cse371/mat371 LOGIC

Professor Anita Wasilewska

LECTURE 3a

Chapter 3
 Propositional Semantics: Classical and Many Valued

Classical Semantics

Semantics- General Principles

Given a propositional language $\mathcal{L}=\mathcal{L}$ CON
Symbols for connectives of \mathcal{L} always have some intuitive meaning

Semantics provides a formal definition of the meaning of these symbols

It provides a method of defining formally a notion of tautology under a given semantics

Extensional Connectives

In Chapter 2 we described the intuitive classical propositional semantics and introduced the following notion of extensional connectives

Extensional connectives are the propositional connectives that have the following property:
the logical value of the formulas form by means of these connectives and certain given formulas depends only on the logical value(s) of the given formulas
We also assumed that
All classical propositional connectives

$$
\neg, \cup, \cap, \Rightarrow, \Leftrightarrow, \uparrow, \downarrow
$$

are extensional

Non-Extensional Connectives

We have also observed the following

Remark

In everyday language there are expressions such as
"I believe that", "it is possible that", " certainly", etc....
They are represented by some propositional connectives
which are not extensional

Non- extensional connectives do not play any role in mathematics and so are not discussed in classical logic and will be studied separately

Definition of Extensional Connectives

Given a propositional language $\mathcal{L}_{\mathrm{CON}}$ for the set $C O N=C_{1} \cup C_{2}$, where C_{1} is the set of all unary connectives, and C_{2} is the set of all binary connectives
Let V be a non-empty set of logical values
We adopt now a following formal definition of extensional connectives

Definition

Connectives $\nabla \in C_{1}$, $\circ \in C_{2}$ are called extensional
if and only if their semantics is defined by respective functions

$$
\nabla: V \longrightarrow V \text { and } \quad \circ: V \times V \longrightarrow V
$$

Functional Dependency and Definability of Connectives

In Chapter 2 we talked about functional dependency of connectives and of definability of a connective in terms of other connectives

We define these notions formally as follows

Functional Dependency and Definability of Connectives

Given a propositional language $\mathcal{L}_{\mathrm{CON}}$ and an extensional semantics for it; i.e a semantics such that all connectives in \mathcal{L} are extensional
Definition
Connectives $\circ \in \operatorname{CON}$ and $\circ_{1}, \circ_{2}, \ldots \circ_{n} \in \operatorname{CON}$ (for $n \geq 1$) are functionally dependent iff \circ is a certain function
composition of functions $\circ_{1}, \circ_{2}, \ldots \circ_{n}$

Definition

A connective $\circ \in C O N$ is definable in terms of some connectives $\circ_{1}, \circ_{2}, \ldots \circ_{n} \in C O N$ iff $\circ \in C O N$ and $\circ_{1}, \circ_{2}, \ldots \circ_{n} \in C O N$ are functionally dependent

Classical Propositional Semantics Assumptions

Assumptions

A1: We define our semantics for the language

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow, \Leftrightarrow\}}
$$

A2: Two values: the set of logical values $V=\{T, F\}$
Logical values T, F denote truth and falsehood, respectively
There are other notations, for example 0,1
A3: Extensionality: all connectives of \mathcal{L} are extensional

Semantics for any language \mathcal{L} for which the assumption A3 holds is called extensional semantics

Propositional Semantics Definition

Formal definition of a propositional extensional semantics for a given language $\mathcal{L}_{\text {CON }}$ consists of providing definitions of the following four main components:

1. Extensional Connectives
2. Truth Assignment
3. Satisfaction, Model, Counter-Model
4. Tautology

The definition of the classical semantics and extensional semantics for some non-classical logics considered here will follow the same pattern

Semantics: Classical Connectives Definition

Semantics Definition Step 1

The assumption of extensionality of connectives means that unary connectives are functions defined on a set $\{T, F\}$ with values in the set $\{T, F\}$ and
binary connectives are functions defined on a set
$\{T, F\} \times\{T, F\}$ with values in the set $\{T, F\}$
In particular we adopt the following definitions

Negation Definition

Negation \neg is a function:

$$
\neg:\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
\neg T=F, \quad \neg F=T
$$

Semantics: Classical Connectives Definition

Notation

When defining connectives as functions we usually write the name of a function (our connective) between the arguments, not in front as in function notation, i.e. for example we write $T \cap T=T$ instead of $\cap(T, T)=T$

Conjunction Definition
Conjunction \cap is a function:

$$
\cap:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\},
$$

such that

$$
\cap(T, T)=T, \quad \cap(T, F)=F, \cap(F, T)=F, \quad \cap(F, F)=F
$$

We write it as

$$
T \cap T=T, \quad T \cap F=F, \quad F \cap T=F, \quad F \cap F=F
$$

Semantics: Classical Connectives Definition

Disjunction Definition

Disjunction \cup is a function:

$$
\cup:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
\cup(T, T)=T, \quad \cup(T, F)=T, \quad \cup(F, T)=T, \quad \cup(F, F)=F
$$

We write it as

$$
T \cup T=T, \quad T \cup F=T, \quad F \cup T=T, \quad F \cup F=F
$$

Semantics: Classical Connectives Definition

Implication Definition

Implication \Rightarrow is a function:

$$
\Rightarrow: \quad\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that
$\Rightarrow(T, T)=T, \quad \Rightarrow(T, F)=F, \quad \Rightarrow(F, T)=T, \quad \Rightarrow(F, F)=T$
We write it as

$$
T \Rightarrow T=T, \quad T \Rightarrow F=F, \quad F \Rightarrow T=T, \quad F \Rightarrow F=T
$$

Semantics: Classical Connectives Definition

Equivalence Definition

Equivalence \Leftrightarrow is a function:

$$
\Leftrightarrow: \quad\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that
$\Leftrightarrow(T, T)=T, \quad \Leftrightarrow(T, F)=F, \quad \Leftrightarrow(F, T)=F, \quad \Leftrightarrow(T, T)=T$
We write it as

$$
T \Leftrightarrow T=T, \quad T \Leftrightarrow F=F, \quad F \Leftrightarrow T=F, \quad T \Leftrightarrow T=T
$$

Classical Connectives Truth Tables

We write the functions defining connectives in a form of tables, usually called the classical truth tables

Negation:

$$
\begin{aligned}
& \neg T=F, \quad \neg F=T \\
& \neg \left\lvert\, \begin{array}{ll}
\mathrm{T} & \mathrm{~F} \\
\hline & \mathrm{~F} \\
\mathrm{~T}
\end{array}\right.
\end{aligned}
$$

Conjunction:

$$
\begin{aligned}
& T \cap T=T, \quad T \cap F=F, \quad F \cap T=F, \quad F \cap F=F \\
& \\
& \\
& \cap
\end{aligned} \left\lvert\, \begin{array}{ll}
\mathrm{T} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~T} \\
\mathrm{~F} \\
\mathrm{~F} & \mathrm{~F} \\
\mathrm{~F}
\end{array}\right.
$$

Classical Connectives Truth Tables

Disjunction:

$$
\begin{aligned}
& T \cup T=T, \quad T \cup F=T, \quad F \cup T=T, \quad F \cup F=F \\
& \\
& \cup \\
& \cup \\
& \hline \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~F} \\
& \mathrm{~F} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~F}
\end{aligned}
$$

Implication:

$$
\begin{aligned}
& T \Rightarrow T=T, \quad T \Rightarrow F=F, \quad F \Rightarrow T=T, \quad F \Rightarrow F=T \\
& \Rightarrow \\
& \Rightarrow \mathrm{~T} \\
& \hline \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~F} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~T}
\end{aligned}
$$

Classical Connectives Truth Tables

Equivalence:

$$
\begin{aligned}
& T \Leftrightarrow T=T, T \Leftrightarrow F=F, F \Leftrightarrow T=F, F \Leftrightarrow F=T \\
& \Leftrightarrow \\
& \Leftrightarrow
\end{aligned} \begin{aligned}
& \mathrm{T} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~F} \\
& \mathrm{~F} \\
& \mathrm{~F} \\
& \mathrm{~T}
\end{aligned}
$$

This ends the Step1 of the semantics definition

Definability of Classical Connectives

We adopted the following definition

Definition

A connective $\circ \in C O N$ is definable in terms of some connectives $\circ_{1}, \circ_{2}, \ldots \circ_{n} \in C O N$ iff \circ is a certain function composition of functions $\circ_{1}, \circ_{2}, \ldots \circ_{n}$

Example

Classical implication \Rightarrow is definable in terms of \cup and \neg because \Rightarrow can be defined as a composition of functions \neg and \cup
More precisely, a function $h:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}$ defined by a formula

$$
h(x, y)=\cup(\neg x, y)
$$

is a composition of functions \neg and \cup and we prove that the implication function \Rightarrow is equal with h

Short Review: Equality of Functions

Definition

Given two sets A, B and functions f,g such that

$$
f: A \longrightarrow B \text { and } g: A \longrightarrow B
$$

We say that the functions f, g are equal and write is as $f=g$ if and only if $f(x)=g(x)$ for all elements $x \in A$
Example: Consider functions
$\Rightarrow:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}$ and $h:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}$
where \Rightarrow is classical implication and the function h is defined by the formula $h(x, y)=\cup(\neg x, y)$
We prove that $\Rightarrow=h$ by evaluating that
$\Rightarrow(x, y)=h(x, y)=\cup(\neg x, y)$, for all $(x, y) \in\{T, F\} \times\{T, F\}$

Definability of Classical Implication

We re-write formula $\Rightarrow(x, y)=\cup(\neg x, y)$ in our adopted notation as

$$
x \Rightarrow y=\neg x \cup y \quad \text { for all } \quad(x, y) \in\{T, F\} \times\{T, F\}
$$

and call it a formula defining \Rightarrow in terms of \cup and \neg We verify correctness of the definition as follows

$$
\begin{array}{lll}
T \Rightarrow T=T \text { and } \neg T \cup T=F \cup T=T & \text { yes } \\
T \Rightarrow F=F & \text { and } \neg T \cup F=F \cup F=F & \text { yes } \\
F \Rightarrow F=T \text { and } \neg F \cup F=T \cup F=T & \text { yes } \\
F \Rightarrow T=T \text { and } \neg F \cup T=T \cup T=T & \text { yes }
\end{array}
$$

Definability of Classical Connectives

Exercise 1

Find a formula defining \cap, \Leftrightarrow in terms of \cup and \neg

Exercise 2

Find a formula defining
$\Rightarrow, \cup, \Leftrightarrow$ in terms of \cap and \neg
Exercise 3
Find a formula defining $\cap, \cup, \Leftrightarrow$ in terms of \Rightarrow and \neg
Exercise 4
Find a formula defining $\quad \cup$ in terms of \Rightarrow alone

Two More Classical Connectives

Sheffer Alternative Negation \uparrow

$$
\uparrow:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
T \uparrow T=F, \quad T \uparrow F=T, \quad F \uparrow T=T, \quad F \uparrow F=T
$$

Łukasiewicz Joint Negation \downarrow

$$
\downarrow:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
T \downarrow T=F, \quad T \downarrow F=F, \quad F \downarrow T=F, \quad F \downarrow F=T
$$

Definability of Classical Connectives

Exercise 4

Show that the Sheffer Alternative Negation \uparrow defines all classical connectives $\neg, \Rightarrow, \cup, \cap, \Leftrightarrow$
Exercise 5
Show that Łukasiewicz Joint Negation \downarrow defines all classical connectives $\neg, \Rightarrow, \cup, \cap, \Leftrightarrow$
Exercise 6
Show that the two binary connectives: \downarrow and \uparrow suffice, each of them separately, to define all classical connectives, whether unary or binary

Semantics: Truth Assignment

Step 2

We define the next components of the classical propositional semantics in terms of the propositional connectives as defined in the Step 1 and a function called truth assignment

Definition

A truth assignment is any function

$$
v: V A R \longrightarrow\{T, F\}
$$

Observe that the domain of truth assignment is the set of propositional variables, i.e. the truth assignment is defined only for atomic formulas

Truth Assignment Extension

We now extend the truth assignment v to the set of all formulas \mathcal{F} in order define formally the logical value for any formula $A \in \mathcal{F}$

The definition of the extension of the variable assignment v to the set \mathcal{F} follows the same pattern for the all extensional connectives, i.e. for all extensional semantics

Truth Assignment Extension v^{*} to \mathcal{F}

Definition

Given the truth assignment

$$
v: V A R \longrightarrow\{T, F\}
$$

We define its extension v^{*} to the set \mathcal{F} of all formulas of \mathcal{L} as any function

$$
v^{*}: \mathcal{F} \longrightarrow\{T, F\}
$$

such that the following conditions are satisfied
(i) for any a $\in \operatorname{VAR}$ (atomic formula)

$$
v^{*}(a)=v(a)
$$

Truth Assignment Extension v^{*} to \mathcal{F}

(ii) and for any $A, B \in \mathcal{F}$ we put

$$
\begin{aligned}
& v^{*}(\neg A)=\neg v^{*}(A) ; \\
& v^{*}((A \cap B))=\cap\left(v^{*}(A), v^{*}(B)\right) ; \\
& v^{*}((A \cup B))=\cup\left(v^{*}(A), v^{*}(B)\right) ; \\
& v^{*}((A \Rightarrow B))=\Rightarrow\left(v^{*}(A), v^{*}(B)\right) ; \\
& v^{*}((A \Leftrightarrow B))=\Leftrightarrow\left(v^{*}(A), v^{*}(B)\right)
\end{aligned}
$$

The symbols on the left-hand side of the equations represent connectives in their natural language meaning and the symbols on the right-hand side represent connectives in their semantical meaning given by the classical truth tables

Extension v^{*} Definition Revisited

Notation

For binary connectives (two argument functions) we adopt a convention to write the symbol of the connective (name of the 2 argument function) between its arguments as we do in a case arithmetic operations
The condition (ii) of the definition of the extension v^{*} can be hence written as follows
(ii) and for any $A, B \in \mathcal{F}$ we put

$$
\begin{aligned}
v^{*}(\neg A) & =\neg v^{*}(A) \\
v^{*}((A \cap B)) & =v^{*}(A) \cap v^{*}(B) \\
v^{*}((A \cup B)) & =v^{*}(A) \cup v^{*}(B) \\
v^{*}((A \Rightarrow B)) & =v^{*}(A) \Rightarrow v^{*}(B) \\
v^{*}((A \Leftrightarrow B)) & =v^{*}(A) \Leftrightarrow v^{*}(B)
\end{aligned}
$$

We will use this notation for the rest of the book

Truth Assignment Extension Example

Consider a formula

$$
((a \Rightarrow b) \cup \neg a))
$$

and a truth assignment v such that

$$
v(a)=T, \quad v(b)=F
$$

Observe that we did not specify $v(x)$ of any $x \in V A R-\{a, b\}$, as these values do not influence the computation of the logical value $v^{*}(A)$ of the formula A

We say: " v such that" - as we consider its values for the set $\{a, b\} \subseteq V A R$
Nevertheless, the domain of v is the set of all variables VAR and we have to remember that.

Truth Assignment Extension Example

Given a formula A: $((a \Rightarrow b) \cup \neg a))$ and a truth assignment v such that $v(a)=T, \quad v(b)=F$
We calculate the logical value of the formula A as follows:
$\left.v^{*}(A)=v^{*}(((a \Rightarrow b) \cup \neg a))\right)=\cup\left(v^{*}\left((a \Rightarrow b), v^{*}(\neg a)\right)=\right.$
$\left.\left.\cup\left(\Rightarrow\left(v^{*}(a), v^{*}(b)\right), \neg v^{*}(a)\right)\right)=\cup(\Rightarrow(v(a), v(b)), \neg v(a))\right)=$
$\cup(\Rightarrow(T, F), \neg T))=\cup(F, F)=F$
We can also calculate it as follows:
$\left.v^{*}(A)=v^{*}(((a \Rightarrow b) \cup \neg a))\right)=v^{*}((a \Rightarrow b)) \cup v^{*}(\neg a)=$ $(v(a) \Rightarrow v(b)) \cup \neg v(a)=(T \Rightarrow F) \cup \neg T=F \cup F=F$
We write it in a short-hand notation as
$(T \Rightarrow F) \cup \neg T=F \cup F=F$
On tests I will specify when you can use the the short-hand notation.

Semantics: Satisfaction Relation

Step 3

Definition: Let $v: V A R \longrightarrow\{T, F\}$
We say that
v satisfies a formula $A \in \mathcal{F} \quad$ iff $\quad v^{*}(A)=T$

Notation: $\quad v \models A$

Definition: We say that
v does not satisfy a formula $A \in \mathcal{F} \quad$ iff $\quad v^{*}(A) \neq T$

Notation: $\quad v \not \vDash A$

The relation \models is called a satisfaction relation

Semantics: Satisfaction Relation

Observe that $v^{*}(A) \neq T$ is is equivalent to the fact that $v^{*}(A)=F$ only in 2-valued semantics and

$$
v \not \models A \quad \text { iff } \quad v^{*}(A)=F
$$

Definition

We say that v falsifies the formula A iff $v^{*}(A)=F$ Remark

For any formula $A \in \mathcal{F}$
$v \not \models A$ iff v falsifies the formula A

Examples

Example 1: Let $A=((a \Rightarrow b) \cup \neg a))$ and
$v: V A R \longrightarrow\{T, F\}$ be such that $v(a)=T, v(b)=F$
We calculate $v^{*}(A)$ using a short hand notation as follows

$$
(T \Rightarrow F) \cup \neg T=F \cup F=F
$$

By definitiom

$$
v \nLeftarrow((a \Rightarrow b) \cup \neg a))
$$

Observe that we did not need to specify the $v(x)$ of any $x \in \operatorname{VAR}-\{a, b\}$, as these values do not influence the computation of the logical value $v^{*}(A)$

Examples

Example 2 Let $A=((a \cap \neg b) \cup \neg c)$ and
$v: V A R \longrightarrow\{T, F\}$ be such that
$v(a)=T, v(b)=F, v(c)=T$
We calculate $v^{*}(A)$ using a short hand notation as follows

$$
(T \cap \neg F) \cup \neg T=(T \cap T) \cup F=T \cup F=T
$$

By definition

$$
v \models((a \cap \neg b) \cup \neg c)
$$

Examples

Example 3 Let $A=((a \cap \neg b) \cup \neg c)$
Consider now $v_{1}: V A R \longrightarrow\{T, F\}$ such that
$v_{1}(a)=T, v_{1}(b)=F, v_{1}(c)=T$ and
$v_{1}(x)=F, \quad$ for all $x \in \operatorname{VAR}-\{a, b, c\}$
Observe that
$v(a)=v_{1}(a), \quad v(b)=v_{1}(b), \quad v(c)=v_{1}(c)$
Hence we get

$$
v_{1} \models((a \cap \neg b) \cup \neg c)
$$

Examples

Example 4 Let $A=((a \cap \neg b) \cup \neg c)$
Consider now $\quad v_{2}: V A R \longrightarrow\{T, F\}$ such that
$v_{2}(a)=T, v_{2}(b)=F, v_{2}(c)=T, v_{2}(d)=T$ and
$v_{1}(x)=F, \quad$ for all $x \in \operatorname{VAR}-\{a, b, c, d\}$
Observe that
$v(a)=v_{2}(a), v(b)=v_{2}(b), v(c)=v_{2}(c)$
Hence we get

$$
v_{2} \models((a \cap \neg b) \cup \neg c)
$$

Semantics: Model, Counter-Model

Definition:

Given a formula $A \in \mathcal{F}$ and $v: V A R \longrightarrow\{T, F\}$

Any v such that $v \vDash A$ is called a model for A

Any v such that $v \not \vDash A$ is called a counter model for A

Observe that all truth assignments v, v_{1}, v_{2} from our Examples 2, 3, 4 are models for the same formula A

Semantics: Tautology

Step 4

Definition:

For any formula $A \in \mathcal{F}$
A is a tautology iff $v^{*}(A)=T$, for all $v: V A R \longrightarrow\{T, F\}$
i.e. we have that
A is a tautology iff any $v: V A R \longrightarrow\{T, F\}$ is a model for A

Notation

We write symbolically $\models A$ for the statement " A is a tautology"

Semantics: not a tautology

Definition

A is not a tautology iff there is v, such that $v^{*}(A) \neq T$
i.e. we have that
A is not a tautology iff A has a counter-model

Notation

We write $\quad \notin A$ to denote the statement " A is not a tautology"

How Many

We just saw from the Examples 2, 3, 4 that given a model v for a formula A, we defined 2 other models for A

These models were identical with v on the variables in the formula A

Visibly we can keep constructing in a similar way more and more of such models

A natural question arises:
Given a model for a the formula A , how many other models for A can be constructed?

The same question can be asked about counter-models for A, if they exist

Challenge Problem

Challenge Problem : prove the following

Model Theorem

For any formula $A \in \mathcal{F}$,
If A has a model (counter- model), then it has uncountably many (exactly as many as real numbers) of models (counter-models)

How Many

Here is a more general question

Question

Given a formula $A \in \mathcal{F}$,
how many truth assignments we have to consider to prove that the formula A ? is a tautology?

We prove that there are as many of such truth assignments as real numbers
But FORTUNATELY only a finite number of them is differs on the variables included in the formula A and we do have the following

Tautology DecidabilityTheorem

The notion of classical propositional tautology $\models A$ is decidable

Restricted Truth Assignments

To address and to answer these questions formally we first introduce some notations and definitions

Notation: for any formula A, we denote by $V A R_{A}$ a set of all variables that appear in A

Definition: Given $v: V A R \longrightarrow\{T, F\}$, any function
$v_{A}: V A R_{A} \longrightarrow\{T, F\}$ such that $v(a)=v_{A}(a)$ for all $a \in V A R_{A}$ is called a restriction of v to the formula A

Fact 1

For any formula A, any v, and its restriction v_{A}

$$
v \models A \quad \text { iff } \quad v_{A} \models A
$$

Restricted Model

Definition: Given a formula $A \in \mathcal{F}$, any function

$$
w: \quad V A R_{A} \longrightarrow\{T, F\}
$$

is called a truth assignment restricted to A

Definition Given a formula $A \in \mathcal{F}$
Any function
$w: \quad V A R_{A} \longrightarrow\{T, F\} \quad$ such that $\quad w^{*}(A)=T$
is called a restricted MODEL for A

Example

Example

$$
\begin{gathered}
A=((a \cap \neg b) \cup \neg c) \\
V A R_{A}=\{a, b, c\}
\end{gathered}
$$

Truth assignment restricted to A is any function:

$$
w: \quad\{a, b, c\} \longrightarrow\{T, F\} .
$$

We use the following theorem to count all possible truth assignment restricted to A

Counting Functions

Counting Functions Theorem

For any finite sets A and B,
if the set A has n elements and B has m elements, then there are m^{n} possible functions that map A into B
Proof by Mathematical Induction over m

Example:

There are $2^{3}=8$ truth assignments w restricted to

$$
A=((a \Rightarrow \neg b) \cup \neg c)
$$

Counting Theorem

Counting Theorem

For any $A \in \mathcal{F}$, there are

$$
2^{\left|V A R_{A}\right|}
$$

possible truth assignments restricted to A

Example

Let $A=((a \cap \neg b) \cup \neg c)$
All w restricted to A are listed in the table below

w	a	b	c	$w^{*}(A)$ computation	$w^{*}(A)$
w_{1}	T	T	T	$(T \Rightarrow T) \cup \neg T=T \cup F=T$	T
w_{2}	T	T	F	$(T \Rightarrow T) \cup \neg F=T \cup T=T$	T
w_{3}	T	F	F	$(T \Rightarrow F) \cup \neg F=F \cup T=T$	T
w_{4}	F	F	T	$(F \Rightarrow F) \cup \neg T=T \cup F=T$	T
w_{5}	F	T	T	$(F \Rightarrow T) \cup \neg T=T \cup F=T$	T
w_{6}	F	T	F	$(F \Rightarrow T) \cup \neg F=T \cup T=T$	T
w_{7}	T	F	T	$(T \Rightarrow F) \cup \neg T=F \cup F=F$	F
w_{8}	F	F	F	$(F \Rightarrow F) \cup \neg F=T \cup T=T$	T

$w_{1}, w_{2}, w_{3}, w_{4} w_{5}, w_{6}, w_{8}$ are restricted models for A w_{7} is a restricted counter- model for A

Restrictions and Extensions

Given a formula A and $w: V A R_{A} \longrightarrow\{T, F\}$
Definition
Any function v, such that $v: V A R \longrightarrow\{T, F\}$ and
$v(a)=w(a)$, for all $a \in V A R_{A}$ is called an extension of w to the set VAR of all propositional variables
Fact 2
For any formula A, any w restricted to A, and any of its extensions \vee

$$
w \models A \quad \text { iff } \quad v \models A
$$

Tautology and Decidability

By the definition of a tautology and Facts 1, 2 we get the following

TautologyTheorem

$$
\models A \quad \text { iff } \quad w \models A \text { for all } w: V A R_{A} \longrightarrow\{T, F\}
$$

From above and the Counting Theorem we get

Tautology DecidabilityTheorem

The notion of classical propositional tautology $\models A$ is decidable

Tautology Verification

We just PROVED correctness of the well known Truth Table Tautology Verification Method :
to verify whether $\models A$ list and evaluate all possible truth assignments w restricted to A and we have that
$\models A$ if all w evaluate to T
$\neq A$ if there is one w that evaluates to F

Truth Table Example

Consider a formula A:

$$
(a \Rightarrow(a \cup b))
$$

We write the Truth Table:

w	a	b	$w^{*}(A)$ computation	$w^{*}(A)$
w_{1}	T	T	$(T \Rightarrow(T \cup T))=(T \Rightarrow T)=T$	T
w_{2}	T	F	$(T \Rightarrow(T \cup F))=(T \Rightarrow T)=T$	T
w_{3}	F	T	$(F \Rightarrow(F \cup T))=(F \Rightarrow T)=T$	T
w_{4}	F	F	$(F \Rightarrow(F \cup F))=(F \Rightarrow F)=T$	T

We evaluated that for all w restricted to A, i.e. all functions $w: V A R_{A} \longrightarrow\{T, F\}, \quad w \models A$
This proves by TautologyTheorem

$$
\models(a \Rightarrow(a \cup b))
$$

Tautology Verification

Imagine now that A has for example 200 variables.
To find whether A is a tautology by using the Truth Table
Method one would have to evaluate 200 variables long expressions - not to mention that one would have to list 2^{200} restricted truth assignments
I want you to use now and later in case of many valued semantics a more intelligent (and much faster!) method called Proof by Contradiction Method

In fact, I will not accept the Truth Tables verifications on any TEST and students using it will get $\mathbf{0}$ pts for the problem

Tautology - Proof by Contradiction Method

Proof by Contradiction Method:

In this method, in order to prove that $\models A$ we proceed as follows

We assume that $\notin A$
We work with this assumption
If we get a contradiction, we have proved that $\forall A$ is impossible
We hence proved $\models A$
If we do not get a contradiction, it means that the assumption $\forall=A$ is true, i.e.
we have proved that $\forall \neq A$

Tautology - Proof by Contradiction Method

Proof by Contradiction Method:

in order to verify whether $\models A$ one works backwards, trying to find a truth assignment v which makes a formula A false.
If we find one, it means that A is not a tautology
if we prove that it is impossible, i.e. we got a contradiction
it means that the formula is a tautology

Example

Let $A=(a \Rightarrow(a \cup b)$
Step 1: Assume that $\forall A$, i.e. we write in a shorthand notion $A=F$
Step 2: We use shorthand notation to analyze Strep 1
$(a \Rightarrow(a \cup b))=F \quad$ iff $\quad a=T \quad$ and $\quad(a \cup b)=F$
Step 3: Analyze Step 2
$a=T$ and $(a \cup b)=F$, i.e. $(T \cup b)=F$
This is impossible by the definition of \cup
We got a contradiction, hence

$$
\models(a \Rightarrow(a \cup b))
$$

Example

Observe that exactly the same reasoning proves that for any formulas $A, B \in \mathcal{F}$,
$\models(A \Rightarrow(A \cup B))$
The following formulas are also tautologies
$((((a \Rightarrow b) \cap \neg c) \Rightarrow((((a \Rightarrow b) \cap \neg c) \cup \neg d))$, and $(((((a \Rightarrow b) \cap \neg c) \cup d) \cap \neg e) \Rightarrow((((a \Rightarrow b) \cap \neg c) \cup d) \cap \neg e)$ $\cup(a \Rightarrow \neg e)))$
because they are particular cases of $(A \Rightarrow(A \cup B))$

Tautologies, Contradictions

Set of all Tautologies

$$
\mathbf{T}=\{A \in \mathcal{F}: \models A\}
$$

Definition

A formula $A \in \mathcal{F}$ is called a contradiction if it does not have a model
Contradiction Notation: $=\mid A$
Directly from the definition we have that
$=\mid A \quad$ if and only $f \quad v \not \models A$ for all $v: V A R \longrightarrow\{T, F\}$
Set of all Contradictions

$$
\mathbf{C}=\{A \in \mathcal{F}:=\mid A\}
$$

Examples

Tautology $\quad(A \Rightarrow(B \Rightarrow A))$
Contradiction $\quad(A \cap \neg A)$
Neither $\quad(a \cup \neg b)$

Consider the formula $(a \cup \neg b)$
Any v such that $v(a)=T$ is a model for $(a \cup \neg b)$, so it is not a contradiction
Any v such that $v(a)=F, v(b)=T$ is a counter-model for $(a \cup \neg b)$ so $\vDash(a \cup \neg b)$

Simple Properties

Theorem 1 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.
(1) $A \in T$
(2) $\neg A \in \mathbf{C}$
(3) For all $v, \quad v \models A$

Theorem 2 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.
(1) $A \in C$
(2) $\neg A \in T$
(6) For all $v, \quad v \not \models A$

Constructing New Tautologies

We now formulate and prove a theorem which describes validity of a method of constructing new tautologies from given tautologies
First we introduce some convenient notations.
Notation 1: for any $A \in \mathcal{F}$ we write

$$
A\left(a_{1}, a_{2}, \ldots a_{n}\right)
$$

to denote that $a_{1}, a_{2}, \ldots a_{n}$ are fall propositional variables appearing in A
Notation 2: let $A_{1}, \ldots A_{n}$ be any formulas, we write

$$
A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)
$$

to denote the result of simultaneous replacement (substitution) all variables $a_{1}, a_{2}, \ldots a_{n}$ in A by formulas $A_{1}, \ldots A_{n}$, respectively.

Constructing NewTautologies

Theorem For any formulas $A, A_{1}, \ldots A_{n} \in \mathcal{F}$,
IF $\models A\left(a_{1}, a_{2}, \ldots a_{n}\right) \quad$ and $B=A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)$,
THEN $\vDash B$

Proof: Let $B=A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)$ and let $b_{1}, b_{2}, \ldots b_{m}$ be all propositional variables which occur in $A_{1}, \ldots A_{n}$
Given a truth assignment $v: V A R \longrightarrow\{T, F\}$, the values $v\left(b_{1}\right), v\left(b_{2}\right), \ldots v\left(b_{m}\right)$ define $v^{*}\left(A_{1}\right), \ldots v^{*}\left(A_{n}\right)$ and, in turn define $v^{*}\left(A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)\right)$

Constructing NewTautologies

Let now $w: V A R \longrightarrow\{T, F\}$ be a truth assignment such that $w\left(a_{1}\right)=v^{*}\left(A_{1}\right), w\left(a_{2}\right)=v^{*}\left(A_{2}\right), \ldots w\left(a_{n}\right)=v^{*}\left(A_{n}\right)$.
Obviously, $v^{*}(B)=w^{*}(A)$.
Since $\models A, w^{*}(A)=T$, for all possible w, hence $v^{*}(B)=w^{*}(A)=T$ for all truth assignments w and we have $\vDash B$

Models for Sets of Formulas

Consider $\mathcal{L}=\mathcal{L}_{\text {CON }}$ and let $\mathcal{S} \neq \emptyset$ be any non empty set of formulas of \mathcal{L}, i.e.

$$
\mathcal{S} \subseteq \mathcal{F}
$$

We adopt the following definition.

Definition

A truth truth assignment $v: V A R \longrightarrow\{T, F\}$
is a model for the set \mathcal{S} of formulas if and only if
$v \models A$ for all formulas $A \in \mathcal{S}$
We write

$$
v \models \mathcal{S}
$$

to denote that v is a model for the set \mathcal{S} of formulas

Counter- Models for Sets of Formulas

Similarly, we define a notion of a counter-model

Definition

A truth assignment $v: V A R \longrightarrow\{T, F\}$ is a counter-model for the set $\mathcal{S} \neq \emptyset$
of formulas if and only if

$v \not \forall A \quad$ for some formula $A \in S$

We write

$$
v \not \models \mathcal{S}
$$

to denote that v is a counter- model for the set \mathcal{S} of formulas

Restricted Model for Sets of Formulas

Remark that the set \mathcal{S} can be infinite, or finite
In a case when \mathcal{S} is a finite subset of formulas we define, as before, a notion of restricted model and restricted counter-model.

Definition

Let \mathcal{S} be a finite subset of formulas and $v \models \mathcal{S}$
Any restriction of the model v to the domain

$$
V A R_{\mathcal{S}}=\bigcup_{A \in \mathcal{S}} V A R_{A}
$$

is called a restricted model for \mathcal{S}

Restricted Counter - Model for Sets of Formulas

Definition

Any restriction of a counter-model v of a set $\mathcal{S} \neq \emptyset$ of formulas to the domain

$$
V A R_{\mathcal{S}}=\bigcup_{A \in \mathcal{S}} V A R_{A}
$$

is called a restricted counter-model for \mathcal{S}

Example

Example

Let $\mathcal{L}=\mathcal{L}_{\{\neg, \cap\}}$ and let

$$
\mathcal{S}=\{a,(a \cap \neg b), c, \neg b\}
$$

We have now $\quad V A R_{S}=\{a, b, c\}$
and $v: V A R_{\mathcal{S}} \rightarrow\{T, F\}$ such that
$v(a)=T, v(c)=T, v(b)=F$ is a restricted model for \mathcal{S}
and $v: V A R_{\mathcal{S}} \rightarrow\{T, F\}$ such that $v(a)=F$
is a restricted counter-model for \mathcal{S}

Models for Infinite Sets

The set \mathcal{S} from the previous example was a finite set
Natural question arises:

Question

Give an example of an infinite set \mathcal{S} that has a model
Give an example of an infinite set \mathcal{S} that does not have model
Ex1 Consider set T of all tautologies
It is a countably infinite set and by definition of a tautology any v is a model for \mathbf{T}, i.e. $\quad v \models \mathbf{T}$
Ex2 Consider set \mathbf{C} of all contradictions
It is a countably infinite set and
for any $\mathrm{v}, \quad v \nLeftarrow \mathrm{C}$ by definition of a contradiction, i.e. any any v is a counter-model for C

Challenge Problems

P1 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathbf{T}$ and \mathcal{S} has a model
P2 Give an example of an infinite set \mathcal{S}, such that
$\mathcal{S} \cap \mathbf{T}=\emptyset$ and \mathcal{S} has a model
P3 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathrm{C}$
and S does not have a model
P4 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathrm{C}$ and S has a counter model

P5 Give an example of an infinite set \mathcal{S}, such that
$\mathcal{S} \cap \mathbf{C}=\emptyset$ and \mathcal{S} has a counter model

Chapter 4: Consistent Sets of Formulas

Definition

A set $\mathcal{G} \subseteq \mathcal{F}$ of formulas is called consistent if and only if \mathcal{G} has a model, i.e. we have that
$\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if
there is v such that $v \models \mathcal{G}$

Otherwise \mathcal{G} is called inconsistent

HALF Challenge Problems

P6 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathrm{T}$ and \mathcal{S} is consistent

P7 Give an example of an infinite set \mathcal{S}, such that
$\mathcal{S} \cap \mathrm{T}=\emptyset$ and \mathcal{S} is consistent
P8 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathrm{C}$ and \mathcal{S} is inconsistent
P9 Give an example of an infinite set \mathcal{S}, such that
$\mathcal{S} \cap \mathbf{C}=\emptyset$ and \mathcal{S} is inconsistent

Chapter 4: Independent Statements

Definition

A formula A is called independent from a set $\mathcal{G} \subseteq \mathcal{F}$
if and only if there are truth assignments v_{1}, v_{2} such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

i.e. we say that a formula A is independent
if and only if
$\mathcal{G} \cup\{A\}$ and $\mathcal{G} \cup\{\neg A\}$ are consistent

Example

Example

Given a set

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Show that \mathcal{G} is consistent

Solution

We have to find $v: V A R \longrightarrow\{T, F\}$ such that

$$
v \models \mathcal{G}
$$

It means that we need to find v such that

$$
v^{*}((a \cap b) \Rightarrow b)=T, \quad v^{*}(a \cup b)=T, \quad v^{*}(\neg a)=T
$$

Consistent: Example

1. Formula $((a \cap b) \Rightarrow b)$ is a tautology, i.e.
$v^{*}((a \cap b) \Rightarrow b)=T \quad$ for any v and we do not need to consider it anymore.
2. Formula $\neg a=T$ (we use shorthand notation) if and only if $a=F$ so we get that v must be such that $v(a)=F$
3. We want $(a \cup b)=T$ but v is such that $v(a)=F$ so $(a \cup b)=F \cup b=T)$ if and only if $b=T$
This means that for any $v: V A R \longrightarrow\{T, F\}$ such that $v(a)=F, \quad v(b)=T$

$$
v \models \mathcal{G}
$$

and we proved that \mathcal{G} is consistent

Independent: Example

Example

Show that a formula $A=((a \Rightarrow b) \cap c)$ is independent of

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Solution

We construct $v_{1}, v_{2}: V A R \longrightarrow\{T, F\}$ such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

We have just proved that any $v: V A R \longrightarrow\{T, F\}$ such that $v(a)=F, \quad v(b)=T$ is a model for \mathcal{G}

Independent: Example

Take as v_{1} any truth assignment such that
$v_{1}(a)=v(a)=F, \quad v_{1}(b)=v(b)=T, \quad v_{1}(c)=T$
We evaluate $v_{1}{ }^{*}(A)=v_{1}{ }^{*}((a \Rightarrow b) \cap c)=(F \Rightarrow T) \cap T=T$
This proves that $v_{1} \models \mathcal{G} \cup\{A\}$

Take as v_{2} any truth assignment such that
$v_{2}(a)=v(a)=F, \quad v_{2}(b)=v(b)=T, \quad v_{2}(c)=F$
We evaluate $\left.v_{2}{ }^{*}(\neg A)=v_{2}{ }^{*}(\neg(a \Rightarrow b) \cap c)\right)=T \cap T=T$
This proves that $v_{2} \models \mathcal{G} \cup\{\neg A\}$

It ends the proof that A is independent of \mathcal{G}

Not Independent: Example

Example

Show that a formula $A=(\neg a \cap b)$ is not independent of

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Solution

We have to show that it is impossible to construct v_{1}, v_{2} such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

Observe that we have just proved that any v such that $v(a)=F$, and $v(b)=T$ is the only model restricted to the set of variables $\{a, b\}$ for \mathcal{G} and $\{a, b\}=V A R_{A}$ So we have to check now if it is possible $\quad v \models A$ and $v \models \neg A$

Not Independent: Example

We have to evaluate $v^{*}(A)$ and $v^{*}(\neg A)$ for
$v(a)=F$, and $v(b)=T$
$v^{*}(A)=v^{*}((\neg a \cap b)=\neg v(a) \cap v(b)=\neg F \cap T=T \cap T=T$
and so $v \models A$
$v^{*}(\neg A)=\neg v^{*}(A)=\neg T=F$
and so $v \not \vDash \neg A$
This end the proof that A is not independent of \mathcal{G}

Independent: Another Example

Example

Given a set $\mathcal{G}=\{a,(a \Rightarrow b)\}$, find a formula A that is independent from \mathcal{G}
Observe that v such that $v(a)=T, v(b)=T$ is the only restricted model for \mathcal{G}
So we have to come up with a formula A such that there are two different truth assignments, v_{1} and v_{2}, and

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

Let's consider $A=c$, then $\mathcal{G} \cup\{A\}=\{a,(a \Rightarrow b), c\}$
A truth assignment v_{1}, such that $v_{1}(a)=T, v_{1}(b)=T$ and $v_{1}(c)=T$ is a model for $\mathcal{G} \cup\{A\}$
Likewise for $\mathcal{G} \cup\{\neg A\}=\{a,(a \Rightarrow b), \neg c\}$
Any v_{2}, such that $v_{2}(a)=T, v_{2}(b)=T$ and $v_{2}(c)=F$ is a model for $\mathcal{G} \cup\{\neg A\}$ and so the formula A is independent

Challenge Problem

Challenge Problem

Find an infinite number of formulas that are independent of a set

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Challenge Problem Solution

This my solution - there are many others- this one seemed to me the most simple

Solution

We just proved that any v such that $v(a)=F, v(b)=T$ is the only model restricted to the set of variables $\{a, b\}$ and so all other possible models for \mathcal{G} must be extensions of v

Challenge Problem Solution

We define a countably infinite set of formulas (and their negations) and corresponding extensions of v (restricted to to the set of variables $\{a, b\}$) such that $v \models \mathcal{G}$ as follows Observe that all extensions of v restricted to to the set of variables $\{a, b\}$ have as domain the infinitely countable set

$$
V A R=\left\{a_{1}, a_{2}, \ldots, a_{n} \ldots\right\}
$$

We take as an infinite set of formulas in which every formula independent of \mathcal{G} the set of atomic formulas

$$
\mathcal{F}_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n} \ldots\right\}-\{a, b\}
$$

Challenge Problem Solution

Let $c \in \mathcal{F}_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n} \ldots\right\}-\{a, b\}$
We define truth assignments $v_{1}, v_{2}: V A R \longrightarrow\{T, F\}$ such that

$$
v_{1} \models \mathcal{G} \cup\{c\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg c\}
$$

as follows
$v_{1}(a)=v(a)=F, \quad v_{1}(b)=v(b)=T$ and $v_{1}(c)=T$ for any $c \in \mathcal{F}_{0}$
$v_{2}(a)=v(a)=F, \quad v_{2}(b)=v(b)=T$ and $v_{2}(c)=F$ for any $c \in \mathcal{F}_{0}$

