CSE371 MIDTERM 1 SOLUTIONS Fall 2017

PART 1: DEFINITIONS

D1 Given a language $\mathcal{L}_{\{\Rightarrow,\cup,\cap,\neg\}}$ and a formula A of this language.

- $\models A$ if and only if $v \models A$ for all **truth assignment** $v: VAR \longrightarrow \{T, F\}$
- **D2** Given formula $A \in \mathcal{F}$ of $\mathcal{L}_{\{\Rightarrow, \cup, \cap, \neg\}}$.

Write definition of v is a restricted model for A.

- A restricted MODEL for the formula A is any function $w: VAR_A \longrightarrow \{T, F\}$ such that $w^*(A) = T$, where
- VAR_A is the sent of all propositional variables appearing in A.
- **D3** Given a proof system $S = (\mathcal{L}, \mathcal{E}, LA, \mathcal{R})$ and an expression $E \in \mathcal{E}$.
- $\vdash_S E$ if and only if there is a sequence E_1, E_2, E_n of expressions from \mathcal{E} , such that $n \ge 1$, and for each $1 < i \le n$, either $E_i \in LA$ or E_i is a **direct consequence** of some of the preceding expressions in E_1, E_2, E_n by virtue of one of the rules of inference $r \in \mathcal{R}$.
- **D4** A proof system $S = (\mathcal{L}, \mathcal{E}, LA, \mathcal{R})$ is **complete** under a semantics **M** if and only if the following holds for any expression $E \in \mathcal{E}$.

$$\vdash_S E$$
 if and only if $\models_M E$.

D5 Write definition: A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ consistent under classical semantics.

A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ of **formulas** is called **consistent** if and only if \mathcal{G} has a model.

We can also say:

 $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if there is a truth assignment v such that $v \models \mathcal{G}$,

or we say:

 $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if there is v is such that $v^*(A) = T$ for all $A \in \mathcal{G}$

PART 2: PROBLEMS

PROBLEM 1

Write the following natural language statement:

One likes to play bridge, or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes not to play bridge

as a formula of 2 different languages

1. Formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$, where **L** A represents statement "one likes A", "A is liked".

Solution We translate our statement into a formula

 $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ as follows.

Propositional Variables: *a*, *b*

a denotes statement: play bridge, b denotes a statement: the weather is good

Translation 1

$$A_1 = (\mathbf{L}a \cup (b \Rightarrow (\neg \mathbf{I}a \cup \mathbf{L}\neg a)))$$

2. Formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$.

Solution We translate our statement into a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$ as follows.

Propositional Variables: a, b, c

a denotes statement:	One likes to play bridge,
\boldsymbol{b} denotes a statement:	the weather is good, and
\boldsymbol{c} denotes a statement:	one likes not to play bridge

Translation 2:

$$A_2 = (a \cup (b \Rightarrow (\neg a \cup c)))$$

PROBLEM 2

Given a formula A : $\forall x \exists y \ P(f(x, y), c)$ of the predicate language \mathcal{L} , and

two model structures $\mathbf{M_1} = (Z, I_1)$, $\mathbf{M_1} = (N, I_2)$ with the interpretations defined as follows.

 $P_{I_1}:=, \quad f_{I_1}: \ + \ , \quad c_{I_1}: \ 0 \quad \text{and} \quad P_{I_2}:>, \quad f_{I_2}: \ \cdot \ , \quad c_{I_2}: \ 0.$

1. Show that $\mathbf{M_1} \models A$

Solution

 $A_{I_1}: \quad \forall_{x \in Z} \exists_{y \in Z} \ x + y = 0 \quad \text{is a true statement};$

For each $x \in Z$ exists y = -x and $-x \in Z$ and x - x = 0.

Solution

2. Show that $\mathbf{M_2} \not\models A$.

Solution

 $A_{I_2}: \quad \forall_{x \in N} \exists_{y \in N} x \cdot y > 0 \text{ is a false statement for } x = 0.$

PROBLEM 3

We define a 3 valued extensional semantics **M** for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ by **defining the connectives** \neg, \cup, \Rightarrow on a set $\{F, \bot, T\}$ of logical values by the following truth tables.

L Connective

Negation :

 $\begin{array}{c|cccc} \mathbf{L} & \mathbf{F} & \perp & \mathbf{T} \\ \hline & \mathbf{F} & F & \mathbf{T} \end{array} & & & & & \\ \hline & & & \mathbf{T} & F & \mathbf{F} \end{array}$

Implication

Disjunction :

\Rightarrow	F	\perp	Т	U	F	\perp	Т
F	Т	Т	Т	F	F	\perp	Т
\perp	T	\perp	Т	\perp		Т	Т
Т	F	F	Т	Т	Т	T	Т

1. Verify whether $\models_{\mathbf{M}} (\mathbf{L}A \cup \neg \mathbf{L}A)$. You can use shorthand notation.

Solution

We verify

- $\mathbf{L}T\cup\neg\mathbf{L}T=T\cup F=T,\quad \mathbf{L}\perp\cup\neg\mathbf{L}\perp=F\cup\neg F=F\cup T=T,\quad \mathbf{L}F\cup\neg\mathbf{L}F=F\cup\neg F=T$
- 2. Verify whether your formulas A_1 and A_2 from PROBLEM 1 have a model/ counter model under the semantics **M**. You can use **shorthand notation**.

Solution

The formulas are: $A_1 = (\mathbf{L}a \cup (b \Rightarrow (\neg \mathbf{I}a \cup \mathbf{L}\neg a)))$, and $A_2 = (a \cup (b \Rightarrow (\neg a \cup c)))$.

Any v, such that v(a) = T is a **M model** for A_1 and for A_2 directly from the definition of \cup .

3. Verify whether the following set G is M-consistent. You can use shorthand notation

$$\mathbf{G} = \{ \mathbf{L}a, (a \cup \neg \mathbf{L}b), (a \Rightarrow b), b \}$$

Solution

Any v, such that v(a) = T, v(b) = T is a **M model** for **G** as

$$\mathbf{L}T = T, \quad (T \cup \neg \mathbf{L}T) = T, \quad (T \Rightarrow T) = T, \quad b = T.$$

PROBLEM 4

Let S be the following **proof system**

$$S = (\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}, \mathcal{F}, \{\mathbf{A1}, \mathbf{A2}\}, \{(r1), (r2)\})$$

for the logical axioms and rules of inference defined for any formulas $A, B \in \mathcal{F}$ as follows

Logical Axioms

A1 $(\mathbf{L}A \cup \neg \mathbf{L}A)$

A2
$$(A \Rightarrow \mathbf{L}A)$$

Rules of inference:

(r1)
$$\frac{A ; B}{(A \cup B)}$$
, (r2) $\frac{A}{\mathbf{L}(A \Rightarrow B)}$

1. Verify whether the system S is M-sound. You can use shorthand notation Solution **Observe** that both logical axioms of S are **M** tautologies

A1, A2 are M tautologies by direct evaluation.

Rule (r1) is sound because when A = T and B = T we get $A \cup B = T \cup T = T$.

Rule (r2) is **not sound** because when A = T and B = F (or $B = \bot$) we get $\mathbf{L}(A \Rightarrow B) = \mathbf{L}(T \Rightarrow F) = \mathbf{L}F = F$ or $\mathbf{L}(T \Rightarrow \bot) = \mathbf{L} \perp = F$

We proved that S is **not sound**.

2. Show, by constructing a proper formal proof that

 $\vdash_S ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$

You must write comments how each step pot the proof was obtained

Write all steps of the **formal proof** as follows - write as MANY as you NEED!

Solution

Here is the proof B_1, B_2, B_3, B_4 of $((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$.

 B_1 : (L $a \cup \neg La$) Axiom A_1 for A= a

 B_2 : $\mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)$ rule (r2) for B=b applied to B_1

 B_3 : (**L** $b \cup \neg$ **L**Ab) Axiom A_1 for A=b

 $B_4: \quad ((\mathbf{L}b\cup\neg\mathbf{L}b)\cup\mathbf{L}((\mathbf{L}a\cup\neg\mathbf{L}a)\Rightarrow b)) \qquad (\mathrm{r1}) \ \text{ applied to } B_3 \ \text{and} \ B_2.$

3. Does above point **2.** prove that $\models ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))?$

Solution

No, , it doesn't because the system S is not sound

PROBLEM 5

Consider the Hilbert system $H_1 == (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \xrightarrow{A ; (A \Rightarrow B)}{B})$ where $A1; (A \Rightarrow (B \Rightarrow A)), A2: ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$ and A, B are any formulas from \mathcal{F} .

Use **Deduction Theorem** to prove $\vdash_{H_1} ((B \Rightarrow C) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))).$

Write comments how each step was obtained.

Solution

By Deduction Theorem applied THREE times we get that

 $\vdash_{H_1} ((B \mathrel{\Rightarrow} C) \mathrel{\Rightarrow} ((A \mathrel{\Rightarrow} B) \mathrel{\Rightarrow} (A \mathrel{\Rightarrow} C))) \quad \text{ if and only if }$

$$(B \Rightarrow C) \vdash_{H_1} ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$$
 if and only if

 $(B \Rightarrow C), (A \Rightarrow B) \vdash_{H_1} (A \Rightarrow C)$ if and only if

$$(B \Rightarrow C), (A \Rightarrow B), A \vdash_{H_1} C).$$

Here is a formal proof of C from $(A \Rightarrow B), (B \Rightarrow C), A$:

- $B_1 \quad (A \Rightarrow B) \quad \text{Hyp}$
- B_2 A Hyp
- $B_3 \quad B \quad MP \text{ on } B_2, B_1$
- $B_4 \quad (B \Rightarrow C) \quad \text{Hyp}$
- $B_5 \quad C \quad MP \text{ on } B_3, B_4$