CSE/MAT371 Q6 SOLUTIONS SPRING 2024 (5pts extra credit)

ONE PROBLEM

- Consider a strongly sound system R1 obtained from RS by changing the sequence Γ' into Γ in all of the rules of inference of RS.
- **1.** (3pts) Construct THREE **decomposition trees** in **R1** of a formula A: $((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a))$.

You must INDICATE choices of decomposition you use on each node.

2. (2pts) Use your DECOMPOSITION TREE 1 to find a **counter model** for a **non-axiom leaf** of the tree. **Explain** why it is a **counter model** for the **formula** A.

DECOMPOSITION TREE 1 (1pts)

$T1_A$

 $((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a))$

one choice

$$|(\Rightarrow)$$

$$\neg(a \Rightarrow b), (\neg b \Rightarrow a)$$

two choices : first formula choice

$$\bigwedge (\neg \Rightarrow)$$

$a, (\neg b \Rightarrow a)$	$\neg b, \ (\neg b \Rightarrow a)$
one choice	one choice
$ (\Rightarrow)$	$ (\Rightarrow)$
$a, \neg \neg b, a$	$\neg b, \ \neg \neg b, a$
one choice	one choice
(¬¬)	(¬¬
a, b,a	$\neg b, b, a$
non axiom	axiom

COUNTER MODEL and EXPLANATION (2pts)

The tree contains a non- axiom leaf, hence it is not a proof.

The system is strongly sound, so it is enough to find a counter model for a non axiom leaf as in strong sound systems

F "climbs" the tree and the leaf counter model is also a counter model for all sequences on the branch that ends with this non axiom leaf and hence for the **formula** A.

The **counter model** for the leaf a, b, a and hence for the **formula** A is **any** $v : VAR \longrightarrow \{T, F\}$, such that v(a) = v(b) = F.

$T2_A$

$$((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a))$$
one choice
$$| (\Rightarrow)$$

$$\neg (a \Rightarrow b), (\neg b \Rightarrow a)$$
second formula choice

 $|(\Rightarrow)$ $\neg(a \Rightarrow b), \ \neg\neg b, a$

two choices : first formula choice

$$\bigwedge (\neg \Rightarrow)$$

$a, \neg \neg b, a$	$\neg b, \ \neg \neg b, a$
(¬¬)	(¬¬)
<i>a</i> , <i>b</i> , <i>a</i>	$\neg b, b, a$
non axiom	axiom

COUNTER MODEL and EXPLANATION (2pts)

The tree contains a **non- axiom** leaf, hence it is **not a proof**.

The system is **strongly sound**, so it is enough to find a counter model for a non axiom leaf as in strong sound systems **F** "climbs" the tree and the leaf counter model is also a counter model for all sequences on the branch that ends with this non axiom leaf and hence for the **formula** A.

The **counter model** for the leaf a, b, a and hence for the **formula** A is **any** $v : VAR \longrightarrow \{T, F\}$, such that v(a) = v(b) = F.

DECOMPOSITION TREE 3 (1pts)

 $\mathbf{T3}_{A}$ $((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a))$ $|(\Rightarrow)$ $\neg(a \Rightarrow b), (\neg b \Rightarrow a)$ $|(\Rightarrow)$ $\neg(a \Rightarrow b), \neg \neg b, a$ second formula choice $|(\neg \neg)$ $\neg(a \Rightarrow b), b, a$ $\bigwedge(\neg \Rightarrow)$ $a, b, a \qquad \neg b, b, a$

non axiom axiom

COUNTER MODEL and EXPLANATION (2pts)

The tree contains a non- axiom leaf, hence it is not a proof.

The system is **strongly sound**, so it is enough to find a counter model for a non axiom leaf as in strong sound systems **F** "climbs" the tree and the leaf counter model is also a counter model for all sequences on the branch that ends with this non axiom leaf and hence for the **formula** A.

The counter model for the leaf a, b, a and hence for the formula A is any $v : VAR \longrightarrow \{T, F\}$, such that v(a) = v(b) = F.