Steps 1 and 2 are such that for every formula $\mathbf{B} \in \mathcal{F}$

$$v^*(B) = \begin{cases} T & \text{if } \Delta^* + B \\ F & \text{if } \Delta^* + \neg B \end{cases}$$

We then use the **Step 3** to prove that $v^*(A) = F$

Main Notions

The definition, construction and the properties of the set Δ^* and hence the **Step 1**, are the most essential for the proof 2

The other steps have mainly technical character

The **main notions** involved in the proof are: consistent set, complete set and a consistent complete extension of a set of formulas

We are going **prove** some essential facts about them.

Consistent and Inconsistent Sets

There exist two definitions of consistency; semantical and syntactical

Semantical definition uses the notion of a model and says:

A set is **consistent** if it has a **model**

Syntactical definition uses the notion of provability and says:

A set is **consistent** if one can't prove a **contradiction** from it

Consistent and Inconsistent Sets

In our proof of the **Completeness Theorem** we use the following formal syntactical definition of consistency of a set of formulas

Definition of a consistent set

We say that a set $\Delta \subseteq \mathcal{F}$ of formulas is **consistent** if and only if

there is no a formula $A \in \mathcal{F}$ such that

 $\Delta \vdash A$ and $\Delta \vdash \neg A$

Consistent and Inconsistent Sets

Definition of an inconsistent set

A set $\Delta \subseteq \mathcal{F}$ is **inconsistent** if and only if **there is** a formula $A \in \mathcal{F}$ such that

$$\Delta \vdash A$$
 and $\Delta \vdash \neg A$

The notion of consistency, as defined above, is characterized by the following **Consistency Lemma**

Consistency Condition Lemma

Lemma Consistency Condition

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent

- (i) △ is consistent
- (ii) there is a formula $A \in \mathcal{F}$ such that $\Delta \not\vdash A$

Proof of Consistency Lemma

Proof

To establish the equivalence of (i) and (ii) we prove the corresponding opposite implications

We prove the following two cases

Case 1 not (ii) implies not (i)

Case 2 not (i) implies not (ii)

Proof of Consistency Lemma

Case 1

Assume that not (ii)

It means that for all formulas $A \in \mathcal{F}$ we have that

$$\Delta \vdash A$$

In particular it is true for a certain A = B and for a certain $A = \neg B$ i.e.

$$\Delta \vdash B$$
 and $\Delta \vdash \neg B$

and hence it proves that \triangle is **inconsistent** i.e. **not (i)** holds

Proof of Consistency Lemma

Case 2

Assume that $\operatorname{not}(\mathbf{i})$, i.e that Δ is **inconsistent**Then there is a formula A such that $\Delta \vdash A$ and $\Delta \vdash \neg A$ Let B be any formula
We assumed (6.) about S that $\vdash (\neg A \Rightarrow (A \Rightarrow B))$ By monotonicity

$$\Delta \vdash (\neg A \Rightarrow (A \Rightarrow B))$$

Applying Modus Ponens twice to $\neg A$ first, and to A next we get that $\triangle \vdash B$ for any formula BThus not (ii) and it ends the proof of the **Lemma**

Inconsistency Condition Lemma

Inconsistent sets are hence characterized by the following fact

Lemma Inconsistency Condition

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:

- (i) \triangle is inconsistent,
- (i) for any formula $A \in \mathcal{F} \triangle \vdash A$

Finite Consequence Lemma

We remind here property of the finiteness of the **consequence** operation.

Lemma Finite Consequence

For every set Δ of formulas and for every formula $A \in \mathcal{F}$ $\Delta \vdash A$ if and only if there is a **finite** set $\Delta_0 \subseteq \Delta$ such

that $\Delta_0 \vdash A$

Proof

If $\Delta_0 \vdash A$ for a certain $\Delta_0 \subseteq \Delta$, hence by the monotonicity of the consequence, also $\Delta \vdash A$

Finite Consequence Lemma

Assume now that $\triangle \vdash A$ and let

$$A_1, A_2, ..., A_n$$

be a formal proof of A from \triangle Let

$$\Delta_0 = \{A_1, A_2, ..., A_n\} \cap \Delta$$

Obviously, Δ_0 is finite and $A_1, A_2, ..., A_n$ is a formal proof of A from Δ_0

Finite Inconsistency Theorem

The following theorem is a simple corollary of just proved Finite Consequence Lemma

Theorem Finite Inconsistency

- (1.) If a set \triangle is inconsistent, then it has a finite inconsistent subset \triangle_0
- (2.) If every finite subset of a set \triangle is **consistent** then the set \triangle is also **consistent**

Finite Inconsistency Theorem

Proof

If \triangle is **inconsistent**, then for some formula A,

$$\triangle \vdash A$$
 and $\triangle \vdash \neg A$

By the Finite Consequence Lemma , there are finite subsets Δ_1 and Δ_2 of Δ such that

$$\Delta_1 \vdash A$$
 and $\Delta_2 \vdash \neg A$

The union $\Delta_1 \cup \Delta_2$ is a finite subset of Δ and by monotonicity

$$\Delta_1 \cup \Delta_2 \vdash A$$
 and $\Delta_1 \cup \Delta_2 \vdash \neg A$

Hence we proved that $\Delta_1 \cup \Delta_2$ is a finite inconsistent subset of Δ

The second implication (2) is the opposite to the one just proved and hence also holds

Consistency Lemma

The following **Lemma** links the notion of non-provability and consistency

It will be used as an important step in our **Proof 2** of the **Completeness Theorem**

Lemma

For any formula $A \in \mathcal{F}$,

if $\not\vdash A$ then the set $\{\neg A\}$ is **consistent**

Consistency Lemma

Proof We prove the opposite implication If $\{\neg A\}$ is **inconsistent**, then $\vdash A$ Assume that $\{\neg A\}$ is **inconsistent** By the Inconsistency Condition Lemma we have that $\{\neg A\} \vdash B$ for **any formula** B, and hence in particular

$$\{\neg A\} \vdash A$$

By **Deduction Theorem** we get

$$\vdash (\neg A \Rightarrow A)$$

We assumed (9.) about the system S that

$$((\neg A \Rightarrow A) \Rightarrow A)$$

By Modus Ponens we get

This ends the proof

Complete and Incomplete Sets

Another important notion, is that of a **complete set** of formulas.

Complete sets, as defined here are sometimes called **maximal**, but we use the first name for them.

They are defined as follows.

Definition Complete set

A set \triangle of formulas is called **complete** if for every formula $A \in \mathcal{F}$

$$\Delta \vdash A$$
 or $\Delta \vdash \neg A$

Godel used this notion of complete sets in his **Incompleteness of Arithmetic Theorem**

The complete sets are characterized by the following fact.



Complete and Incomplete Sets

Complete Set Condition Lemma

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent

- (i) The set \triangle is complete
- (ii) For every formula $A \in \mathcal{F}$,
- if $\triangle \not\vdash A$ then then the set $\triangle \cup \{A\}$ is **inconsistent**

Proof

We consider two cases

Case 1 We show that (i) implies (ii) and

Case 2 we show that (ii) implies (i)

Proof of Case 1

Assume (i) and not(ii) i.e.

assume that Δ is **complete** and there is a formula $A \in \mathcal{F}$ such that $\Delta \not\vdash A$ and the set $\Delta \cup \{A\}$ is **consistent**

We have to show that we get a **contradiction**

But if $\triangle \not\vdash A$, then from the assumption that \triangle is **complete** we get that

$$\Delta \vdash \neg A$$

By the monotonicity of the consequence we have that

$$\Delta \cup \{A\} \vdash \neg A$$

By assumed provability in S of 4.
$$\vdash$$
 ($A \Rightarrow A$)
By monotonicity $\Delta \vdash (A \Rightarrow A)$ and by **Deduction Theorem**
 $\Delta \cup \{A\} \vdash A$

We hence proved that that there is a formula $A \in \mathcal{F}$ such that

$$\Delta \cup \{A\}$$
 and $\Delta \cup \{A\} \vdash \neg A$

i.e. that the set $\Delta \cup \{A\}$ is inconsistent Contradiction

Proof of Case 2

Assume (ii), i.e. that for every formula $A \in \mathcal{F}$

if $\triangle \not\vdash A$ then the set $\triangle \cup \{A\}$ is **inconsistent** Let A be any formula.

We want to show (i), i.e. to show that the following condition

C:
$$\Delta \vdash A$$
 or $\Delta \vdash \neg A$

is satisfied.

Observe that if

$$\Delta \vdash \neg A$$

then the condition C is obviously satisfied

If, on the other hand,

$$\Delta \not\vdash \neg A$$

then we are going to show now that it must be, under the assumption of (ii), that $\triangle \vdash A$ i.e. that (i) holds Assume that

$$\Delta \not\vdash \neg A$$

then by (ii) the set $\Delta \cup \{\neg A\}$ is inconsistent

The Inconsistency Condition Lemma says
For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:

- (i) △ is inconsistent,
- (i) for any formula $A \in \mathcal{F}$, $\Delta \vdash A$

We just proved that the set $\Delta \cup \{\neg A\}$ is **inconsistent** So by the above Lemma we get

$$\Delta \cup \{\neg A\} \vdash A$$

By the **Deduction Theorem** $\Delta \cup \{\neg A\} \vdash A$ implies that

$$\Delta \vdash (\neg A \Rightarrow A)$$

Observe that

$$((\neg A \Rightarrow A) \Rightarrow A)$$

is a provable formula 4. in S

By monotonicity

$$\Delta \vdash ((\neg A \Rightarrow A) \Rightarrow A)$$

Detaching, by MP the formula $(\neg A \Rightarrow A)$ we obtain that

$$\Delta \vdash A$$

This **ends** the proof that (i) holds.

Incomplete Sets

Definition Incomplete Set

A set \triangle of formulas is called **incomplete** if it is **not complete** i.e. when the following condition holds

There exists a formula $A \in \mathcal{F}$ such that

 $\triangle \nvdash A$ and $\triangle \nvdash \neg A$

We get as a direct consequence of the Complete Set Condition Lemma the following characterization of incomplete sets

Lemma Incomplete Set Condition

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:

- (i) △ is incomplete,
- (ii) there is formula $A \in \mathcal{F}$ such that $\Delta \not\vdash A$ and the set $\Delta \cup \{A\}$ is **consistent**.

Main Lemma: Complete Consistent Extension

Now we are going to prove a **Lemma** that is **essential** to the construction of the special set Δ^* mentioned in the **Step 1** of the proof of the **Completeness Theorem** and hence to the **proof of the theorem** itself

Let's first introduce one more notion

Complete Consistent Extension

Definition Extension Δ^* of the set Δ

A set Δ^* of formulas is called an **extension** of a set Δ of formulas if the following **condition holds**

$$\{A \in \mathcal{F} : \Delta \vdash A\} \subseteq \{A \in \mathcal{F} : \Delta^* \vdash A\}$$

i.e.

$$Cn(\Delta) \subseteq Cn(\Delta^*)$$

In this case **we say** also that \triangle **extends** to the set of formulas \triangle *

Complete Consistent Extension

The Main Lemma Complete Consistent Extension

Every consistent set Δ of formulas can be extended to a complete consistent set Δ^* of formulas i. e

For every **consistent** set Δ there is a set Δ^* that is **complete** and **consistent** and is an **extension** of Δ i.e.

$$Cn(\Delta) \subseteq Cn(\Delta^*)$$

Proof of the Main Lemma

Proof

Assume that the lemma does not hold, i.e. that there is a consistent set Δ , such that all its consistent extensions are not complete

In particular, as Δ is an consistent extension of itself, we have that Δ is **not complete**

The proof consists of a **construction** of a particular set Δ^* and **proving** that it forms a **complete** consistent extension of Δ

This is **contrary** to the assumption that all its consistent extensions are **not complete**

Construction of Δ^*

As we know, the set \mathcal{F} of all formulas is enumerable; they can hence be put in an infinite sequence

$$F A_1, A_2, \ldots, A_n, \ldots$$

such that every formula of $\ensuremath{\mathcal{F}}$ occurs in that sequence exactly once

We define, by mathematical induction, an infinite sequence

$$\mathbf{D} \quad \{\Delta_n\}_{n\in N}$$

of consistent subsets of formulas together with a sequence

$$\mathbf{B} \qquad \{B_n\}_{n\in \mathbb{N}}$$

of formulas as follows

Initial Step

In this step we define the sets

$$\Delta_1, \Delta_2$$
 and the formula B_1

and prove that

$$\Delta_1$$
 and Δ_2

are **consistent**, **incomplete** extensions of \triangle

We take as the first set in
$$\mathbf{D}$$
 the set Δ , i.e. we define

$$\Delta_1 = \Delta$$

By assumption the set Δ , and hence also Δ_1 is **not complete**.

From the Incomplete Set Condition Lemma we get that there is a formula $B \in \mathcal{F}$ such that

$$\Delta_1 \not\vdash B$$
 and $\Delta_1 \cup \{B\}$ is consistent

Let B_1 be the **first formula** with this property in the sequence **F** of all formulas

We define

$$\Delta_2 = \Delta_1 \cup \{B_1\}$$

Observe that the set Δ_2 is consistent and

$$\Delta_1 = \Delta \subseteq \Delta_2$$

By monotonicity Δ_2 is a **consistent extension** of Δ Hence, as we assumed that all consistent extensions of Δ are **not complete**, we get that Δ_2 cannot be complete, i.e.

△2 is incomplete

Inductive Step

Suppose that we have defined a sequence

$$\Delta_1, \Delta_2, \ldots, \Delta_n$$

of **incomplete**, **consistent extensions** of Δ and a sequence

$$B_1, B_2, \ldots, B_{n-1}$$

of formulas, for $n \ge 2$

Since Δ_n is **incomplete**, it follows from the Incomplete Set Condition Lemma that there is a formula $B \in \mathcal{F}$ such that

 $\Delta_n \not\vdash B$ and $\Delta_n \cup \{B\}$ is consistent

Let B_n be the first formula with this property in the sequence F of all formulas.

We define

$$\Delta_{n+1} = \Delta_n \cup \{B_n\}$$

By the definition

$$\Delta \subseteq \Delta_n \subseteq \Delta_{n+1}$$

and the set Δ_{n+1} is a **consistent** extension of Δ Hence by our assumption that all all consistent extensions of Δ are **incomplete** we get that

$$\Delta_{n+1}$$

is an **incomplete** consistent extension of Δ

By the principle of mathematical induction we have defined an infinite sequence

D
$$\Delta = \Delta_1 \subseteq \Delta_2 \subseteq ..., \subseteq \Delta_n \subseteq \Delta_{n+1} \subseteq$$

such that for all $n \in \mathbb{N}$, Δ_n is **consistent**, and each Δ_n an **incomplete consistent extension** of Δ Moreover, we have also defined a sequence

B
$$B_1, B_2, ..., B_n, ...$$

of formulas, such that for all $n \in \mathbb{N}$,

$$\Delta_n \not\vdash B_n$$
 and $\Delta_n \cup \{B_n\}$ is consistent
Observe that $B_n \in \Delta_{n+1}$ for all $n \ge 1$

Definition of Δ^*

Now we are ready to define Δ^*

Definition of Δ^*

$$\Delta^* = \bigcup_{n \in N} \Delta_n$$

To complete the proof our theorem we have now to prove that Δ^* is a **complete consistent extension** of Δ

Δ* Consistent

Obviously directly from the definition $\Delta \subseteq \Delta^*$ and hence we have the following

Fact 1 Δ^* is an **extension** of Δ By Monotonicity of Consequence $Cn(\Delta) \subseteq Cn(\Delta^*)$, hence extension

As the next step we prove

Fact 2 The set Δ^* is consistent

Δ* Consistent

Proof that Δ^* is consistent Assume that Δ^* is inconsistent

By the Finite Inconsistency Theorem there is a finite subset Δ_0 of Δ^* that is **inconsistent**, i.e.

$$\Delta_0 \subseteq \bigcup\nolimits_{n \in N} \Delta_n, \quad \Delta_0 = \{\textit{\textbf{C}}_1,...,\textit{\textbf{C}}_n\}, \quad \Delta_0 \quad \text{is inconsistent}$$

Proof of Δ* Consistent

We have
$$\Delta_0 = \{C_1, \ldots, C_n\}$$

By the definition of Δ^* for each formula $C_i \in \Delta_0$

$$C_i \in \Delta_{k_i}$$

for certain Δ_{k_i} in the sequence

D
$$\Delta = \Delta_1 \subseteq \Delta_2 \subseteq ..., \subseteq \Delta_n \subseteq \Delta_{n+1} \subseteq$$

Hence
$$\Delta_0 \subseteq \Delta_m$$
 for $m = max\{k_1, k_2, ... k_n\}$

Proof of Δ^* Consistent

But we proved that all sets of the sequence **D** are **consistent**

This contradicts the fact that Δ_m is consistent as it contains an **inconsistent** subset Δ_0

This contradiction ends the proof that Δ^* is consistent

Proof of Δ^* Complete

Fact 3 The set Δ^* is complete

Proof Assume that Δ^* is **not complete**.

By the Incomplete Set Condition, there is a formula $B \in \mathcal{F}$ such that

 $\Delta^* \not\vdash B$, and the set $\Delta^* \cup \{B\}$ is **consistent** By definition of the sequence **D** and the sequence **B** of formulas we have that for every $n \in N$

 $\Delta_n \not\vdash B_n$ and the set $\Delta_n \cup \{B_n\}$ is **consistent**

Moreover $B_n \in \Delta_{n+1}$ for all $n \ge 1$

Proof of Δ^* Complete

Since the formula B is one of the formulas of the sequence B so we get that $B = B_j$ for certain j By definition, $B_j \in \Delta_{j+1}$ and it proves that

$$B \in \Delta^* = \bigcup_{n \in N} \Delta_n$$

But this means that $\Delta^* \vdash B$

This is a contradiction with the assumption $\Delta^* \not\vdash B$ and it ends the proof of the Fact 3

Facts 1- 3 prove that that Δ^* is a complete consistent extension of Δ and completes the proof out Main Lemma

As by assumption our proof system *S* is sound, we have to prove only the Completeness part of the Completeness Theorem, i.e to prove that

Completeness Theorem

For any formula $A \in \mathcal{F}$,

If
$$\models A$$
, then $\vdash A$

We prove it by proving the opposite implication

Completeness Theorem

For any formula $A \in \mathcal{F}$,

If
$$\not\vdash A$$
, then $\not\models A$

Proof

Assume that **A** doesn't have a proof in **S**, we want to define a counter-model for **A**

But if $\not\vdash A$, then by the Inconsistency Lemma the set $\{\neg A\}$ is **consistent**

By the **Main Lemma** there is a complete, consistent extension of the set $\{\neg A\}$

This means that there is a set Δ^* such that $\{\neg A\} \subseteq \Delta^*$, i.e.

E $\neg A \in \Delta^*$ and Δ^* is **complete** and **consistent**

Since Δ^* is a **consistent, complete** set, it satisfies the following form of

Consistency Condition

For any $A \in \mathcal{F}$,

$$\Delta^* \not\vdash A$$
 or $\Delta^* \not\vdash \neg A$

 Δ^* is also **complete** i.e. satisfies

Completeness Condition

For any $A \in \mathcal{F}$,

$$\Delta^* \vdash A \text{ or } \Delta^* \vdash \neg A$$

Directly from the Completeness and Consistency Conditions we get the following

Separation Condition

For any $A \in \mathcal{F}$, **exactly one** of the following conditions is satisfied:

(1)
$$\Delta^* \vdash A$$
, or (2) $\Delta^* \vdash \neg A$

In particular case we have that for every propositional variable $a \in VAR$ exactly one of the following conditions is satisfied:

(1)
$$\Delta^* \vdash a$$
, or (2) $\Delta^* \vdash \neg a$

This justifies the correctness of the following definition



Definition

We define the variable truth assignment

$$v: VAR \longrightarrow \{T, F\}$$

as follows:

$$v(a) = \left\{ \begin{array}{ll} T & \text{if } \Delta^* + a \\ F & \text{if } \Delta^* + \neg a. \end{array} \right.$$

We show, as a separate Lemma below, that such defined variable assignment v has the following property

Property of v Lemma

Lemma Property of v

Let v be the variable assignment defined above and v^* its extension to the set \mathcal{F} of all formulas $B \in \mathcal{F}$, the following is true

$$v^*(B) = \begin{cases} T & \text{if } \Delta^* + B \\ F & \text{if } \Delta^* + \neg B \end{cases}$$

Given the Property of v Lemma (still to be proved) we now **prove** that the v is in fact, a **counter model** for any formula A, such that $\not\vdash A$ Let A be such that $\not\vdash A$ By the Property E we have that $\neg A \in \Delta^*$ So obviously $\Delta^* \vdash \neg A$

Hence by the Property of v Lemma

$$v^*(A) = F$$

what **proves** that v is a **counter-model** for A and it **ends the proof** of the **Completeness Theorem**

Proof of the Property of *v* Lemma

The proof is conducted by the induction on the degree of the formula A

Initial step A is a propositional variable so the **Lemma** holds by definition of v

Inductive Step

If A is not a propositional variable, then A is of the form $\neg C$ or $(C \Rightarrow D)$, for certain formulas C, D

By the inductive assumption the **Lemma** holds for the formulas C and D

Case
$$A = \neg C$$

By the **Separation Condition** for Δ^* we consider two possibilities

- 1. $\Delta^* \vdash A$
- 2. $\Delta^* \vdash \neg A$

Consider case **1.** i.e. we assume that $\Delta^* \vdash A$ It means that

$$\Delta^* \vdash \neg C$$

Then from the fact that Δ^* is **consistent** it must be that

$$\Delta^* \not\vdash C$$

By the inductive assumption we have that $v^*(C) = F$ and accordingly $v^*(A) = v^*(\neg C) = \neg v^*(C) = \neg F = T$ Consider case 2. i.e. we assume that $\Delta^* \vdash \neg A$

Then from the fact that \triangle^* is **consistent** it must be that $\triangle^* \not\vdash A$ and

$$\Delta^* \not\vdash \neg C$$

If so, then $\Delta^* \vdash C$, as the set Δ^* is **complete** By the **inductive assumption**, $v^*(C) = T$, and accordingly

$$\mathbf{v}^*(\mathbf{A}) = \mathbf{v}^*(\neg \mathbf{C}) = \neg \mathbf{v}^*(\mathbf{C}) = \neg \mathbf{T} = \mathbf{F}$$

Thus A satisfies the Property of v Lemma.

Case
$$A = (C \Rightarrow D)$$

As in the previous case, we assume that the Lemma holds for the formulas C, D and we consider by the **Separation** Condition for Δ^* two possibilities:

1.
$$\Delta^* \vdash A$$
 and 2. $\Delta^* \vdash \neg A$

Case 1. Assume
$$\Delta^* \vdash A$$

It means that
$$\Delta^* \vdash (C \Rightarrow D)$$

If at the same time $\Delta^* \not\vdash C$, then $v^*(C) = F$, and accordingly

$$v^*(A) = v^*(C \Rightarrow D) =$$
 $v^*(C) \Rightarrow v^*(D) = F \Rightarrow v^*(D) = T$

If at the same time $\Delta^* \vdash C$, then since $\Delta^* \vdash (C \Rightarrow D)$, we infer, by Modus Ponens, that

$$\Delta^* \vdash D$$

If so, then $v^*(C) = v^*(D) = T$ and accordingly

$$v^*(A) = v^*(C \Rightarrow D) =$$

$$v^*(C) \Rightarrow v^*(D) = T \Rightarrow T = T$$

Thus if $\Delta^* \vdash A$, then $v^*(A) = T$

Case 2. Assume now, as before, that $\Delta^* \vdash \neg A$, Then from the fact that Δ^* is **consistent** it must be that $\Delta^* \not\vdash A$, i.e.,

$$\Delta^* \not\vdash (C \Rightarrow D)$$

It follows from this that $\Delta^* \not\vdash D$ For if $\Delta^* \vdash D$, then, as $(D \Rightarrow (C \Rightarrow D))$ is provable

formula **1.** in S, by monotonicity also

$$\Delta^* \vdash (D \Rightarrow (C \Rightarrow D))$$

Applying Modus Ponens we obtain

$$\Delta^* \vdash (C \Rightarrow D)$$

which is contrary to the assumption, so it must be $\Delta^* \not\vdash D$

Also we must have

$$\Delta^* \vdash C$$

for otherwise, as Δ^* is **complete** we would have

$$\Delta^* \vdash \neg C$$

But this is **impossible** since the formula $(\neg C \Rightarrow (C \Rightarrow D))$ is assumed to be provable formula **9.** in *S* and by monotonicity

$$\Delta^* \vdash (\neg C \Rightarrow (C \Rightarrow D))$$

Applying Modus Ponens we would get

$$\Delta^* \vdash (C \Rightarrow D)$$

which is **contrary** to the assumption $\Delta^* \not\vdash (C \Rightarrow D)$

This **ends the proof** of the Property of *v* Lemma and hence the proof of the Completeness Theorem is also **completed**

