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LECTURE 3e



Chapter 3 REVIEW
Some Definitions and Problems



SOME DEFINITIONS: Part One

There are some basic Definitions and sample Questions

with Solutions from Chapter 3

Study them them for MIDTERM

Knowing all basic Definitions is the first step for

understanding the material and solve Problems

Solutions are very carefully written - so you could
understand them step by step and hence correctly

write yours, which do not need to be that detailed



DEFINITIONS: Propositional Extensional Semantics

Definition 1

Given a propositional language LCON for the set
CON = C1 ∪ C2, where C1,C2 are respectively the sets of
unary and binary connectives

Let V be a non-empty set of logical values

Connectives 5 ∈ C1, ◦ ∈ C2 are called extensional iff their
semantics is defined by respective functions

5 : V −→ V and ◦ : V × V −→ V



DEFINITIONS: Propositional Extensional Semantics

Definition 2

Formal definition of a propositional extensional semantics
for a given language LCON consists of providing definitions
of the following four main components:

1. Logical Connectives

2. Truth Assignment

3. Satisfaction, Model, Counter-Model

4. Tautology



CLASSICAL PROPOSITIONAL SEMANTICS



DEFINITIONS: Truth Assignment Extension v∗

Definition 3
The Language: L = L{¬,⇒,∪,∩}
Given the truth assignment v : VAR −→ {T ,F} in classical
semantics for the language L = L{¬,⇒,∪,∩}
We define its extension v∗ to the set F of all formulas of L
as v∗ : F −→ {T ,F} such that
(i) for any a ∈ VAR

v∗(a) = v(a)

(ii) and for any A ,B ∈ F we put

v∗(¬A) = ¬v∗(A);

v∗((A ∩ B)) = ∩(v∗(A), v∗(B));

v∗((A ∪ B)) = ∪(v∗(A), v∗(B));

v∗((A ⇒ B)) =⇒(v∗(A), v∗(B));

v∗((A ⇔ B)) =⇔(v∗(A), v∗(B))



DEFINITIONS: Truth Assignment Extension v∗ Revisited

Notation
For binary connectives (two argument functions) we adopt a
convention to write the symbol of the connective (name of the
2 argument function) between its arguments as we do in a
case arithmetic operations
The condition (ii) of the definition of the extension v∗ can be
hence written as follows
(ii) and for any A ,B ∈ F we put

v∗(¬A) = ¬v∗(A);

v∗((A ∩ B)) = v∗(A)∩v∗(B);

v∗((A ∪ B)) = v∗(A)∪v∗(B);

v∗((A ⇒ B)) = v∗(A)⇒v∗(B);

v∗((A ⇔ B)) = v∗(A)⇔v∗(B)



DEFINITIONS: Satisfaction Relation

Definition 4 Let v : VAR −→ {T ,F}

We say that
v satisfies a formula A ∈ F iff v∗(A) = T

Notation: v |= A

We say that

v does not satisfy a formula A ∈ F iff v∗(A) , T

Notation: v 6|= A



DEFINITIONS: Model, Counter-Model, Classical Tautology

Definition 5

Given a formula A ∈ F and v : VAR −→ {T ,F}

We say that

v is a model for A iff v |= A

v is a counter-model for A iff v 6|= A

Definition 6

A is a tautology iff for any v : VAR −→ {T ,F} we have
that v |= A

Notation

We write symbolically |= A to denote that A is a classical
tautology



DEFINITIONS: Restricted Truth Assignments

Notation: for any formula A , we denote by VARA a set of

all variables that appear in A

Definition 7 Given a formula A ∈ F , any function

vA : VARA −→ {T ,F}

is called a truth assignment restricted to A



DEFINITIONS: Restricted Model, Counter Model

Notation: for any formula A , we denote by VARA a set of

all variables that appear in A

Definition 8 Given a formula A ∈ F

Any function

w : VARA −→ {T ,F} such that w∗(A) = T

is called a restricted MODEL for A

Any function

w : VARA −→ {T ,F} such that w∗(A) , T

is called a restricted Counter- MODEL for A



DEFINITIONS: Models for Sets of Formulas

Consider L = L{¬,∪, ∩, ⇒} and let S , ∅ be any non empty

set of formulas of L, i.e.

S ⊆ F

Definition 9

A truth truth assignment v : VAR −→ {T ,F}

is a model for the set S of formulas if and only if

v |= A for all formulas A ∈ S

We write
v |= S

to denote that v is a model for the set S of formulas



DEFINITIONS: Consistent Sets of Formulas

Definition 10

A non-empty set G ⊆ F of formulas is called consistent

if and only if G has a model, i.e. we have that

G ⊆ F is consistent if and only if

there is v such that v |= G

Otherwise G is called inconsistent



DEFINITIONS: Independent Statements

Definition 11

A formula A is called independent from a non-empty set
G ⊆ F

if and only if there are truth assignments v1, v2 such that

v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

i.e. we say that a formula A is independent

if and only if

G ∪ {A } and G ∪ {¬A } are consistent



Many Valued Extensional Semantics M



DEFINITIONS: Semantics M

Definition 11
The extensional semantics M is defined for a non-empty set of
V of logical values of any cardinality
We only assume that the set V of logical values of M always
has a special, distinguished logical value which serves to
define a notion of tautology
We denote this distinguished value as T
Formal definition of many valued extensional semantics M
for the language LCON consists of giving definitions of the
following main components:
1. Logical Connectives under semantics M
2. Truth Assignment for M
3. Satisfaction Relation, Model, Counter-Model under
semantics M
4. Tautology under semantics M



Definition of M - Extensional Connectives

Given a propositional language LCON for the set
CON = C1 ∪ C2, where C1 is the set of all unary
connectives, and C2 is the set of all binary connectives

Let V be a non-empty set of logical values adopted by the
semantics M

Definition 12

Connectives 5 ∈ C1, ◦ ∈ C2 are called M -extensional iff
their semantics M is defined by respective functions

5 : V −→ V and ◦ : V × V −→ V



DEFINITION: Definability of Connectives under a semantics M

Given a propositional language LCON and its extensional
semantics M

We adopt the following definition

Definition 13

A connective ◦ ∈ CON is definable in terms of some
connectives ◦1, ◦2, ...◦n ∈ CON for n ≥ 1 under the
semantics M if and only if the connective ◦ is a certain
function composition of functions ◦1, ◦2, ...◦n as they are
defined by the semantics M



DEFINITION: M Truth Assignment Extension v∗ to F

Definition 14

Given the M truth assignment v : VAR −→ V

We define its M extension v∗ to the set F of all formulas of
L as any function v∗ : F −→ V , such that the following
conditions are satisfied

(i) for any a ∈ VAR

v∗(a) = v(a);

(ii) For any connectives 5 ∈ C1, ◦ ∈ C2 and for any
formulas A , B ∈ F we put

v∗(5A) = 5v∗(A)

v∗((A ◦ B)) = ◦(v∗(A), v∗(B))



DEFINITION: M Satisfaction, Model, Counter Model, Tautology

Definition 15 Let v : VAR −→ V

Let T ∈ V be the distinguished logical value

We say that
v M satisfies a formula A ∈ F ( v |=M A ) iff
v∗(A) = T

Definition 16

Given a formula A ∈ F and v : VAR −→ V

Any v such that v |=M A is called a M model for A

Any v such that v 6|=M A is called a M counter model for A

A is a M tautology ( |=M A ) iff v |=M A , for all
v : VAR −→ V



CHAPTER 3: Some Sample Questions with Solutions



Chapter 3: Question 1

Question 1

Find a restricted model for formula A, where

A = (¬a ⇒ (¬b ∪ (b ⇒ ¬c)))

You can’t use short-hand notation

Show each step of solution

Solution

For any formula A , we denote by VARA a set of all variables
that appear in A

In our case we have VARA = {a, b , c}

Any function vA : VARA −→ {T ,F} is called a truth
assignment restricted to A



Chapter 3: Question 1

Let v : VAR −→ {T ,F} be any truth assignment such that

v(a) = vA (a) = T , v(b) = vA (b) = T , v(c) = vA (c) = F

We evaluate the value of the extension v∗ of v on the formula
A as follows

v∗(A) = v∗((¬a ⇒ (¬b ∪ (b ⇒ ¬c))))

= v∗(¬a)⇒v∗((¬b ∪ (b ⇒ ¬c)))

= ¬v∗(a)⇒(v∗(¬b)∪v∗((b ⇒ ¬c)))

= ¬v(a)⇒(¬v(b)∪(v(b)⇒ ¬v(c) ))

= ¬vA (a)⇒(¬vA (b)∪(vA (b)⇒ ¬vA (c) ))

(¬T ⇒ (¬T ∪ (T ⇒ ¬F))) = F ⇒ (F ∪ T) = F ⇒ T = T , i.e.

vA |= A and v |= A



Chapter 3: Question 2

Question 2
Find a restricted model and a restricted counter-model for
A, where

A = (¬a ⇒ (¬b ∪ (b ⇒ ¬c)))

You can use short-hand notation. Show work
Solution
Notation: for any formula A , we denote by VARA a set of
all variables that appear in A
In our case we have VARA = {a, b , c}
Any function vA : VARA −→ {T ,F} is called a truth
assignment restricted to A
We define now vA (a) = T , vA (b) = T , vA (c) = F , in
shorthand: a = T , b = T , c = F and evaluate
(¬T ⇒ (¬T ∪ (T ⇒ ¬F))) = F ⇒ (F ∪ T) = F ⇒ T = T , i.e.

vA |= A



Chapter 3: Question 2

Observe that

(¬a ⇒ (¬b ∪ (b ⇒ ¬c)) = T when a = T and b , c any

truth values as by definition of implication we have that

F ⇒ anything = T

Hence a = T gives us 4 models as we have 22 possible

values on b and c



Chapter 3: Question 2

We take as a restricted counter-model: a=F, b =T and c=T

Evaluation: observe that

(¬a ⇒ (¬b ∪ (b ⇒ ¬c)) = F if and only if

¬a = T and (¬b ∪ (b ⇒ ¬c)) = F if and only if

a = F , ¬b = F and (b ⇒ ¬c) = F if and only if

a = F , b = T and (T ⇒ ¬c) = F if and only if

a = F , b = T and ¬c = F if and only if

a = F , b = T and c = T

The above proves also that a=F, b =T and c=T is the only
restricted counter -model for A



Chapter 3: Question 3

Question 3 Justify whether the following statements true or
false

S1 There are more then 3 possible restricted
counter-models for A

S2 There are more then 2 possible restricted models of A

Solution

S1Statement: There are more then 3 possible restricted
counter-models for A is false

We have just proved that there is only one possible restricted
counter-model for A

S2 Statement: There are more then 2 possible restricted
models of A is true

There are 7 possible restricted models for A

Justification: 23 − 1 = 7



Chapter 3: Question 4

Question 4

1. List 3 models for A from Question 2, i.e. for formula

A = (¬a ⇒ (¬b ∪ (b ⇒ ¬c)))

that are extensions to the set VAR of all variables of one of

the restricted models that you have found in Questions 1,

2. List 2 counter models for A that are extensions of one

of the restricted countrer models that you have found in

the Questions 1, 2



Chapter 3: Question 4

Solution

1. One of the restricted models is, for example a function

vA : {a, b , c} −→ {T ,F} such that

vA (a) = T , vA (b) = T , vA (c) = F

We extend vA to the set of all propositional variables VAR

to obtain a (non restricted) models as follows



Chapter 3: Question 4

Model w1 is a function

w1 : VAR −→ {T ,F} such that

w1(a) = vA (a) = T , w1(b) = vA (b) = T ,

w1(c) = vA (c) = F , and w1(x) = T , for all

x ∈ VAR − {a, b , c}

Model w2 is defined by a formula

w2(a) = vA (a) = T , w2(b) = vA (b) = T ,

w2(c) = vA (c) = F , and w2(x) = F , for all

x ∈ VAR − {a, b , c}



Chapter 3: Question 4

Model w3 is defined by a formula

w3(a) = vA (a) = T , w3(b) = vA (b) = T , w3(c) = v(c) = F ,

w3(d) = F and w3(x) = T for all x ∈ VAR − {a, b , c, d}

There is as many of such models, as extensions of vA to the

set VAR, i.e. as many as real numbers



Chapter 3: Question 4

2. A counter-model for a formula

A = (¬a ⇒ (¬b ∪ (b ⇒ ¬c)) is, by definition any function

v : VAR −→ {T ,F}

such that v∗(A) = F

A restricted counter-model for the formula A, the only one,

as already proved in is a function

vA : {a, b} −→ {T ,F}

such that such that

vA (a) = F , vA (b) = T , vA (c) = T



Chapter 3: Question 4

We extend vA to the set of all propositional variables VAR
to obtain (non restricted ) some counter-models.

Here are two of such extensions

Counter- model w1:

w1(a) = vA (a) = F , w1(b) = vA (b) = T ,

w1(c) = v(c) = T , and w1(x) = F , for all
x ∈ VAR − {a, b , c}

Counter- model w2:

w2(a) = vA (a) = T , w2(b) = vA (b) = T ,

w2(c) = v(c) = T , and w2(x) = T for all
x ∈ VAR − {a, b , c}

There is as many of such counter- models, as extensions of
vA to the set VAR, i.e. as many as real numbers



Chapter 3: Models for Sets of Formulas

Definition

A truth assignment v is a model for a set G ⊆ F

of formulas of a given language L = L{¬,⇒,∪,∩}
if and only if

v |= B for all B ∈ G

We denote it by v |= G

Observe that the set G ⊆ F can be finite or infinite



Chapter 3: Consistent Sets of Formulas

Definition

A set G ⊆ F of formulas is called consistent

if and only if G has a model, i.e. we have that

G ⊆ F is consistent if and only if

there is v such that v |= G

Otherwise G is called inconsistent



Chapter 3: Independent Statements

Definition

A formula A is called independent from a set G ⊆ F

if and only if there are truth assignments v1, v2 such that

v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

i.e. we say that a formula A is independent

if and only if

G ∪ {A } and G ∪ {¬A } are consistent



Chapter 3: Question 5

Question 5

Given a set G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

Show that G is consistent

Solution

We have to find v : VAR −→ {T ,F} such that v |= G

It means that we need to find a v such that

v∗((a ∩ b)⇒ b) = T , v∗(a ∪ b) = T , v∗(¬a) = T

We write it in the shorthand notation

((a ∩ b)⇒ b) = T , (a ∪ b) = T , ¬a = T

We have to find out of it is possible



Chapter 3: Question 5

1. Observe that |= ((a ∩ b)⇒ b), hence we have that
v∗((a ∩ b)⇒ b) = T for any v

2. Case ¬a = T holds if and only if a = F

3. Case (a ∪ b) = T holds if and only if (T ∪ b) = T as

a = F , and this holds if and only if b = T

This proves that for any v : VAR −→ {T ,F} such that

v(a) = F , v(b) = T , is a model for G and so, by definition,

that G is consistent

Moreover, we have proved that it is the only (restricted)

model for G



Chapter 3: Question 6

Question 6

Show that a formula A = (¬a ∩ b) is not independent of

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

Solution

We have to show that it is impossible to construct v1, v2

such that
v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

Observe that we have just proved that any v such that

v(a) = F , and v(b) = T is the only model restricted to the

set of variables {a, b} for G so we have to check now if it is

possible that for that formula A = (¬a ∩ b), v |= A and
v |= ¬A



Chapter 3: Question 6

We have to evaluate v∗(A) and v∗(¬A) for

v(a) = F , and v(b) = T

v∗(A) = v∗((¬a ∩ b) = ¬v(a) ∩ v(b) = ¬F ∩ T = T ∩ T = T

and so v |= A

v∗(¬A) = ¬v∗(A) = ¬T = F

and so v 6|= ¬A

This ends the proof that A is not independent of G



Chapter 3: Question 7

Question 7

Find an infinite number of formulas that are independent of

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

This my solution - there are many others, but this one

seemed to me to be the simplest

Solution

We just proved that any v such that v(a) = F , v(b) = T is

the only model restricted to the set of variables {a, b} and so

all other possible models for G must be extensions of v



Chapter 3: Question 7

We define a countably infinite set of formulas (and their

negations) and corresponding extensions of v (restricted to

to the set of variables {a, b}) such that v |= G as follows

Observe that all extensions of v restricted to to the set

of variables {a, b} have as domain the infinitely countable
set

VAR − {a, b} = {a1, a2, . . . , an, . . . }

We take as a set of formulas (to be proved to be

independent) the set of atomic formulas

F0 = VAR − {a, b} = {a1, a2, . . . , an, . . . }



Chapter 3: Question 7

proof of independence of any formula of F0

Let c ∈ F0

We define truth assignments v1, v2 : VAR −→ {T ,F}

such that
v1 |= G ∪ {c} and v2 |= G ∪ {¬c}

as follows

v1(a) = v(a) = F , v1(b) = v(b) = T and v1(c) = T

for all c ∈ F0

v2(a) = v(a) = F , v2(b) = v(b) = T and v2(c) = F

for all c ∈ F0



CHAPTER 3
Some Extensional Many Valued Semantics



Chapter 3: Question 8

Question 8

We define a 4 valued H4 logic semantics as follows

The language is L = L{¬,⇒,∪,∩}

The logical connectives ¬,⇒,∪,∩ of H4 are operations in the
set {F ,⊥1,⊥2,T }, where {F < ⊥1 < ⊥2 < T } and are
defined as follows

Conjunction ∩ is a function

∩ : {F ,⊥1,⊥2,T } × {F ,⊥1,⊥2,T } −→ {F , ⊥1,⊥2, ,T },

such that for any x, y ∈ {F ,⊥1,⊥2,T }

x ∩ y = min{x, y}



Chapter 3: Question 8

Disjunction ∪ is a function

∪ : {F ,⊥1,⊥2,T } × {F ,⊥1,⊥2,T } −→ {F ,⊥1,⊥2,T },

such that for any x, y ∈ {F ,⊥1,⊥2,T }

x ∪ y = max{x, y}

Implication ⇒ is a function

⇒: {F ,⊥1,⊥2,T } × {F ,⊥1,⊥2,T } −→ {F ,⊥1,⊥2,T },

such that for any x, y ∈ {F ,⊥1,⊥2,T },

x ⇒ y =

{
T if x ≤ y
y otherwise

Negation: for any x, y ∈ {F ,⊥1,⊥2,T }

¬x = x ⇒ F



Chapter 3: Question 8

Part 1 Write Truth Tables for IMPLICATION and NEGATION
in H4

Solution

H4 Implication

⇒ F ⊥1 ⊥2 T
F T T T T
⊥1 F T T T
⊥2 F ⊥1 T T
T F ⊥1 ⊥2 T

H4 Negation

¬ F ⊥1 ⊥2 T
T F F F



Chapter 3: Question 7

Part 2 Verify whether

|=H4((a ⇒ b)⇒ (¬a ∪ b))

Solution

Take any v such that

v(a) = ⊥1 v(b) = ⊥2

Evaluate

v ∗ ((a ⇒ b)⇒ (¬a ∪ b)) = (⊥1 ⇒ ⊥2)⇒ (¬⊥1 ∪ ⊥2) =
T ⇒ (F ∪ ⊥2)) = T ⇒ ⊥2 = ⊥2

This proves that our v is a counter-model and hence

6|=H4 ((a ⇒ b)⇒ (¬a ∪ b))



Chapter 3: Question 9

Question 9

Show that ( can’t use TTables!)

|= ((¬a ∪ b)⇒ (((c ∩ d)⇒ ¬d)⇒ (¬a ∪ b)))

Solution

Denote A = (¬a ∪ b), and B = ((c ∩ d)⇒ ¬d)

Our formula becomes a substitution of a basic tautology

(A ⇒ (B ⇒ A))

and hence is a tautology



Chapter 3: Challenge Exercise

1. Define your own propositional language LCON that
contains also different connectives that the standard
connectives ¬, ∪, ∩, ⇒

Your language LCON does not need to include all (if any!) of
the standard connectives ¬, ∪, ∩, ⇒

2. Describe intuitive meaning of the new connectives of your
language

3. Give some motivation for your own semantic

4. Define formally your own extensional semantics M for
your language LCON - it means

write carefully all Steps 1- 4 of the definition of your M



Chapter 3: Question 10

Question 10

Definition

Let S3 be a 3-valued semantics for L{¬, ∪, ⇒} defined as
follows:

V = {F ,U,T } is the set of logical values with the
distinguished value T

x ⇒ y = ¬x ∪ y for any x, y ∈ {F ,U,T }

¬F = T , ¬U = F , ¬T = U

and
∪ F U T
F F U T
U U U U
T T U T



Question 10

Part 1

Consider the following classical tautologies:

A1 = (a ∪ ¬a), A2 = (a ⇒ (b ⇒ a))

Find S3 counter-models for A1,A2, if exist

You can’t use shorthand notation

Solution

Any v such that v(a) = v(b) = U is a counter-model for
both A1 and A2, as

v∗(a ∪ ¬a) = v∗(a) ∪ ¬v∗(b) = U ∪ ¬U = U ∪ F = U , T

v∗(a ⇒ (b ⇒ a)) = v∗(a)⇒ (v∗(b)⇒ v∗(a)) = U ⇒ (U ⇒
U) = U ⇒ U = ¬U ∪ U = F ∪ U = U , T



Question 10

Part 2
Consider the following classical tautologies:

A1 = (a ∪ ¬a), A2 = (a ⇒ (b ⇒ a))

Define your own 2-valued semantics S2 for L, such that
none of A1,A2 is a S2 tautology
Verify your results. You can use shorthand notation.
Solution
This is not the only solution, but it is the simplest and most
obvious I could think of! Here it is.
We define S2 connectives as follows
¬x = F , x ⇒ y = F , x ∪ y = F for all x, y ∈ {F ,T }
Obviously, for any v,

v∗(a ∪ ¬a) = F and v∗(a ⇒ (b ⇒ a)) = F



Chapter 3: Question 11

Question 11

Prove using proper classical logical equivalences (list them at
each step) that for any formulas A ,B of language L{¬, ∪, ⇒}

¬(A ⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩ B))

Solution

¬(A ⇔ B)≡def¬((A ⇒ B) ∩ (B ⇒ A))

≡deMorgan(¬(A ⇒ B) ∪ ¬(B ⇒ A))

≡negimpl((A ∩ ¬B) ∪ (B ∩ ¬A))≡commut((A ∩ ¬B) ∪ (¬A ∩ B))



Question 12

Question 12

Prove using proper classical logical equivalences (list them at
each step) that for any formulas A ,B of language L{¬, ∪, ⇒}

((B ∩ ¬C)⇒ (¬A ∪ B)) ≡ ((B ⇒ C) ∪ (A ⇒ B))

Solution

((B ∩ ¬C)⇒ (¬A ∪ B))

≡impl(¬(B ∩ ¬C) ∪ (¬A ∪ B))

≡deMorgan((¬B ∪ ¬¬C) ∪ (¬A ∪ B))

≡dneg((¬B ∪ C) ∪ (¬A ∪ B))≡impl((B ⇒ C) ∪ (A ⇒ B))



Question 13

Question 13

We define Ł connectives for L{¬, ∪, ⇒} as follows

Ł Negation ¬ is a function:

¬ : {T ,⊥,F} −→ {T ,⊥,F}

such that ¬ ⊥=⊥, ¬T = F , ¬F = T

Ł Conjunction ∩ is a function:

∩ : {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that x ∩ y = min{x, y} for all x, y ∈ {T ,⊥,F}

Remember that we assumed: F <⊥< T



Question 13

Ł Implication ⇒ is a function:

⇒: {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that

x ⇒ y =

{
¬x ∪ y if x > y
T otherwise

Given a formula ((a ∩ b)⇒ ¬b) ∈ F of L{¬, ∪, ⇒}
Use the fact that v : VAR −→ {F ,⊥,T } is such that

v∗(((a ∩ b)⇒ ¬b)) =⊥ under Ł semantics to evaluate all
possible v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b))

You can use shorthand notation



Question 13 Solution

Solution

The formula ((a ∩ b)⇒ ¬b) = ⊥ in Ł connectives semantics
in

two cases written is the shorthand notation as

C1 (a ∩ b) = ⊥ and ¬b = F

C2 (a ∩ b) = T and ¬b = ⊥.

Consider case C1

¬b = F , so v(b) = T , and hence (a ∩ T) = v(a) ∩ T =⊥

if and only if v(a) =⊥

It means that v∗(((a ∩ b)⇒ ¬b)) =⊥ for any v, is such that

v(a) =⊥ and v(b) = T



Question 13 Solution

We now evaluate (in shorthand notation)

v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b))

= (((T ⇒ ¬ ⊥)⇒ (⊥⇒ ¬T))∪ (⊥⇒ T)) = ((⊥⇒⊥)∪T) = T

Consider now Case C2

¬b =⊥, i.e. b =⊥, and hence (a∩ ⊥) = T what is

impossible, hence v from the Case C1 is the only one



Question 14

Question 14

Use the Definability of Conjunction in terms of disjunction

and negation Equivalence

(A ∩ B) ≡ ¬(¬A ∪ ¬B)

to transform a formula

A = ¬(¬(¬a ∩ ¬b) ∩ a)

of the language L{∩,¬} into a logically equivalent formula B

of the language L{∪,¬}



Question 14

Solution

¬(¬(¬a ∩ ¬b)∩a)≡ ¬¬(¬¬(¬a ∩ ¬b) ∪ ¬a)

≡ ((¬a∩¬b) ∪ ¬a) ≡ (¬(¬¬a ∪ ¬¬b) ∪ ¬a)

≡ ¬(a ∪ b) ∪ ¬a)

The formula B of L{∪,¬} equivalent to A is

B = (¬(a ∪ b) ∪ ¬a)



Equivalence of Languages Definition

Definition

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are logically equivalent, i.e.

L1 ≡ L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1 , there is a formula B of L2,
such that A ≡ B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D



Question 14

Question 14

Prove the logical equivalence of the languages

L{¬,∪} ≡ L{¬,⇒}

Solution

We need two definability equivalences:

implication in terms of disjunction and negation

(A ⇒ B) ≡ (¬A ∪ B)

and disjunction in terms of implication negation,

(A ∪ B) ≡ (¬A ⇒ B)

and the Substitution Theorem



Question 15

Question 15
Prove the logical equivalence of the languages

L{¬,∩,∪,⇒} ≡ L{¬,∩,∪}

Solution
We need only the definability of implication in terms of
disjunction and negation equivalence

(A ⇒ B) ≡ (¬A ∪ B)

as the Substitution Theorem for any formula A of L{¬,∩,∪,⇒}
there is a formula B of L{¬,∩,∪} such that A ≡ B and the
condition C1 holds

Observe that any formula A of language L{¬,∩,∪} is also a
formula of the language L{¬,∩,∪,⇒} and of course A ≡ A so
the condition C2 also holds



Question 16

Question 16

Prove that
L{¬,∩} ≡ L{¬,⇒}

Solution

The equivalence of languages holds due to the following two
definability of connectives equivalences, respectively

(A ∩ B) ≡ ¬(A ⇒ ¬B), (A ⇒ B) ≡ ¬(A ∩ ¬B)

and Substitution Theorem



Question 17

Question 17

Prove that in classical semantics

L{¬,⇒} ≡ L{¬,⇒,∪}

Solution

OBSERVE that the condition C1 holds because any formula
of L{¬,⇒} is also a formula of L{¬,⇒,∪}
Condition C2 holds due to the following definability of
connectives equivalence

(A ∪ B) ≡ (¬A ⇒ B)

and Substitution Theorem



Question 18

Question 18

Prove that the equivalence defining ∪ in terms of negation
and implication in classical logic does not hold under Ł
semantics, i.e. that

(A ∪ B) .L (¬A ⇒ B)

but nevertheless
L{¬,⇒} ≡L L{¬,⇒,∪}



Question 18

Solution

We prove
L{¬,⇒} ≡L L{¬,⇒,∪}

as follows

Condition C2 holds because the definability of connectives
equivalence

(A ∪ B)≡L((A ⇒ B)⇒ B)

Check it by verification as an exercise

C1 holds because any formula of L{¬,⇒} is a formula of
L{¬,⇒,∪}

Observe that the equivalence (A ∪ B) ≡ (A ⇒ B)⇒ B)
provides also an alternative proof of C2 in classical case


