CSE371 PRACTICE MIDTERM 1 Fall 2017 (10 extra pts)

NAME

ID:

MY POINTS ARE:

TAKE test as a practice - and correct it yourself to see how much points you would get.
Solutions to all problems and questions are somewhere on our webpage! so you CAN correct yourselfbut do it ONLY AFTER you complete it all by yourself.

This is the goal of the PRACTICE TEST!
PLEASE SUBMIT your SOLUTIONS that have been CORRECTED BY YOU - Write corrections in RED. You WILL GET 10 points for THAT! even if all problems you solved were first wrong- and then CORRECTED!

Write a sum of POINTS you give yourself for your solutions -after you check your answers for corrections.

The real midterm will have less problems; I will make sure you will be able to complete it within 1 hour and 15 minutes.

BRING YOUR solved-corrected TEST to class on Monday, October 23

PART ONE: DEFINITIONS (10pts)

All Definitions are for language $\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$ and classical semantics

Write carefully the following DEFINITIONS
D1. Extentional Connectves

D2. Given the truth assignment $v: V A R \longrightarrow\{T, F\}$. Write the definition of its extension v^{*} to the set \mathcal{F} of all formulas of \mathcal{L}

D3. Restricted MODEL for a given formula $A \in \mathcal{F}$

D4. Proof System S

D5. Formal proof from Γ in a system S

D6. Sound rule of inference in a system S

D7. Sound proof system S

D8. Soundness and Completeness Theorem for S (classical semantics)

D9. A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ consistent (classical semantics)

D10. A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ inconsistent (classical semantics)

PART TWO: PROBLEMS (65pts)

Problem 1 (5pts), all other problems (10pts))

Problem 1

Given a mathematical statement \mathbf{S} written with logical symbols

$$
\left(\exists_{x \in N} x \leq 5 \cap \forall_{y \in Z} y=0\right)
$$

1. Translate \mathbf{S} it into a proper logical formula that uses the restricted domain quantifiers.
2. Translate your restricted quantifiers formula into a correct formula without restricted domain quantifiers.

Write a short solution.

Problem 2

Given a formula A: $\quad \forall x \exists y P(f(x, y), c) \quad$ of the predicate language \mathcal{L}, and
two model structures $\mathbf{M}_{\mathbf{1}}=\left(Z, I_{1}\right), \mathbf{M}_{\mathbf{1}}=\left(N, I_{2}\right)$ with the interpretations defined as follows. $P_{I_{1}}:=, \quad f_{I_{1}}:+, \quad c_{I_{1}}: 0 \quad$ and $\quad P_{I_{2}}:>, \quad f_{I_{2}}: \cdot, \quad c_{I_{2}}: 0$.

1. Show that $\mathbf{M}_{\mathbf{1}} \models A$
2. Show that $\mathbf{M}_{2} \not \vDash A$

Problem 3

S is the following proof system:

$$
S=\left(\mathcal{L}_{\{\Rightarrow, \cup, \neg\}}, \quad \mathcal{F}, \quad L A=\{(A \Rightarrow(A \cup B))\} \quad(r 1), \quad(r 2)\right)
$$

Rules of inference:

$$
(r 1) \frac{A ; B}{(A \cup \neg B)}, \quad(r 2) \frac{A ;(A \cup B)}{B}
$$

1. Verify whether S is sound/not sound under classical semantics.
2. Verify whether S is sound/not sound under K semantics.
3. Find a formal proof of $\neg(A \Rightarrow(A \cup B))$ in S, i. e. show that $\vdash_{S} \neg(A \Rightarrow(A \cup B))$
4. Does above point 3. prove that $\models \neg(A \Rightarrow(A \cup B))$?

Problem 4

1. Given a formula $A=((a \cap \neg c) \Rightarrow(\neg a \cup b))$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.

Find a formula B of a language $\mathcal{L}_{\{\neg, \Rightarrow\}}$, such that $A \equiv B$. List all proper logical equivalences used at at each step.
2. Prove that $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}}$.

Problem 5

Consider the Hilbert system $H_{1}=\left(\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F},\{A 1, A 2\},(M P) \frac{A ;(A \Rightarrow B)}{B}\right)$ where
$A 1 ; \quad(A \Rightarrow(B \Rightarrow A)), \quad A 2: \quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C))) \quad$ and A, B are any formulas from \mathcal{F}.

Use Deduction Theorem to prove $(A \Rightarrow B),(B \Rightarrow C) \vdash_{H_{1}}(A \Rightarrow C)$.
Write comments how each step was obtained.

Problem 6

Complete the steps B_{1}, \ldots, B_{5} of the formal proof in H_{2} of $(B \Rightarrow \neg \neg B)$ by writing all details for each step of the proof.

You can use the following already proved facts:
F1 $\quad(A \Rightarrow B),(B \Rightarrow C) \vdash_{H_{2}}(A \Rightarrow C)$
F2 $\vdash_{H_{2}}(\neg \neg B \Rightarrow B)$
Here are the steps
$B_{1}=((\neg \neg \neg B \Rightarrow \neg B) \Rightarrow((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B))$
$B_{2}=(\neg \neg \neg B \Rightarrow \neg B)$

$$
B_{3}=((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)
$$

$$
B_{4}=(B \Rightarrow(\neg \neg \neg B \Rightarrow B))
$$

$B_{5}=(B \Rightarrow \neg \neg B)$

Problem 7 We define, for $A, b_{1}, b_{2}, \ldots, b_{n}$ and truth assignment v a corresponding formulas A^{\prime}, $B_{1}, B_{2}, \ldots, B_{n}$ as follows:
$A^{\prime}=\left\{\begin{array}{lll}A & \text { if } & v^{*}(A)=T \\ \neg A & \text { if } & v^{*}(A)=F\end{array} \quad B_{i}=\left\{\begin{array}{lll}b_{i} & \text { if } & v\left(b_{i}\right)=T \\ \neg b_{i} & \text { if } & v\left(b_{i}\right)=F\end{array}\right.\right.$
We proved the following Main Lemma: For any formula $A=A\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and any truth assignment v,
if $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ are corresponding formulas defined above, then $B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}$.
Let A be a formula $\quad((\neg a \Rightarrow \neg b) \Rightarrow(b \Rightarrow a))$, and let v be such that $\mathrm{v}(\mathrm{a})=\mathrm{T}, \quad \mathrm{v}(\mathrm{b})=\mathrm{F}$.
Write what Main Lemma asserts for the formula A.

