CSE371/Math371 Q5 SOLUTIONS Spring 2024 (3pts extra credit)

ONE PROBLEM PART 1 (1pts)

Let S be the following **proof system** $S = (\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}, \mathcal{F}, \{\mathbf{A1}, \mathbf{A2}\}, \{r1, r2\})$

for the logical axioms and rules of inference defined for **any formulas** $A, B \in \mathcal{F}$ as follows

Logical Axioms A1 (LA $\cup \neg$ LA), A2 (A \Rightarrow LA)

Rules of inference: (r1) $\frac{A;B}{(A\cup B)}$ (r2) $\frac{A}{\mathbf{L}(A\Rightarrow B)}$

Show, by constructing a proper formal proof that $\vdash_{S} ((Lb \cup \neg Lb) \cup L((La \cup \neg La) \Rightarrow b)))$

Write all steps of the **formal proof** with **comments** how each step was obtained.

Solution

Here is the proof B_1, B_2, B_3, B_4

 B_1 : (L $a \cup \neg$ La) Axiom A_1 for A= a

 B_2 : L((La $\cup \neg$ La) \Rightarrow b) rule r2 for B=b applied to B_1

 B_3 : (**L** $b \cup \neg$ **L**Ab) Axiom A_1 for A=b

 B_4 : $((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b))$ r1 applied to B_3 and B_2

ONE PROBLEM PART 2 (2pts)

Consider the Hilbert system $H1 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \xrightarrow{A : (A \Rightarrow B)}{B})$ where for any $A, B \in \mathcal{F}$ A1; $(A \Rightarrow (B \Rightarrow A)), A2 : ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$

1. (1pts) Use the **Deduction Theorem** (we know that is holds for H1) show that

$$(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)) \vdash_{H1} ((b \Rightarrow \neg a) \Rightarrow (\neg a \Rightarrow b))$$

Hint First apply Deduction Theorem twice

Solution

$$(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)) \vdash_{H1} ((b \Rightarrow \neg a) \Rightarrow (\neg a \Rightarrow b))$$
 if and only if
 $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)), (b \Rightarrow \neg a) \vdash_{H1} (\neg a \Rightarrow b))$ if and only if
 $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)), (b \Rightarrow \neg a), \neg a \vdash_{H1} b$

We now construct a proof of $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)), (b \Rightarrow \neg a), \neg a \vdash_{H1} b$ as follows

 $B_1: (\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b))$ hypothesis

$$B_2$$
: $(b \Rightarrow \neg a)$ hypothesis

- B_3 : $\neg a$ hypothesis
- B_4 : $((b \Rightarrow \neg a) \Rightarrow b)) \quad B_1, B_3 \text{ and } (MP)$
- B_5 : $b = B_2$, B_4 and (MP)

2. (1pts) Let H2 be a complete the proof system obtained from the system H1 by extending the language to contain

the negation \neg and **adding** one additional axiom:

A3 $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)))$

Let H3 be the proof system obtained from the system H2 adding additional axiom

A4 $(\neg(A \Rightarrow B) \Rightarrow \neg(A \Rightarrow \neg B))$

Does **Completeness Theorem** hold for *H*3? JUSTIFY.

Solution

No, it doesn't. The system H3 is not sound

Axiom A4 is not a tautology.

Any v such that A=T and B=F is a **counter model** for $(\neg(A \Rightarrow B) \Rightarrow \neg(A \Rightarrow \neg B))$.

 $(\neg(T\Rightarrow F)\Rightarrow \neg(T\Rightarrow \neg F))=\neg F\Rightarrow \neg T=T\Rightarrow F=F.$