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Intuitionictic Logic: Philosophical Motivation

Intuitionistic logic has developed as a result of certain

philosophical views on the foundation of mathematics,

known as intuitionism

Intuitionism was originated by L. E. J. Brouwer in 1908

The first Hilbert style formalization of the intuitionistic logic,

formulated as a proof system, is due to A. Heyting (1930)

We present a Hilbert style proof system I that is equivalent to

the Heyting’s original formalization

We also discuss the relationship between intuitionistic and

classical logic.



Intuitionictic Logic: Philosophical Motivation

There have been several successful attempts at creating
semantics for the intuitionistic logic
The most recent called Kripke models were defined by
Kripke in 1964

The first intuitionistic semantics was defined in a form of
pseudo-Boolean algebras by McKinsey and Tarski
in years 1944 - 1946
Their algebraic approach to intuitionistic and classical
semantics was followed by many authors and developed into
a new field of Algebraic Logic

The pseudo- Boolean algebras are called also
Heyting algebras to memorize his first accepted formalization
of the intuitionistic logic as a proof system



Intuitionictic Logic: Philosophical Motivation

An uniform presentation of algebraic models for classical,

intuitionistic and modal logics S4, S5 was first given in

a now classic algebraic logic book:

”Mathematics of Metamathematics”, Rasiowa, Sikorski (1964)

The main goal of this chapter is to give a presentation of the

intuitionistic logic formulated as Hilbert and Gentzen proof

systems

We also discuss its algebraic semantics and the fundamental

theorems that establish the relationship between

classical and intuitionistic propositional logics



Intuitionictic Logic: Philosophical Motivation

Intuitionists’ view-point on the meaning of the basic logical
and set theoretical concepts used in mathematics is different
from that of most mathematicians use in their research

The basic difference between the intuitionist and classical
mathematician lies in the interpretation of the word exists

For example, let A(x) be a statement in the arithmetic of
natural numbers. For the mathematicians the sentence
∃xA(x) is true if it is a theorem of arithmetic

If a mathematician proves sentence ∃xA(x) this does not
always mean that he is able to indicate a method of
construction of a natural number n such that A(n) holds



Intuitionictic Logic: Philosophical Motivation

Moreover, the mathematician often obtains the proof of the
existential sentence ∃xA(x) by proving first a sentence

¬∀x ¬A(x)

Next he makes use of a classical tautology

(¬∀x ¬A(x))⇒ ∃xA(x))

By applying Modus Ponens he obtains the proof of the
existential sentence

∃xA(x)

For the intuitionist such method is not acceptable, for it does
not give any method of constructing a number n such that
A(n) holds



Intuitionictic Logic: Philosophical Motivation

For this reason the intuitionist do not accept the

classical tautology

(¬∀x ¬A(x))⇒ ∃xA(x))

as intuitionistic tautology or as as an intuitionistically

provable sentence



Intuitionictic Logic: Philosophical Motivation

We denote by `I A , |=I A that a formula A

is intuitionistically provable, and is intuitionistic tautology,

respectively

The proof system I for the intuitionistic logic has

to be such that

0I (¬∀x ¬A(x))⇒ ∃xA(x))

and the intuitionistic semantics I has to be such that

6|=I (¬∀x ¬A(x))⇒ ∃xA(x))



Intuitionictic Logic: Philosophical Motivation

The intuitionists interpret differently the meaning of
propositional connectives

Intuitionistic implication

The intuitionistic implication (A ⇒ B) is considered
to be true if there exists a method by which
a proof of B can be deduced from the proof of A
For example, in the case of the implication

i(¬∀x ¬A(x))⇒ ∃xA(x))

there is no general method which, from a proof of the
sentence

(¬∀x ¬A(x))

permits us to obtain an intuitionistic proof of the sentence

∃xA(x)



Intuitionictic Logic: Philosophical Motivation

Intuitionistic negation

The sentence ¬A is considered intuitionistically true

only if the acceptance of the sentence A leads to absurdity

As a result of above understanding of negation and

implication we have that in the intuitionistic proof system I

`I (A ⇒ ¬¬A) but 0I (¬¬A ⇒ A)

Consequently, the intuitionistic semantics I has to be

such that

|=I (A ⇒ ¬¬A) and 6|=I (¬¬A ⇒ A)



Intuitionictic Logic: Philosophical Motivation

Intuitionistic disjunction
The intuitionist regards a disjunction (A ∪ B) as true
only if one of the sentences A ,B is true and there is a
method
by which it is possible to find out which of them is true

As a consequence a classical law of excluded middle

(A ∪ ¬A)

is not acceptable by the intuitionists

This means that the the intuitionistic proof system I must
be such that

0I (A ∪ ¬A)

and the intuitionistic semantics I has to be such that

6|=I (A ∪ ¬A)
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Intuitionistic Proof System I

We define now a Hilbert style proof system I with a set of
axioms that is due to Rasiowa (1959). We adopted this
axiomatization for two reasons

First reason is that it is the most natural and appropriate set
of axioms to carry the the algebraic proof of the
completeness theorem

Second reason is that they clearly describe the main
difference between intuitionistic and classical logic

Namely, by adding to I the only one more axiom

(A ∪ ¬A)

we get a complete formalization for classical logic



Intuitionistic Proof System I

Here are the components if the proof system I
Language
We adopt a propositional language

L = L{∪,∩,⇒,¬}

with the set of formulas F
Axioms
A1 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A2 (A ⇒ (A ∪ B))

A3 (B ⇒ (A ∪ B))

A4 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A5 ((A ∩ B)⇒ A)

A6 ((A ∩ B)⇒ B)

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A ∩ B)))



Intuitionistic Proof System I

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A ∩ B)))

A8 ((A ⇒ (B ⇒ C))⇒ ((A ∩ B)⇒ C))

A9 (((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C)),

A10 (A ∩ ¬A)⇒ B),

A11 ((A ⇒ (A ∩ ¬A))⇒ ¬A),

where A ,B ,C are any formulas in L

Rules of inference

We adopt the Modus Ponens

(MP)
A ; (A ⇒ B)

B

as the only rule of inference



Intuitionistic Proof System I

A proof system

I = ( L,F A1 − A11, (MP) )

for axioms A1 - A11 defined above is called a Hilbert style
formalization for intuitionistic propositional logic

We introduce, as usual, the notion of a formal proof in I
and denote by

`I A

the fact that a formula A has a formal proof in I or that A
is provable in I



Algebraic Semantics and Completeness Theorem



Algebraic Semantics

We present now a short version of Tarski, Rasiowa, and
Sikorski psedo-Boolean algebra semantics

We also discuss the algebraic completeness theorem for the
intuitionistic propositional logic

We leave the Kripke semantics for the reader to explore
from other, multiple sources



Algebraic Semantics

Here are some basic definitions

Relatively Pseudo-Complemented Lattice (Birkhoff, 1935)

A lattice
(B ,∩,∪)

is said to be relatively pseudo-complemented if and only if
for any elements a, b ∈ B, there exists the greatest element
c, such that

a ∩ c ≤ b

Such greatest element c is denoted by a ⇒ b and called the
pseudo-complement of a relative to b



Algebraic Semantics

Directly from definition we have that

(∗) x ≤ a ⇒ b if and only if a ∩ x ≤ b for all x, a, b ∈ B

This equation (∗) can serve as the definition of the relative
pseudo-complement a ⇒ b
Fact
Every relatively pseudo-complemented lattice (B ,∩,∪) has
the greatest element, called a unit element and denoted by 1
Proof
Observe that a ∩ x ≤ a for all x, a ∈ B
By (∗) we have that x ≤ a ⇒ a for all x ∈ B
This means that a ⇒ a is the greatest element in the lattice
(B ,∩,∪). We write it as

a ⇒ a = 1



Algebraic Semantics

Definition

An abstract algebra

B = (B , 1, ⇒, ∩, ∪)

is said to be a relatively pseudo-complemented lattice if
and only if (B ,∩,∪) is relatively pseudo-complemented
lattice with the relative pseudo-complement ⇒ defined by the
equation

(∗) x ≤ a ⇒ b if and only if a ∩ x ≤ b for all x, a, b ∈ B

and with the unit element 1



Algebraic Semantics

Relatively Pseudo-complemented Set Lattices

Consider a topological space X with an interior operation I
Let G(X) be the class of all open subsets of X and
G∗(X) be the class of all both dense and open subsets of X
Then the algebras

(G(X), X , ∪, ∩,⇒), (G∗(X), X , ∪, ∩,⇒)

where ∪, ∩ are set-theoretical operations of union,
intersection, and⇒ is defined by

Y ⇒ Z = I(X − Y) ∪ Z

are relatively pseudo-complemented lattices
Clearly, all sub algebras of these algebras are also relatively
pseudo-complemented lattices They are typical examples of
relatively pseudo-complemented lattices



Algebraic Semantics

Pseudo - Boolean Algebra (Heyting Algebra)

An algebra
B = (B , 1, 0, ⇒, ∩, ∪,¬)

is said to be a pseudo - Boolean algebra if and only if

(B , 1, ⇒, ∩, ∪)

is a relatively pseudo-complemented lattice in which a zero
element 0 exists and ¬ is a one argument operation defined
as follows

¬a = a ⇒ 0

The operation ¬ is called a pseudo-complementation

The pseudo - Boolean algebras are also called Heyting
algebras to stress their connection to the intuitionistic logic



Algebraic Semantics

Let X be topological space with an interior operation I
Let G(X) be the class of all open subsets of X
Then

(G(X), X , ∅, ∪, ∩,⇒, ¬)

where ∪, ∩ are set-theoretical operations of union,
intersection, and ⇒ is defined by

Y ⇒ Z = I(X − Y) ∪ Z

and ¬ is defined as

¬Y = Y ⇒ ∅ = I(X − Y), for all Y ⊆ X

is a pseudo - Boolean algebra

Every sub algebra of G(X) is also a pseudo-Boolean algebra
They are called pseudo-fields of sets



Algebraic Semantics

The following theorem states that pseudo-fields are typical
examples of pseudo - Boolean algebras.

The theorems of this type are often called Stone
Representation Theorems to remember an American
mathematician H. M. Stone

Stone was one of the first to initiate the investigations of
relationship between logic and general topology in the article

”The Theory of Representations for Boolean Algebras”,
Trans. of the Amer.Math, Soc 40, 1936



Algebraic Semantics

Representation Theorem (McKinsey, Tarski, 1946)

For every pseudo - Boolean algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬)

there exists a monomorphism h of B into a pseudo-field
G(X) of all open subsets of a compact topological T0 space X



Intuitionistic Algebraic Model

We say that a formula A is an intuitionistic tautology

if and only if

any pseudo-Boolean algebra B is a model for A

This kind of models because their connection to abstract
algebras are called algebraic models

We put it formally as follows.



Intuitionistic Algebraic Model

Intuitionistic Algebraic Model

Let A be a formula of the language L{∪,∩,⇒,¬} and let

B = (B , 1, 0, ⇒, ∩, ∪,¬)

be a pseudo - Boolean algebra

We say that the algebra B is a model for the formula A and
denote it by

B |= A

if and only if v∗(A) = 1 holds for all variables assignments

v : VAR −→ B



Intuitionistic Tautology

Intuitionistic Tautology

The formula A is an intuitionistic tautology and is denoted
by

|=I A

if and only if

B |= A for all pseudo-Boolean algebras B

In Algebraic Logic the notion of tautology is often defined
using a notion

”a formula A is valid in an algebra B”

It is formally defined as follows



Intuitionistic Tautology

Definition
A formula A is valid in a pseudo-Boolean algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬)

if and only if v∗(A) = 1 holds for all variables assignments
v : VAR −→ B

Directly from definitions we get the following

Fact
For any formula A ,

|=I A if and only if A is valid
in all pseudo-Boolean algebras B

The Fact is often used as an equivalent definition of the
intuitionistic tautology



Intuitionistic Completeness

We write now `I A to denote any proof system for the
intuitionistic propositional logic, and in particular the Rasiowa
(1959) proof system we have defined

Intuitionistic Completeness Theorem (Mostowski 1948)

For any formula A of L{∪, ∩,⇒,¬},

`I A if and only if |=I A

The intuitionistic completeness theorem follows directly from
the general algebraic completeness theorem that combines
results of of Mostowski (1958), Rasiowa (1951) and
Rasiowa-Sikorski (1957)



Algebraic Completeness

Algebraic Completeness Theorem
For any formula A he following conditions are equivalent
(i) `I A
(ii) |=I A
(iii) A is valid in every pseudo-Boolean algebra

(G(X), X , ∅, ∪, ∩,⇒, ¬)

of open subsets of any topological space X
(iv) A is valid in every pseudo-Boolean algebra B with at
most 22r

elements, where r is the number of all sub
formulas of A
Moreover, each of the conditions (i) - (iv) is equivalent to the
following one.
(v) A is valid in the pseudo-Boolean algebra
(G(X), X , ∅, ∪, ∩,⇒, ¬) of open subsets of a dense-in
-itself metric space X , ∅ (in particular of an n-dimensional
Euclidean space X )
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Intuitionistic Tautologies

Here are some important basic classical tautologies

that are also intuitionistic tautologies

(A ⇒ A)

(A ⇒ (B ⇒ A))

(A ⇒ (B ⇒ (A ∩ B)))

((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

(A ⇒ ¬¬A)

¬(A ∩ ¬A)

((¬A ∪ B)⇒ (A ⇒ B))

Of course, all of logical axioms A1 - A11 of the proof system I

are also classical and intuitionistic tautologies



Intuitionistic Tautologies

Here are some more of important classical tautologies that

are intuitionistic tautologies

((¬A ∪ B)⇒ (A ⇒ B))

8. (¬(A ∪ B)⇒ (¬A ∩ ¬B))

((¬A ∩ ¬B)⇒ (¬(A ∪ B))

((¬A ∪ ¬B)⇒ ¬(A ∩ B))

((A ⇒ B)⇒ (¬B ⇒ ¬A))

((A ⇒ ¬B)⇒ (B ⇒ ¬A))

(¬¬¬A ⇒ ¬A)

(¬A ⇒ ¬¬¬A)

(¬¬(A ⇒ B)⇒ (A ⇒ ¬¬B))

((C ⇒ A)⇒ ((C ⇒ (A ⇒ B))⇒ (C ⇒ B))



Intuitionistic Tautologies

Here are some important classical tautologies that

are not intuitionistic tautologies

(A ∪ ¬A)

(¬¬A ⇒ A)

((A ⇒ B)⇒ (¬A ∪ B))

(¬(A ∩ B)⇒ (¬A ∪ ¬B))

((¬A ⇒ B)⇒ (¬B ⇒ A))

((¬A ⇒ ¬B)⇒ (B ⇒ A))

((A ⇒ B)⇒ A)⇒ A)



Connection Between Classical and Intuitionistic Logics



Connection Between Classical and Intuitionistic Logics

The first connection is quite obvious

It was proved by Rasiowa, Sikorski in 1964 that by adding the
axiom

A12 (A ∪ ¬A)

to the set of of logical axioms A1 - A11 of the proof system I
we obtain a proof system C that is complete with respect to
classical semantics

This proves the following

Theorem 1

Every formula that is intuitionistically derivable is also
classically derivable, i.e. the implication

If `I A then `C A

holds for any A ∈ F



Classical and Intuitionistic Logics

We write |= A and |=I A to denote that A is a classical
and intuitionistic tautology, respectively.

As both proof systems I and C are complete under
respective semantics, we can re-write Theorem 1 as the
following relationship between classical and intuitionistic
tautologies

Theorem 2

For any formula A ∈ F ,

If |=I A , then |= A



Classical and Intuitionistic Logics

The next relationship shows how to obtain intuitionistic
tautologies from the classical tautologies and vice versa

The following has been proved by Glivenko in 1929 and
independently by Tarski in 1938

Theorem 3 (Glivenko, Tarski)

For any formula A ∈ F ,

A is classically provable if and only if ¬¬A is
intuitionistically provable, i.e.

` A if and only if `I ¬¬A

where we use symbol ` for classical provability



Classical and Intuitionistic Logics

Theorem 4 (Tarski, 1938)

For any formula A ∈ F ,

A is a classical tautology if and only if ¬¬A is an
intuitionistic tautology, i.e.

|= A if and only if |=I ¬¬A



Classical and Intuitionistic Logics

Theorem 5 (Gödel, 1931)

For any formulas A ,B ∈ F ,

a formula (A ⇒ ¬B) is classically provable if and only if it
is intuitionistically provable, i.e.

` (A ⇒ ¬B) if and only if `I (A ⇒ ¬B)



Classical and Intuitionistic Logics

Theorem 6 (Gödel, 1931)

For any formula A ,B ∈ F ,

If A contains no connectives except ∩ and ¬,

then A is classically provable if and only if it is
intuitionistically provable, i.e

` A if and only if `I A



Classical and Intuitionistic Logics

By the completeness of classical and intuitionisctic logics we
get the following semantic version of Gödel’ s Theorems 5, 6

Theorem 7

A formula (A ⇒ ¬B) is a classical tautology if and only if it
is an intuitionistic tautology, i.e.

|= (A ⇒ ¬B) if and only if |=I (A ⇒ ¬B)

Theorem 8

If a formula A contains no connectives except ∩ and ¬, then

|= A if and only if |=I A



On intuitionistically derivable disjunction

In classical logic it is possible for the disjunction

(A ∪ B)

to be a tautology when neither A nor B is a tautology

The tautology (A ∪ ¬A) is the simplest example

This does not hold for the intuitionistic logic

This fact was stated without the proof by Gödel in 1931 and
proved by Gentzen in 1935 via his proof system LI which
was discussed shortly in chapter 6 and is covered in detail in
this chapter and the next set of slides



On intuitionistically derivable disjunction

The following theorem was announced without proof by Gödel
in 1931 and proved by Gentzen in 1935

Theorem 9 ( Gödel, Gentzen )

A disjunction (A ∪ B) is intuitionistically provable if and only
if either A or B is intuitionistically provable i.e.

`I (A ∪ B) if and only if `I A or `I B

We obtain, via the Completeness Theorems the following
semantic version of the above

Theorem 10

A disjunction (A ∪ B) is intuitionistic tautology if and only if
either A or B is intuitionistic tautology, i.e.

|=I (A ∪ B) if and only if |=I A or |=I B
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Gentzen Sequent System LI

G. Gentzen formulated in 1935 a first syntactically decidable
(in propositional case) proof systems for classical and
intuitionistic logics

He proved their equivalence with their well established,
respective Hilbert style formalizations

He named his classical system LK ( K for Klassisch) and
intuitionistic system LI ( I for Intuitionistisch)



Gentzen Sequent System LI

In order to prove the completeness of the system LK and to
prove the adequacy of LI he introduced a special inference
rule, called cut rule that corresponds to the Modus Ponens
rule in Hilbert style proof systems

Then, as the next step he proved the now famous Hauptzatz,
called in English the Cut Elimination Theorem



Gentzen Sequent System LI

Gentzen original proof system LI is a particular case of his
proof system LK for the classical logic

Both of them are presented in chapter 6 together with the
original Gentzen’s proof of the Hauptzatz for both, LK and LI
proof systems

The elimination of the cut rule and the structure of other
rules makes it possible to define effective automatic
procedures for proof search, what is impossible in a case of
the Hilbert style systems



LI Sequents

The Gentzen system LI is defined as follows.

Let
SQ = { Γ −→ ∆ : Γ,∆ ∈ F ∗ }

be the set of all Gentzen sequents built out of the formulas of
the language

L = L{∪,∩,⇒,¬}

and the additional Gentzen arrow symbol −→

We assume that all LI sequents are elements of a following
subset ISQ of the set SQ of all sequents

ISQ = {Γ −→ ∆ : ∆ consists of at most one formula }

The set ISQ is called the set of all intuitionistic sequents;
the LI sequents



Axioms of LI

Logical Axioms of LI consist of any sequent from the set
ISQ which contains a formula that appears on both sides of
the sequent arrow −→ , i.e any sequent of the form

Γ, A , ∆ −→ A

for Γ,∆ ∈ F ∗



Rules of Inference of LI

The set inference rules of LI is divided into two groups : the
structural rules and the logical rules

There are three Structural Rules of LI: Weakening,
Contraction and Exchange

Weakening structural rule

(weak →)
Γ −→ ∆

A , Γ −→ ∆

(→ weak)
Γ −→

Γ −→ A

A is called the weakening formula

Remember that ∆ contains at most one formula



Rules of Inference of LI

Contraction structural rule

(contr →)
A ,A , Γ −→ ∆

A , Γ −→ ∆

A is called the contraction formula

Remember that ∆ contains at most one formula

The rule below is not VALID for LI; we list it as it is used in
the classical case

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆, A



Rules of Inference of LI

Exchange structural rule

(exch →)
Γ1, A ,B , Γ2 −→ ∆

Γ1, B ,A , Γ2 −→ ∆

Remember that ∆ contains at most one formula

The rule below is not VALID for LI; we list it as it is used in
the classical case

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2
.



Rules of Inference of LI

Logical Rules

Conjunction rules

(∩ →)
A ,B , Γ −→ ∆

(A ∩ B), Γ −→ ∆
,

(→ ∩)
Γ −→ A ; Γ −→ B

Γ −→ (A ∩ B)

Remember that ∆ contains at most one formula



Rules of Inference of LI

Disjunction rules

(→ ∪)1
Γ −→ A

Γ −→ (A ∪ B)

(→ ∪)2
Γ −→ B

Γ −→ (A ∪ B)

(∪ →)
A , Γ −→ ∆ ; B , Γ −→ ∆

(A ∪ B), Γ −→ ∆

Remember that ∆ contains at most one formula



Rules of Inference of LI

Implication rules

(→⇒)
A , Γ −→ B

Γ −→ (A ⇒ B)

(⇒→)
Γ −→ A ; B , Γ −→ ∆

(A ⇒ B), Γ −→ ∆

Remember that ∆ contains at most one formula



Gentzen System LI

Negation rules

(¬ →)
Γ −→ A
¬A , Γ −→

(→ ¬)
A , Γ −→

Γ −→ ¬A

We define the Gentzen system LI as

LI = (L, ISQ , LA , Structural rules, Logical rules )



LI Completeness

The completeness of the cut-free LI follows directly from LI
Hauptzatz proved in chapter 6 and the intuitionistic
completeness (Mostowski 1948)

Completeness of LI

For any sequent Γ −→ ∆ ∈ ISQ ,

`LI Γ −→ ∆ if and only of |=I Γ −→ ∆

In particular, for any formula A ,

`LI A if and only of |=I A



Intuitionistic Disjunction

The particular form the following theorem was stated without
the proof by Gödel in 1931

The theorem proved by Gentzen in 1935 via Hauptzatz and
we follow his proof

Intuitionistically Derivable Disjunction

For any formulas A ,B ∈ F ,

`LI (A ∪ B) if and only if `LI A or `LI B

In particular, a disjunction (A ∪ B) is intuitionistically
provable in any proof system I if and only if either A or B
is intuitionistically provable in I



Intuitionistic Disjunction

Proof of

`LI (A ∪ B) if and only if `LI A or `LI B

Assume `LI (A ∪ B)

This equivalent to `LI −→ (A ∪ B)

The last step in the proof of −→ (A ∪ B) in LI must be the
application of the rule (→ ∪)1 to the sequent −→ A , or the
application of the rule (→ ∪)2 to the sequent −→ B

There is no other possibilities

We have proved that `LI (A ∪ B) implies `LI A or `LI B

The inverse implication is obvious by respective applications
of rules (→ ∪)1 or (→ ∪)2 to the sequents −→ A or −→ B



Decomposition Trees in LI



Decomposition Trees in LI

Search for proofs in LI is a much more complicated
process then the one in classical logic systems RS or GL
defined in chapter 6
Here, as in any other Gentzen style proof system, proof
search procedure consists of building the decomposition
trees
Remark 1
In RS the decomposition tree TA of any formula A is
always unique
Remark 2
In GL the ”blind search” defines, for any formula A a finite
number of decomposition trees,

Nevertheless, it can be proved that the search can be reduced
to examining only one of them, due to the absence of
structural rules



Decomposition Trees in LI

Remark 3

In LI the structural rules play a vital role in the proof
construction and hence, in the proof search

The fact that a given decomposition tree ends with an non-
axiom leaf does not always imply that the proof does not
exist

It might only imply that our search strategy was not good

The problem of deciding whether a given formula A does,
or does not have a proof in LI becomes more complex
then in the case of Gentzen system for classical logic



Decomposition Trees in LI

Before we define a heuristic method of searching for proof
and deciding whether such a proof exists or not we make
some observations

Observation 1

Logical rules of LI are similar to those in Gentzen type
classical formalizations we already examined in previous
chapters in a sense that each of them introduces a logical
connective



Decomposition Trees in LI

Observation 2

The process of searching for a proof is a decomposition
process in which we use the inverse of logical and structural
rules as decomposition rules

For example the implication rule:

(→⇒)
A , Γ −→ B

Γ −→ (A ⇒ B)

becomes an implication decomposition rule (we use the
same name (→⇒) in both cases)

(→⇒)
Γ −→ (A ⇒ B)

A , Γ −→ B



Decomposition Trees in LI

Observation 3

We write proofs as trees, so the proof search process is a
process of building decomposition trees

To facilitate the process we write the decomposition rules in
a tree decomposition form as follows

Γ −→ (A ⇒ B)

| (→⇒)

A , Γ −→ B



Decomposition Trees in LI

The two premisses rule (⇒→) written as the tree
decomposition rule becomes

(A ⇒ B), Γ −→∧
(⇒→)

Γ −→ A B , Γ −→



Decomposition Trees in LI

The structural weakening rule written as the decomposition
rule is

(→ weak)
Γ −→ A

Γ −→

We write it in a tree decomposition form as

Γ −→ A

| (→ weak)

Γ −→



Decomposition Trees in LI

We define the notion of decomposable and indecomposable
formulas and sequents as follows

Decomposable formula is any formula of the degree ≥ 1

Decomposable sequent is any sequent that contains a
decomposable formula

Indecomposable formula is any formula of the degree 0
i.e. is any propositional variable



Decomposition Trees in LI

Remark

In a case of formulas written with use of capital letters
A ,B ,C , .. etc , we treat these letters as propositional
variables , i.e. as indecomposable formulas

Indecomposable sequent is a sequent formed from
indecomposable formulas only.



Decomposition Trees in LI

Decomposition Tree Construction (1)

Given a formula A we construct its decomposition tree TA

as follows

Root of the tree TA is the sequent −→ A

Given a node n of the tree we identify a decomposition rule
applicable at this node and write its premisses as the leaves
of the node n

We stop the decomposition process when we obtain an
axiom or all leaves of the tree are indecomposable



Decomposition Trees in LI

Observation 4

The decomposition tree TA obtained by the Construction
(1) most often is not unique

Observation 5

The fact that we find a decomposition tree TA with a
non-axiom leaf does not mean that 0LI A

This is due to the role of structural rules in LI and will be
discussed later



Proof Search Examples



Examples

We perform proof search and decide the existence of proofs
in LI for a given formula A ∈ F by constructing its
decomposition trees TA

We examine here some examples to show the complexity of
the problem

Reminder

In the following and similar examples when building the
decomposition trees for formulas representing general
schemas we treat the capital letters A ,B ,C ,D... as
propositional variables, i.e. as indecomposable formulas



Examples

Example 1

Determine] whether

`LI ((¬A ∩ ¬B)⇒ ¬(A ∪ B))

Observe that

If we find a decomposition tree of A in LI such that all its
leaves are axiom, we have a proof, i.e

`LI A

If all possible decomposition trees have a non-axiom leaf
then the proof of A i n LI does not exist, i.e.

0LI A



Examples

Consider the following decomposition tree T1A

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪ B)

| (−→ ¬)

(¬A ∩ ¬B), (A ∪ B) −→

| (∩ −→)

¬A , ¬B , (A ∪ B) −→

| (¬ −→)

¬B , (A ∪ B) −→ A

| (−→ weak)

¬B , (A ∪ B) −→

| (¬ −→)

(A ∪ B) −→ B∧
(∪ −→)

A −→ B

non − axiom

B −→ B

axiom



Examples

The tree T1A has a non-axiom leaf, so it does not
constitute a proof in LI

Observe that the decomposition tree in LI is not always
unique

Hence the existence of a non-axiom leaf does not yet prove
that the proof of A does not exist

Consider the following decomposition tree T2A



−→ ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪ B)

| (−→ ¬)

(A ∪ B), (¬A ∩ ¬B) −→

| (exch −→)

(¬A ∩ ¬B), (A ∪ B) −→

| (∩ −→)

¬A ,¬B , (A ∪ B) −→

| (exch −→)

¬A , (A ∪ B),¬B −→

| (exch −→)

(A ∪ B),¬A ,¬B −→∧
(∪ −→)

A ,¬A ,¬B −→

| (exch −→)

¬A ,A ,¬B −→

| (¬ −→)

A ,¬B −→ A

axiom

B ,¬A ,¬B −→

| (exch −→)

B ,¬B ,¬A −→

| (exch −→)

¬B ,B ,¬A −→

| (¬ −→)

B ,¬A −→ B ; axiom
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All leaves of T2A are axioms

This means that the tree T2A is a a proof of A in LI

We hence proved that

`LI ((¬A ∩ ¬B)⇒ ¬(A ∪ B))
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Example 2: Show that

1. `LI (A ⇒ ¬¬A)

2. 0LI (¬¬A ⇒ A)

Solution of 1.

We construct some, or all decomposition trees of

−→ (A ⇒ ¬¬A)

A tree TA that ends with all leaves being axioms is a
proof of A in LI
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We construct TA as follows

−→ (A ⇒ ¬¬A)

| (−→⇒)

A −→ ¬¬A

| (−→ ¬)

¬A ,A −→

| (¬ −→)

A −→ A

axiom

All leaves of TA are axioms so we found the proof

We do not need to construct any other decomposition trees.
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Solution of 2.

In order to prove that

0LI (¬¬A ⇒ A)

we have to construct all decomposition trees of

−→ (¬¬A ⇒ A)

and show that each of them has a non-axiom leaf
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Here is T1A

−→ (¬¬A ⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

one of 3 choices

¬¬A −→

| (¬ −→)

one of 3 choices

−→ ¬A

| (−→ ¬)

one of 2 choices

A −→

non − axiom



Here is T2A

−→ (¬¬A ⇒ A)

| (−→⇒) one of 2 choices

¬¬A −→ A

| (contr −→) second of 2 choices

¬¬A ,¬¬A −→ A

| (−→ weak) first of 2 choices

¬¬A ,¬¬A −→

| (¬ −→) first of 2 choices

¬¬A −→ ¬A

| (−→ ¬) one of 2 choices

A ,¬¬A −→

| (exch −→) one of 2 choices

¬¬A ,A −→

| (¬ −→)one of 2 choices

A −→ ¬A

| (−→ ¬) first of 2 choices

A ,A −→

non − axiom



Structural Rules

We can see from the above decomposition trees that the
”blind” construction of all possible trees only leads to more
complicated trees

This is due to the presence of structural rules

The ”blind” application of the rule (contr →) gives always
an infinite number of decomposition trees

In order to decide that none of them will produce a proof we
need some extra knowledge about patterns of their
construction, or just simply about the number o useful of
application of structural rules



Structural Rules

In this case we can just make an ”external” observation that
the our first tree T1A is in a sense a minimal one

It means that all other trees would only complicate this one
in an inessential way, i.e. the we will never produce a tree
with all axioms leaves

One can formulate a deterministic procedure giving a finite
number of trees, but the proof of its correctness is needed
and that requires some extra knowledge

Within the scope of this book we accept the ”external
explanation as a sufficient solution



Structural Rules

As we can see from the above examples the structural rules
and especially the (contr −→) rule complicates the proof
searching task.

Both Gentzen type proof systems RS and GL from the
previous chapter don’t contain the structural rules

They also are as we have proved, complete with respect to
classical semantics.

The original Gentzen system LK which does contain the
structural rules is also, as proved by Gentzen, complete



Structural Rules

Hence all three classical proof system RS, GL, LK are
equivalent

This proves that the structural rules can be eliminated
from the system LK

A natural question of elimination of structural rules from
the system LI arises

The following example illustrates the negative answer
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Example 3

We know that for any formula A ∈ F ,

|= A if and only if `I ¬¬A

where |= A means that A is classical tautology

`I A means that A is Intutionistically provable in any
intuitionistically complete proof system I

The system LI is intuitionistically complete so have that for
any formula A ∈ F ,

|= A if and only if `LI ¬¬A
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Obviously |= (¬¬A ⇒ A), so we must have that

`LI ¬¬(¬¬A ⇒ A)

We are going to prove now that the rule (contr −→) is
essential to the existence of the proof ¬¬(¬¬A ⇒ A)

It means that ¬¬(¬¬A ⇒ A) is not provable without the
rule (contr −→)

The following decomposition tree TA is a proof of
¬¬(¬¬A ⇒ A) with use of the rule (contr −→)
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−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (contr −→)

¬(¬¬A ⇒ A),¬(¬¬A ⇒ A) −→

| (¬ −→)

¬(¬¬A ⇒ A) −→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A ,¬(¬¬A ⇒ A) −→ A

| (−→ weak)

¬¬A ,¬(¬¬A ⇒ A) −→

| (¬ −→)

¬(¬¬A ⇒ A) −→ ¬A

| (−→ ¬)

A ,¬(¬¬A ⇒ A) −→

| (exch −→)

¬(¬¬A ⇒ A),A −→

| (¬ −→)

A −→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A ,A −→ A

axiom



Contraction Rule

Assume now that the rule (contr −→) is not available. All
possible decomposition trees are as follows
Tree T1A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A −→ A

| (−→ weak)

¬¬A −→

| (¬ −→)

−→ ¬A

| (−→ ¬)

A −→

non − axiom



Contraction Rule

The next is T2A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→ weak)

−→

non − axiom



Contraction Rule

The next is T3A

−→ ¬¬(¬¬A ⇒ A)

| (−→ weak)

−→

non − axiom



Contraction Rule

The last one is T4A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)

]

¬¬A −→ A

| (−→ weak)

¬¬A −→

| (¬ −→)

−→ ¬A

| (−→ weak)

−→

non − axiom



Contraction Rule

We have considered all possible decomposition trees that do
not involve the contraction rule (contr −→) and none of
them was a proof

This shows that the formula

¬¬(¬¬A ⇒ A)

is not provable in LI without (contr −→) rule, i.e. that we
proved the following

Fact

The contraction rule (contr −→) can not be eliminated
from LI



Proof Search Heuristic Method



Proof Search Heuristic Method

Before we define a heuristic method of searching for proof in
LI let’s make some additional observations to the already
made observations 1-5

Observation 6

The goal of constructing the decomposition tree is to obtain
axioms or indecomposable leaves

With respect to this goal the use logical decomposition rules
has a priority over the use of the structural rules

We use this information while describing the proof search
heuristic
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Observation 7

All logical decomposition rules (◦ →), where ◦ denotes any
connective, must have a formula we want to decompose as
the first formula at the decomposition node

It means that if we want to decompose a formula ◦A the
node must have a form ◦A , Γ −→ ∆

Remember: order of decomposition is important

Also sometimes it is necessary to decompose a formula
within the sequence Γ first, before decomposing ◦A in order
to find a proof



Proof Search Heuristic Method

For example, consider two nodes

n1 = ¬¬A , (A ∩ B) −→ B

and
n2 = (A ∩ B), ¬¬A −→ B

We are going to see that the results of decomposing n1 and
n2 differ dramatically

Let’s decompose the node n1

Observe that the only way to be able to decompose the
formula ¬¬A is to use the rule (→ weak) as a first step

The two possible decomposition trees that starts at the node
n1 are as follows
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First Tree
T1n1

¬¬A , (A ∩ B) −→ B

| (→ weak)

¬¬A , (A ∩ B) −→

| (¬ →)

(A ∩ B) −→ ¬A

| (∩ →)

A ,B −→ ¬A

| (→ ¬)

A ,A ,B −→

non − axiom



Proof Search Heuristic Method

Second Tree
T2n1

¬¬A , (A ∩ B) −→ B

| (→ weak)

¬¬A , (A ∩ B) −→

| (¬ →)

(A ∩ B) −→ ¬A

| (→ ¬)

A , (A ∩ B) −→

| (∩ →)

A ,A ,B −→

non − axiom



Proof Search Heuristic Method

Let’s now decompose the node n2

Observe that following our Observation 6 we start by
decomposing the formula (A ∩ B) by the use of the rule
(∩ →) as the first step
A decomposition tree that starts at the node n2 is as follows

Tn2

(A ∩ B),¬¬A −→ B

| (∩ →)

A ,B ,¬¬A −→ B

axiom

This proves that the node n2 is provable in LI, i.e.

`LI (A ∩ B),¬¬A −→ B



Proof Search Heuristic Method

Observation 8

The use of structural rules is important and necessary while
we search for proofs

Nevertheless we have to use them on the ”must” basis and
set up some guidelines and priorities for their use

For example, the use of weakening rule discharges the
weakening formula, and hence we might loose an
information that may be essential to finding the proof

We should use the weakening rule only when it is absolutely
necessary for the next decomposition steps
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Hence, the use of weakening rule (→ weak) can, and should
be restricted to the cases when it leads to possibility of the
future use of the negation rule (¬ →)

This was the case of the decomposition tree T1n1

We used the rule (→ weak) as an necessary step, but it
discharged too much information and we didn’t get a proof,
when proof on this node existed
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Here is such a proof

T3n1

¬¬A , (A ∩ B) −→ B

| (exch −→)

(A ∩ B),¬¬A −→ B

| (∩ →)

A ,B ,¬¬A −→ B

axiom



Proof Search Heuristic Method

Method
For any A ∈ F we construct the set of decomposition trees
T→A following the rules below.
1. Use first logical rules where applicable.
2. Use (exch →) rule to decompose, via logical rules, as
many formulas on the left side of −→ as possible
Remember that the order of decomposition matters! so you
have to cover different choices
3. Use (→ weak) only on a ”must” basis and in connection
with the possibility of the future use of the (¬ →) rule
4. Use (contr →) rule as the last recourse and only to
formulas that contain ¬ or⇒ as a main connective
5. Let’s call a formula A to which we apply (contr →) rule a
a contraction formula
6. The only contraction formulas are formulas containing ¬
or⇒ between theirs logical connectives
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7. Within the process of construction of all possible trees use
(contr →) rule only to contraction formulas

8. Let C be a contraction formula appearing on a node n
of the decomposition tree of T→A

For any contraction formula C, any node n, we apply
(contr →) rule to the the formula C at the node n at most as
many times as the number of sub-formulas of C

If we find a tree with all axiom leaves we have a proof, i.e.

`LIA

If all trees (finite number) have a non-axiom leaf we have
proved that proof of A does not exist, i.e.

0LI A
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Introduction to Modal Logics

The non-classical logics can be divided in two groups:

those that rival classical logic and those which extend it

The Lukasiewicz, Kleene, and intuitionistic logics are in the
first group

The modal logics are in the second group

The rival logics do not differ from classical logic in terms of
the language employed

The rival logics differ in that certain theorems or tautologies
of classical logic are rendered false, or not provable in them



Introduction to Modal Logics

The most notorious example of the rival difference of logics
based on the same language is the law of excluded middle

(A ∪ ¬A)

This is provable in, and is a tautology of classical logic

But is not provable in, and is not tautology of the
intuitionistic logic

It also is not a tautology under any of the extensional logics
semantics we have discussed



Introduction to Modal Logics

Logics which extend classical logic sanction all the theorems
of classical logic but, generally, supplement it in two ways

Firstly, the languages of these non-classical logics are
extensions of those of classical logic

Secondly, the theorems of these non-classical logics
supplement those of classical logic



Introduction to Modal Logics

Modal logics are enriched by the addition of two new
connectives that represent the meaning of expressions ”it is
necessary that” and ” it is possible that”

We use the notation:

I for ” it is necessary that” and

C for ” it is possible that”

Other notations commonly used are:

∇, N, L for ” it is necessary that” and

^, P, M for ” it is possible that”
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The symbols N, L, P, M or alike, are often used in computer
science

The symbols ∇ and ^ were first to be used in modal logic
literature

The symbols I, C come from algebraic and topological
interpretation of modal logics

I corresponds to the topological interior of the set and C to
its closure



Introduction to Modal Logics

The idea of a modal logic was first formulated by an
American philosopher, C.I. Lewis in 1918

Lewis has proposed yet another interpretation of lasting
consequences, of the logical implication

He created a notion of a modal truth, which lead to the notion
of modal logic

He did it in an attempt to avoid, what some felt, the
paradoxes of semantics for classical implication which
accepts as true that a false sentence implies any sentence



Introduction to Modal Logics

Lewis’ notions appeal to epistemic considerations and the
whole area of modal logics bristles with philosophical
difficulties and hence the numbers of modal logics have been
created

Unlike the classical connectives, the modal connectives do
not admit of truth-functional interpretation, i.e. do not
accept the extensional semantics

This was the reason for which modal logics were first
developed as proof systems, with intuitive notion of
semantics expressed by the set of adopted axioms



Introduction to Modal Logics

The first definition of modal semantics, and hence the proofs
of the completeness theorems came some 20 years later

It took yet another 25 years for discovery and development of
the second and more general approach to the modal
semantics

These are the two established ways of interpret modal
connectives, i.e. to define the modal semantics



Introduction to Modal Logics

The historically, the first modal semantics is due to Mc
Kinsey and Tarski (1944, 1946)
It is a topological semantics that provides a powerful
mathematical interpretation of some of modal logics, namely
modal S4 and S5

It connects the modal notion of necessity with the
topological notion of the interior of a set, and
the modal notion of possibility with the notion of the closure
of a set

Our choice of symbols I and C for necessity and possibility
connectives comes from this interpretation

The topological interpretation mathematically powerful as it
is, is less universal in providing models for other modal
logics



Introduction to Modal Logics

The most recent and the most general semantics is due to
Kripke (1964). It uses the notion of possible worlds.

Roughly, we say that the formula CA is true if A is true in
some possible world, called actual world

The formula IA is true if A is true in every possible world

We present here a short version of the topological semantics
in a form of algebraic models

We leave the Kripke semantics for the reader to explore
from other, multiple sources



Introduction to Modal Logics

As we have already mentioned, modal logics were first
developed, as was the intuitionistic logic, in a form of proof
systems only

First Hilbert style modal proof system was published by
Lewis and Langford in 1932

They presented a formalization for two modal logics, which
they called S1 and S2

They also outlined three other proof systems, called S3, S4,
and S5



Introduction to Modal Logics

Since then hundreds of modal logics have been created

There are some standard books in the subject

These are, between the others:

Hughes and Cresswell (1969) for philosophical motivation for
various modal logics and intuitionistic logic,

Bowen (1979) for a detailed and uniform study of Kripke
models for modal logics,

Segeberg (1971) for excellent modal logics classification,

Fitting (1983), for extended and uniform studies of automated
proof methods for classes of modal logics



Hilbert Style Modal Proof Systems



Hilbert Style Modal Proof Systems

We present now Hilbert style formalization forS4 and S5
logics due to Mc Kinsey and Tarski (1948) and Rasiowa and
Sikorski (1964)

We also discuss the relationship between S4 and S5 , and
between the intuitionistic logic and S4 modal logic, as first
observed by Gödel

The formalizations stress the connection between S4, S5
and topological spaces which constitute models for them



Modal Language

Modal Language

We add two extra one argument connectives I and C to the
propositional language L{∪,∩,⇒,¬}, i.e. we adopt

L = L{∪,∩,⇒,¬,I,C}

as the modal language. We read a formulas IA , CA as
necessary A and possible A, respectively

The language L{∪,∩,⇒,¬,I,C} is common to all modal logics

Modal logics differ on a choice of axioms and rules of
inference, when studied as proof systems and on a choice of
respective semantics



McKinsey, Tarski Proof Systems

As modal logics extend the classical logic, any modal logic
contains two groups of axioms: classical and modal

McKinsey, Tarski (1948)

AG1 classical axioms

We adopt as classical axioms any complete set of axioms
under classical semantics

AG2 modal axioms

M1 (IA ⇒ A)

M2 (I(A ⇒ B)⇒ (IA ⇒ IB))

M3 (IA ⇒ IIA)

M4 (CA ⇒ ICA)



Modal S4 and S5

Rules of inference

(MP)
A ; (A ⇒ B)

B
, and (I)

A
IA

The modal rule (I) was introduced by Gödel and is referred
to as a necessitation rule

We define modal proof systems S4 and S5 as follows

S4 = ( L, F , classical axioms, M1 −M3, (MP), (I) )

S5 = ( L, F , classical axioms, M1 −M4, (MP), (I) )



Modal S4 and S5

Observe that the axioms of S5 extend the axioms of S4 and
both system share the same inference rules, hence we have
immediately the following

Fact For any formula A ∈ F ,

if `S4 A , then `S5 A



Rasiowa, Sikorski Proof Systems

It is often the case, as it is for S4 and S5, that modal
connectives are definable by each other

We define them as follows

IA = ¬C¬A , and CA = ¬I¬A

Language

We hence assume now that the language L of Rasiowa,
Sikorski modal proof systems contains only one modal
connective

We choose it to be I and adopt the following language

L = L{∩,∪,⇒,¬,I}

There are, as before, two groups of axioms: classical and
modal



Rasiowa, Sikorski Proof Systems

Rasiowa, Sikorski (1964)

AG1 classical axioms

We adopt as classical axioms any complete set of axioms
under classical semantics

AG2 modal axioms

R1 ((IA ∩ IB)⇒ I(A ∩ B))

R2 (IA ⇒ A)

R3 (IA ⇒ IIA)

R4 I(A ∪ ¬A)

R5 (¬I¬A ⇒ I¬I¬A)



Modal RS4 and RS5

Rules of inference

We adopt the Modus Ponens and an additional rule (RI)

(MP)
A ; (A ⇒ B)

B
and (RI)

(A ⇒ B)

(IA ⇒ IB)

We define modal proof systems RS4 and RS5 as follows

RS4 = ( L, F , classical axioms, R1 − R4, (MP), (RI) )

RS5 = ( L, F , classical axioms, R1 − R5, (MP), (RI) )



Modal RS4 and RS5

Observe that the axioms of RS5 extend the axioms of RS4
and both systems share the same inference rules, hence we
have immediately the following

Fact For any formula A ∈ F ,

if `RS4 A , then `RS5 A



Algebraic Semantics for S4 and S5



Algebraic Semantics for S4 and S5

The McKinsey, Tarski proof systems S4, S5 and Rasiowa,
Sikorski proof systems RS4, RS5 are complete with the
respect to both topological semantics, and Kripke semantics

We shortly discuss the topological semantics, and algebraic
completeness theorems

We leave the Kripke semantics for the reader to explore from
other, multiple sources



Algebraic Semantics for S4 and S5

The topological semantics was initiated by McKinsey and
Tarski in 1946, 1948 and consequently developed into a field
of Algebraic Logic

The algebraic approach to logic is presented in detail in now
classic algebraic logic books:

”Mathematics of Metamathematics”, Rasiowa, Sikorski
(1964),

”An Algebraic Approach to Non-Classical Logics”, Rasiowa
(1974)

We want to point out that the first idea of a connection
between modal propositional logic and topology is due to
Tang Tsao -Chen, (1938) and Dugunji (1940)



Algebraic Semantics for S4 and S5

Here are some basic definitions

Boolean Algebra

An abstract algebra B = (B , 1, 0, ⇒, ∩, ∪,¬) is said to
be a Boolean algebra if it is a distributive lattice and every
element a ∈ B has a complement ¬a ∈ B

Topological Boolean algebra

By a topological Boolean algebra we mean an abstract
algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬, I)

where (B , 1, 0, ⇒, ∩, ∪,¬) is a Boolean algebra and,
moreover, the following conditions hold for any a, b ∈ B

I(a ∩ b) = Ia ∩ Ib , Ia ∩ a = Ia, IIa = Ia, and I1 = 1



Algebraic Semantics for S4 and S5

The element Ia is called a interior of a

The element ¬I¬a is called a closure of a and will be
denoted by Ca

Thus the operations I and C are such that

Ca = ¬I¬a and Ia = ¬C¬a

In this case we write the topological Boolean algebra as

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C )

It is easy to prove that in in any topological Boolean algebra
the following conditions hold for any a, b ∈ B

C(a ∪ b) = Ca ∪ Cb , Ca ∪ a = Ca, CCa = Ca and C0 = 0



Algebraic Semantics for S4 and S5

Example

Let X be a topological space with an interior operation I

Then the family P(X) of all subsets of X is a topological
Boolean algebra with 1 = X , with

the operation ⇒ defined by the formula

Y ⇒ Z = (X − Y) ∪ Z for all subsets Y ,Z of X

and with set-theoretical operations of union, intersection,
complementation, and the interior operation I

Every sub algebra of this algebra is a topological Boolean
algebra, called a topological field of sets or, more precisely, a
topological field of subsets of X



Algebraic Semantics for S4 and S5

Given a topological Boolean algebra

(B , 1, 0, ⇒, ∩, ∪,¬)

The element a ∈ B is said to be open (closed)

if a = Ia (a = Ca)

Clopen Topological Boolean Algebra
A topological Boolean algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C )

such that every open element is closed and every closed
element is open, i.e. such that for any a ∈ B

CIa = Ia and ICa = Ca

is called a clopen topological Boolean algebra



S4, S5 Tautology

We loosely say that a formula A is a modal S4 tautology

if and only if

any topological Boolean algebra is a model for A

We say that A is a modal S5 tautology

if and only if

any clopen topological Boolean algebra is a model for A

We put it formally as follows



Modal Algebraic Model

Modal Algebraic Model

For any formula A of a modal language L{∪,∩,⇒,¬,I,C} and for
any topological Boolean algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C)

the algebra B is a model for the formula A and denote it by

B |= A

if and only if v∗(A) = 1 holds for all variables assignments
v : VAR −→ B



S4, S5 Tautology

Definition of S4 Tautology
A formula A is a modal S4 tautology and is denoted by

|=S4 A

if and only if for all topological Boolean algebras B we
have that

B |= A

Definition of S5 Tautology
A formula A is a modal S5 tautology and is denoted by

|=S5 A

if and only if for all clopen topological Boolean algebras B
we have that

B |= A



S4, S5 Completeness Theorem

We write `S4 A and `S5 A do denote provability any
proof system for modal S4, S5 logics and in particular the
proof systems defined here

Completeness Theorem

For any formula A of the modal language L{∪,∩, ⇒, ¬, I,C}

`S4 A if and only if |=S4 A

`S5 A if and only if |=S5 A

The completeness for S4,S4 follows directly from the
following general Algebraic Completeness Theorems



S4 Algebraic Completeness Theorem

S4 Algebraic Completeness Theorem

For any formula A of the modal language L{∪,∩,⇒,¬,I,C} the
following conditions are equivalent

(i) `S4 A

(ii) |=S4 A

(iii) A is valid in every topological field of sets B(X)

(iv) A is valid in every topological Boolean algebra B with
at most 22r

elements, where r is the number of all sub
formulas of A

(iv) v∗(A) = X for every variable assignment v in the
topological field of sets B(X) of all subsets of a dense-in
-itself metric space X , ∅ (in particular of an n-dimensional
Euclidean space X )



S4 Algebraic Completeness Theorem

S5 Algebraic Completeness Theorem

For any formula A of the modal language L{∪,∩,⇒,¬,I,C} the
following conditions are equivalent

(i) `S5 A

(ii) |=S5 A

(iii) A is valid in every clopen topological field of sets
B(X)

(iv) A is valid in every clopen topological Boolean algebra
B with at most 22r

elements, where r is the number of all
sub formulas of A



S4 and S5 Decidability

The equivalence of conditions (i) and (iv) of the Algebraic
Completeness Theorems proves the semantical decidability
of modal S4 and S5
S4, S5 Decidability
Any complete S4, S5 proof system is semantically
decidable, i.e. the following holds

`S4 A if and only if B |= A

for every topological Boolean algebra B with at most 22r

elements, where r is the number of all sub formulas of A
Similarly, we also have

`S5 A if and only if B |= A

for every clopen topological Boolean algebra B with at
most 22r

elements, where r is the number of all sub
formulas of A



S4 and S5 Syntactic Decidability

S4, S5 Syntactic Decidability (Wasilewska 1967,1971)

Rasiowa stated in 1950 an an open problem of providing a
cut-free RS type formalization for modal propositional S4
calculus

Wasilewska solved this open problem in 1967 and presented
the result at the ASL Summer School and Colloquium in
Mathematical Logic, Manchester, August 1969

It appeared in print as A Formalization of the Modal
Propositional S4-Calculus, Studia Logica, North Holland,
XXVII (1971)



S4 and S5 Syntactic Decidability

The paper also contained an algebraic proof of
completeness theorem followed by Gentzen cut-elimination
theorem, the Hauptzatz

The resulting implementation written in LISP-ALGOL was the
first modal logic theorem prover created

It was done with collaboration with B. Waligorski and the
authors didn’t think it to be worth a separate publication

Its existence was only mentioned in the published paper

The S5 Syntactic Decidability follows from the one for S4 and
the following Embedding Theorems



Modal S4 and Modal S5

The relationship between S4 and S5 was first established by
Ohnishi and Matsumoto in 1957-59 and is as follows .

Embedding 1

For any formula A ∈ F ,

|=S4A if and only if |=S5 ICA

`S4 A if and only if `S5 ICA

Embedding 2

For any formula A ∈ F

|=S5A if and only if |=S4ICIA

`S5A if and only if `S4 ICIA



On S4 derivable disjunction

In a classical logic it is possible for the disjunction (A ∪ B) to
be a tautology when neither A nor B is a tautology

This does not hold for the intuitionistic logic. We have a
following theorem similar to the intuitionistic case to the for
modal S4

Theorem McKinsey, Tarski (1948)

A disjunction (IA ∪ IB) is S4 provable if and only if either
A or B S4 provable, i.e.

`S4 (IA ∪ IB) if and only if `S4A or `S4 B



S4 and Intuitionistic Logic, S5 and Classical Logic



S4 and Intuitionistic Logic

As we have said in the introduction, Gödel was the first to
consider the connection between the intuitionistic logic and a
logic which was named later S4

Gödel’s proof was purely syntactic in its nature, as the
semantics for neither intuitionistic logic nor modal logicS4 had
not been invented yet

The algebraic proof of this fact, was first published by
McKinsey and Tarski in 1948



S4 and Intuitionistic Logic

We define here the Gödel-Tarski mapping establishing the
S4 and intuitionistic logic connection

We refer the reader to Rasiowa, Sikorski book ”Mathematics
of Metamathematics” (i965) for the algebraic proofs of its
properties and respective theorems



S4 and Intuitionistic Logic

Let L be a propositional language of modal logic i.e the
language

L = L{∩,∪,⇒,¬,I}

Let L0 be a language obtained from L by elimination of the
connective I and by the replacement the classical negation
connective ¬ by the intuitionistic negation, which we will
denote here by a symbol ∼

Such obtained language

L0 = L{∩,∪,⇒,∼}

is a propositional language of the intuitionistic logic



S4 and Intuitionistic Logic

In order to establish the connection between the languages

L and L0

and hence between modal and intuitionistic logic, we
consider a mapping f which to every formula A ∈ F0 of
L0 assigns a formula f(A) ∈ F of L

We define the mapping f as follows



Gödel - Tarski Mapping

Definition of Gödel-Tarski mapping

A function
f : F0 → F

such that
f(a) = Ia for any a ∈ VAR

f((A ⇒ B)) = I(f(A)⇒ f(B))

f((A ∪ B)) = (f(A) ∪ f(B))

f((A ∩ B)) = (f(A) ∩ f(B))

f(∼ A) = I¬f(A)

where A ,B are any formulas in L0 is called a Gödel-Tarski
mapping



Example

Example

Let A be a formula

((∼ A ∩ ∼ B)⇒∼ (A ∪ B))

and f be the Gödel-Tarski mapping. We evaluate f(A) as
follows

f((∼ A ∩ ∼ B)⇒∼ (A ∪ B)) =

I(f(∼ A ∩ ∼ B)⇒ f(∼ (A ∪ B)) =

I((f(∼ A) ∩ f(∼ B))⇒ f(∼ (A ∪ B)) =

I((I¬fA ∩ I¬fB)⇒ I¬f(A ∪ B)) =

I((I¬A ∩ I¬B)⇒ I¬(fA ∪ fB)) =

I((I¬A ∩ I¬B)⇒ I¬(A ∪ B))



S4 and Intuitionistic Logic

The following theorem established relationship between
intuitionistic and modal S4 logics

Theorem

Let f be the Gödel-Tarski mapping

For any formula A of intuitionistic language L0,

`I A if and only if `S4 f(A)

where I, S4 denote any proof systems for intuitionistic and
and S4 logic, respectively



Classical Logic and Modal S5

In order to establish the connection between the modal S5
and classical logics we consider the following G’́odel-Tarski
mapping between the modal language L{∩,∪,⇒,¬,I} and its
classical sub-language L{¬,∩,∪,⇒}

With every classical formula A we associate a modal formula
g(A) defined by induction on the length of A as follows:

g(a) = Ia, g((A ⇒ B)) = I(g(A)⇒ g(B),)

g((A ∪ B)) = (g(A) ∪ g(B)), g((A ∩ B)) = (g(A) ∩ g(B)),

g(¬A) = I¬g(A)



Classical Logic and Modal S5

The following theorem establishes relationship between
classical and S5 logics

Theorem
Let g be the Gödel-Tarski mapping between

L{¬,∩,∪,⇒} and L{∩,∪,⇒,¬,I}

For any formula A of L{¬,∩,∪,⇒},

`H A if and only if `S5 g(A)

where H, S5 denote any proof systems for classical and and
S5 modal logic, respectively


