CSE371 MIDTERM 1 SOLUTIONS Fall 2017

PART 1: DEFINITIONS

D1 Given a language $\mathcal{L}_{\{\Rightarrow, \cup, \cap, \neg\}}$ and a formula A of this language.
$\vDash A$ if and only if $v \neq A$ for all truth assignment $v: V A R \longrightarrow\{T, F\}$
D2 Given formula $A \in \mathcal{F}$ of $\mathcal{L}_{\{\Rightarrow, \cup, \cap, \neg\}}$.
Write definition of v is a restricted model for A.
A restricted MODEL for the formula A is any function $w: V A R_{A} \longrightarrow\{T, F\}$ such that $w^{*}(A)=T$, where
$V A R_{A}$ is the sent of all propositional variables appearing in A .
D3 Given a proof system $S=(\mathcal{L}, \mathcal{E}, L A, \mathcal{R})$ and an expression $E \in \mathcal{E}$.
$\vdash_{S} E \quad$ if and only if there is a sequence $E_{1}, E_{2},, E_{n}$ of expressions from \mathcal{E}, such that $n \geq 1$, and for each $1<i \leq n$, either $E_{i} \in L A$ or E_{i} is a direct consequence of some of the preceding expressions in $E_{1}, E_{2},, E_{n}$ by virtue of one of the rules of inference $r \in \mathcal{R}$.

D4 A proof system $S=(\mathcal{L}, \mathcal{E}, L A, \mathcal{R})$ is complete under a semantics \mathbf{M} if and only if the following holds for any expression $E \in \mathcal{E}$.

$$
\vdash_{S} E \quad \text { if and only if } \quad \models_{M} E .
$$

D5 Write definition: A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ consistent under classical semantics.
A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ of formulas is called consistent if and only if \mathcal{G} has a model.
We can also say:
$\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if there is a truth assignment v such that $v \not \models \mathcal{G}$,
or we say:
$\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if there is v is such that $v^{*}(A)=T$ for all $A \in \mathcal{G}$

PART 2: PROBLEMS

PROBLEM 1

Write the following natural language statement:
One likes to play bridge, or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes not to play bridge
as a formula of 2 different languages

1. Formula $A_{1} \in \mathcal{F}_{1}$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$, where $\mathbf{L} \mathrm{A}$ represents statement "one likes A ", " A is liked".

Solution We translate our statement into a formula
$A_{1} \in \mathcal{F}_{1}$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ as follows.

Propositional Variables: a, b
a denotes statement: play bridge,
b denotes a statement: the weather is good

Translation 1

$$
A_{1}=(\mathbf{L} a \cup(b \Rightarrow(\neg \mathbf{I} a \cup \mathbf{L} \neg a)))
$$

2. Formula $A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$.

Solution We translate our statement into a formula $A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$ as follows.
Propositional Variables: a, b, c
a denotes statement: One likes to play bridge , b denotes a statement: the weather is good, and c denotes a statement: one likes not to play bridge
Translation 2:

$$
A_{2}=(a \cup(b \Rightarrow(\neg a \cup c)))
$$

PROBLEM 2

Given a formula A : $\quad \forall x \exists y P(f(x, y), c) \quad$ of the predicate language \mathcal{L}, and two model structures $\mathbf{M}_{\mathbf{1}}=\left(Z, I_{1}\right), \mathbf{M}_{\mathbf{1}}=\left(N, I_{2}\right)$ with the interpretations defined as follows.

$$
P_{I_{1}}:=, \quad f_{I_{1}}:+, \quad c_{I_{1}}: 0 \quad \text { and } \quad P_{I_{2}}:>, \quad f_{I_{2}}: \cdot, \quad c_{I_{2}}: 0
$$

1. Show that $\mathbf{M}_{\mathbf{1}} \vDash A$

Solution

$A_{I_{1}}: \quad \forall_{x \in Z} \exists_{y \in Z} x+y=0 \quad$ is a true statement;
For each $x \in Z$ exists $y=-x$ and $-x \in Z$ and $x-x=0$.

Solution

2. Show that $\mathbf{M}_{\mathbf{2}} \not \vDash A$.

Solution

$A_{I_{2}}: \quad \forall_{x \in N} \exists_{y \in N} x \cdot y>0 \quad$ is a false statement for $x=0$.

PROBLEM 3

We define a 3 valued extensional semantics \mathbf{M} for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ by defining the connectives \neg, \cup, \Rightarrow on a set $\{F, \perp, T\}$ of logical values by the following truth tables.

L Connective

\mathbf{L}	F	\perp	T
	F	F	T

Negation :

\neg	F	\perp	T
	T	F	F

Implication

\Rightarrow	F	\perp	T
F	T	T	T
\perp	T	\perp	T
T	F	F	T

Disjunction :

\cup	F	\perp	T
F	F	\perp	T
\perp	\perp	T	T
T	T	T	T

1. Verify whether $\models_{\mathrm{M}}(\mathbf{L} A \cup \neg \mathbf{L} A)$. You can use shorthand notation.

Solution

We verify

$$
\mathbf{L} T \cup \neg \mathbf{L} T=T \cup F=T, \quad \mathbf{L} \perp \cup \neg \mathbf{L} \perp=F \cup \neg F=F \cup T=T, \quad \mathbf{L} F \cup \neg \mathbf{L} F=F \cup \neg F=T
$$

2. Verify whether your formulas A_{1} and A_{2} from PROBLEM 1 have a model/ counter model under the semantics M. You can use shorthand notation.

Solution

The formulas are: $A_{1}=(\mathbf{L} a \cup(b \Rightarrow(\neg \mathbf{I} a \cup \mathbf{L} \neg a)))$, and $A_{2}=(a \cup(b \Rightarrow(\neg a \cup c)))$.
Any v, such that $v(a)=T$ is a \mathbf{M} model for A_{1} and for A_{2} directly from the definition of \cup.
3. Verify whether the following set \mathbf{G} is \mathbf{M}-consistent. You can use shorthand notation

$$
\mathbf{G}=\{\mathbf{L} a, \quad(a \cup \neg \mathbf{L} b), \quad(a \Rightarrow b), b\}
$$

Solution

Any v, such that $v(a)=T, v(b)=T$ is a \mathbf{M} model for \mathbf{G} as

$$
\mathbf{L} T=T, \quad(T \cup \neg \mathbf{L} T)=T, \quad(T \Rightarrow T)=T, \quad b=T
$$

PROBLEM 4

Let S be the following proof system

$$
S=\left(\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}, \mathcal{F}, \quad\{\mathbf{A 1}, \mathbf{A} \mathbf{2}\}, \quad\{(r 1),(r 2)\}\right)
$$

for the logical axioms and rules of inference defined for any formulas $A, B \in \mathcal{F}$ as follows

Logical Axioms

A1 $(\mathbf{L} A \cup \neg \mathbf{L} A)$
A2 $(A \Rightarrow \mathbf{L} A)$
Rules of inference:

$$
(r 1) \frac{A ; B}{(A \cup B)}, \quad \quad(r 2) \frac{A}{\mathbf{L}(A \Rightarrow B)}
$$

1. Verify whether the system S is \mathbf{M}-sound. You can use shorthand notation

Solution

Observe that both logical axioms of S are \mathbf{M} tautologies
A1, A2 are \mathbf{M} tautologies by direct evaluation.
Rule (r1) is sound because when $A=T$ and $B=T$ we get $A \cup B=T \cup T=T$.
Rule (r2) is not sound because when $A=T$ and $B=F$ (or $B=\perp$) we get $\mathbf{L}(A \Rightarrow B)=\mathbf{L}(T \Rightarrow F)=$ $\mathbf{L} F=F$ or $\mathbf{L}(T \Rightarrow \perp)=\mathbf{L} \perp=F$

We proved that S is not sound.
2. Show, by constructing a proper formal proof that

$$
\left.\vdash_{S}((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b))\right)
$$

You must write comments how each step pot the proof was obtained
Write all steps of the formal proof as follows - write as MANY as you NEED!

Solution

Here is the proof $\quad B_{1}, B_{2}, \quad B_{3}, \quad B_{4}$ of $\left.\quad((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b))\right)$.

$$
B_{1}: \quad(\mathbf{L} a \cup \neg \mathbf{L} a) \quad \text { Axiom } \quad A_{1} \text { for } \mathrm{A}=\mathrm{a}
$$

$B_{2}: \quad \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b) \quad$ rule (r2) for $\mathrm{B}=\mathrm{b}$ applied to B_{1}
$B_{3}: \quad(\mathbf{L} b \cup \neg \mathbf{L} A b) \quad$ Axiom A_{1} for $\mathrm{A}=\mathrm{b}$
$B_{4}: \quad((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b)) \quad(\mathrm{r} 1) \quad$ applied to B_{3} and B_{2}.
3. Does above point 2. prove that $\vDash((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b)))$?

Solution

No, , it doesn't because the system S is not sound

PROBLEM 5

Consider the Hilbert system $H_{1}=\left(\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F},\{A 1, A 2\}, \quad(M P) \frac{A ;(A \Rightarrow B)}{B}\right)$ where
$A 1 ; \quad(A \Rightarrow(B \Rightarrow A)), \quad A 2: \quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$ and A, B are any formulas from \mathcal{F}.

Use Deduction Theorem to prove $\vdash_{H_{1}}((B \Rightarrow C) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$.
Write comments how each step was obtained.

Solution

By Deduction Theorem applied THREE times we get that
$\vdash_{H_{1}}((B \Rightarrow C) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C))) \quad$ if and only if
$(B \Rightarrow C) \vdash_{H_{1}}((A \Rightarrow B) \Rightarrow(A \Rightarrow C)) \quad$ if and only if
$(B \Rightarrow C),(A \Rightarrow B) \vdash_{H_{1}}(A \Rightarrow C) \quad$ if and only if
$\left.(B \Rightarrow C),(A \Rightarrow B), A \vdash_{H_{1}} C\right)$.
Here is a formal proof of C from $(A \Rightarrow B),(B \Rightarrow C), A$:
$B_{1} \quad(A \Rightarrow B) \quad$ Hyp
$B_{2} \quad A \quad$ Hyp
$B_{3} \quad B \quad \mathrm{MP}$ on B_{2}, B_{1}
$B_{4} \quad(B \Rightarrow C) \quad$ Hyp
$B_{5} \quad C \quad \mathrm{MP}$ on B_{3}, B_{4}

