LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

Chapter 7
Introduction to Intuitionistic and Modal Logics

CHAPTER 7 SLIDES

Chapter 7
 Introduction to Intuitionistic and Modal Logics

Slides Set 1

PART 1: Intuitionictic Logic: Philosophical Motivation

PART 2: Intuitionistic Proof System I
Algebraic Semantics and Completeness Theorem

PART 3: Intuitionistic Tautologies and Connection with Classical Tautologies

Chapter 7

Introduction to Intuitionistic and Modal Logics

Slides Set 2

PART 4: Gentzen Sequent System LI

Slides Set 3

PART 5: Introduction to Modal Logics
Algebraic Semantics for modal S4 and S5

Chapter 7
 Introduction to Intuitionistic and Modal Logics

Slides Set 1

PART 1: Intuitionictic Logic: Philosophical Motivation

Intuitionictic Logic: Philosophical Motivation

Intuitionistic logic has developed as a result of certain philosophical views on the foundation of mathematics, known as intuitionism

Intuitionism was originated by L. E. J. Brouwer in 1908

The first Hilbert style formalization of the intuitionistic logic, formulated as a proof system, is due to A. Heyting (1930) We present a Hilbert style proof system I that is equivalent to the Heyting's original formalization

We also discuss the relationship between intuitionistic and classical logic.

Intuitionictic Logic: Philosophical Motivation

There have been several successful attempts at creating semantics for the intuitionistic logic
The most recent called Kripke models were defined by
Kripke in 1964

The first intuitionistic semantics was defined in a form of pseudo-Boolean algebras by McKinsey and Tarski
in years 1944-1946
Their algebraic approach to intuitionistic and classical semantics was followed by many authors and developed into a new field of Algebraic Logic

The pseudo- Boolean algebras are called also Heyting algebras to memorize his first accepted formalization of the intuitionistic logic as a proof system

Intuitionictic Logic: Philosophical Motivation

An uniform presentation of algebraic models for classical, intuitionistic and modal logics S4, S5 was first given in a now classic algebraic logic book:
> "Mathematics of Metamathematics", Rasiowa, Sikorski (1964)

The main goal of this chapter is to give a presentation of the intuitionistic logic formulated as Hilbert and Gentzen proof systems

We also discuss its algebraic semantics and the fundamental theorems that establish the relationship between
classical and intuitionistic propositional logics

Intuitionictic Logic: Philosophical Motivation

Intuitionists' view-point on the meaning of the basic logical and set theoretical concepts used in mathematics is different from that of most mathematicians use in their research

The basic difference between the intuitionist and classical mathematician lies in the interpretation of the word exists For example, let $A(x)$ be a statement in the arithmetic of natural numbers. For the mathematicians the sentence $\exists x A(x)$ is true if it is a theorem of arithmetic

If a mathematician proves sentence $\exists x A(x)$ this does not always mean that he is able to indicate a method of construction of a natural number n such that $A(n)$ holds

Intuitionictic Logic: Philosophical Motivation

Moreover, the mathematician often obtains the proof of the existential sentence $\exists x A(x)$ by proving first a sentence

$$
\neg \forall x \neg A(x)
$$

Next he makes use of a classical tautology

$$
(\neg \forall x \neg A(x)) \Rightarrow \exists x A(x))
$$

By applying Modus Ponens he obtains the proof of the existential sentence

$$
\exists x A(x)
$$

For the intuitionist such method is not acceptable, for it does not give any method of constructing a number n such that $A(n)$ holds

Intuitionictic Logic: Philosophical Motivation

For this reason the intuitionist do not accept the classical tautology

$$
(\neg \forall x \neg A(x)) \Rightarrow \exists x A(x))
$$

as intuitionistic tautology or as as an intuitionistically provable sentence

Intuitionictic Logic: Philosophical Motivation

We denote by $\vdash \wedge A, \models \wedge A$ that a formula A is intuitionistically provable, and is intuitionistic tautology, respectively

The proof system / for the intuitionistic logic has
to be such that

$$
\left.\Vdash_{1}(\neg \forall x \neg A(x)) \Rightarrow \exists x A(x)\right)
$$

and the intuitionistic semantics / has to be such that

$$
\not \vDash I \quad(\neg \forall x \neg A(x)) \Rightarrow \exists x A(x))
$$

Intuitionictic Logic: Philosophical Motivation

The intuitionists interpret differently the meaning of propositional connectives

Intuitionistic implication

The intuitionistic implication $(A \Rightarrow B)$ is considered to be true if there exists a method by which a proof of B can be deduced from the proof of A For example, in the case of the implication

$$
i(\neg \forall x \neg A(x)) \Rightarrow \exists x A(x))
$$

there is no general method which, from a proof of the sentence

$$
(\neg \forall x \neg A(x))
$$

permits us to obtain an intuitionistic proof of the sentence

$$
\exists x A(x)
$$

Intuitionictic Logic: Philosophical Motivation

Intuitionistic negation

The sentence $\neg A$ is considered intuitionistically true only if the acceptance of the sentence A leads to absurdity

As a result of above understanding of negation and implication we have that in the intuitionistic proof system I

$$
\vdash_{1}(A \Rightarrow \neg \neg A) \quad \text { but } \quad \Vdash_{1} \quad(\neg \neg A \Rightarrow A)
$$

Consequently, the intuitionistic semantics I has to be such that

$$
\models_{1}(A \Rightarrow \neg \neg A) \text { and } \quad \not{ }_{1}(\neg \neg A \Rightarrow A)
$$

Intuitionictic Logic: Philosophical Motivation

Intuitionistic disjunction

The intuitionist regards a disjunction $(A \cup B)$ as true only if one of the sentences A, B is true and there is a method
by which it is possible to find out which of them is true

As a consequence a classical law of excluded middle

$$
(A \cup \neg A)
$$

is not acceptable by the intuitionists

This means that the the intuitionistic proof system / must be such that

$$
\varkappa_{1}(A \cup \neg A)
$$

and the intuitionistic semantics / has to be such that
$\not{ }_{\prime}(A \cup \neg A)$

Chapter 7
 Introduction to Intuitionistic and Modal Logics

PART 2: Intuitionistic Proof System I
Algebraic Semantics and Completeness Theorem

Intuitionistic Proof System I

We define now a Hilbert style proof system / with a set of axioms that is due to Rasiowa (1959). We adopted this axiomatization for two reasons

First reason is that it is the most natural and appropriate set of axioms to carry the the algebraic proof of the completeness theorem

Second reason is that they clearly describe the main difference between intuitionistic and classical logic
Namely, by adding to / the only one more axiom

$$
(A \cup \neg A)
$$

we get a complete formalization for classical logic

Intuitionistic Proof System I

Here are the components if the proof system /

Language

We adopt a propositional language

$$
\mathcal{L}=\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}
$$

with the set of formulas \mathcal{F}
Axioms
A1 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A2 $(A \Rightarrow(A \cup B))$
A3 $\quad(B \Rightarrow(A \cup B))$
A4 $\quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C)))$
A5 $\quad((A \cap B) \Rightarrow A)$
A6 $\quad((A \cap B) \Rightarrow B)$
A7 $\quad((C \Rightarrow A) \Rightarrow((C \Rightarrow B) \Rightarrow(C \Rightarrow(A \cap B)))$

Intuitionistic Proof System I

A7 $\quad((C \Rightarrow A) \Rightarrow((C \Rightarrow B) \Rightarrow(C \Rightarrow(A \cap B)))$
A8 $\quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C))$
A9 $\quad((A \cap B) \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C))$,
A10 $(A \cap \neg A) \Rightarrow B)$,
A11 $((A \Rightarrow(A \cap \neg A)) \Rightarrow \neg A)$,
where A, B, C are any formulas in \mathcal{L}
Rules of inference
We adopt the Modus Ponens

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

as the only rule of inference

Intuitionistic Proof System I

A proof system

$$
\mathbf{I}=(\mathcal{L}, \mathcal{F} A 1-A 11,(M P))
$$

for axioms A1-A11 defined above is called a Hilbert style formalization for intuitionistic propositional logic

We introduce, as usual, the notion of a formal proof in I and denote by

ト। A
the fact that a formula A has a formal proof in I or that A is provable in I

Algebraic Semantics and Completeness Theorem

Algebraic Semantics

We present now a short version of Tarski, Rasiowa, and Sikorski psedo-Boolean algebra semantics

We also discuss the algebraic completeness theorem for the intuitionistic propositional logic

We leave the Kripke semantics for the reader to explore from other, multiple sources

Algebraic Semantics

Here are some basic definitions

Relatively Pseudo-Complemented Lattice (Birkhoff, 1935)

A lattice

$$
(B, \cap, \cup)
$$

is said to be relatively pseudo-complemented if and only if for any elements $a, b \in B$, there exists the greatest element c, such that

$$
a \cap c \leq b
$$

Such greatest element c is denoted by $a \Rightarrow b$ and called the pseudo-complement of a relative to b

Algebraic Semantics

Directly from definition we have that

$$
(*) x \leq a \Rightarrow b \text { if and only if } a \cap x \leq b \text { for all } x, a, b \in B
$$

This equation (*) can serve as the definition of the relative pseudo-complement $a \Rightarrow b$
Fact
Every relatively pseudo-complemented lattice (B, \cap, \cup) has the greatest element, called a unit element and denoted by 1 Proof
Observe that $a \cap x \leq a$ for all $x, a \in B$
By (*) we have that $x \leq a \Rightarrow a$ for all $x \in B$
This means that $a \Rightarrow a$ is the greatest element in the lattice (B, \cap, \cup). We write it as

$$
a \Rightarrow a=1
$$

Algebraic Semantics

Definition

An abstract algebra

$$
\mathcal{B}=(B, 1, \Rightarrow, \cap, \cup)
$$

is said to be a relatively pseudo-complemented lattice if and only if (B, \cap, \cup) is relatively pseudo-complemented lattice with the relative pseudo-complement \Rightarrow defined by the equation
$(*) x \leq a \Rightarrow b$ if and only if $a \cap x \leq b$ for all $x, a, b \in B$
and with the unit element 1

Algebraic Semantics

Relatively Pseudo-complemented Set Lattices

Consider a topological space X with an interior operation I Let $\mathcal{G}(X)$ be the class of all open subsets of X and $\mathcal{G}^{*}(X)$ be the class of all both dense and open subsets of X Then the algebras

$$
(\mathcal{G}(X), X, \cup \cap, \Rightarrow), \quad\left(\mathcal{G}^{*}(X), X, \cup, \cap, \Rightarrow\right)
$$

where \cup, \cap are set-theoretical operations of union, intersection, and \Rightarrow is defined by

$$
Y \Rightarrow Z=I(X-Y) \cup Z
$$

are relatively pseudo-complemented lattices
Clearly, all sub algebras of these algebras are also relatively pseudo-complemented lattices They are typical examples of relatively pseudo-complemented lattices

Algebraic Semantics

Pseudo - Boolean Algebra (Heyting Algebra)
An algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg)
$$

is said to be a pseudo-Boolean algebra if and only if

$$
(B, 1, \Rightarrow, \cap, \cup)
$$

is a relatively pseudo-complemented lattice in which a zero element 0 exists and \neg is a one argument operation defined as follows

$$
\neg a=a \Rightarrow 0
$$

The operation \neg is called a pseudo-complementation
The pseudo - Boolean algebras are also called Heyting algebras to stress their connection to the intuitionistic logic

Algebraic Semantics

Let X be topological space with an interior operation I
Let $\mathcal{G}(X)$ be the class of all open subsets of X
Then

$$
(\mathcal{G}(X), X, \emptyset, \cup, \cap, \Rightarrow, \neg)
$$

where \cup, \cap are set-theoretical operations of union, intersection, and \Rightarrow is defined by

$$
Y \Rightarrow Z=I(X-Y) \cup Z
$$

and \neg is defined as

$$
\neg Y=Y \Rightarrow \emptyset=I(X-Y), \text { for all } Y \subseteq X
$$

is a pseudo-Boolean algebra

Every sub algebra of $\mathcal{G}(X)$ is also a pseudo-Boolean algebra They are called pseudo-fields of sets

Algebraic Semantics

The following theorem states that pseudo-fields are typical examples of pseudo - Boolean algebras.

The theorems of this type are often called Stone Representation Theorems to remember an American mathematician H. M. Stone

Stone was one of the first to initiate the investigations of relationship between logic and general topology in the article
"The Theory of Representations for Boolean Algebras", Trans. of the Amer.Math, Soc 40, 1936

Algebraic Semantics

Representation Theorem (McKinsey, Tarski, 1946)

For every pseudo - Boolean algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg)
$$

there exists a monomorphism h of \mathcal{B} into a pseudo-field $\mathcal{G}(X)$ of all open subsets of a compact topological T_{0} space X

Intuitionistic Algebraic Model

We say that a formula A is an intuitionistic tautology
if and only if
any pseudo-Boolean algebra \mathcal{B} is a model for A

This kind of models because their connection to abstract algebras are called algebraic models
We put it formally as follows.

Intuitionistic Algebraic Model

Intuitionistic Algebraic Model

Let A be a formula of the language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, 7\}}$ and let

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup \neg)
$$

be a pseudo - Boolean algebra

We say that the algebra \mathcal{B} is a model for the formula A and denote it by

$$
\mathcal{B} \models A
$$

if and only if $v^{*}(A)=1$ holds for all variables assignments

$$
v: V A R \longrightarrow B
$$

Intuitionistic Tautology

Intuitionistic Tautology

The formula A is an intuitionistic tautology and is denoted by

$$
\begin{gathered}
\models \text { । } A \\
\text { if and only if } \\
\mathcal{B} \models A \quad \text { for all pseudo-Boolean algebras } \mathcal{B}
\end{gathered}
$$

In Algebraic Logic the notion of tautology is often defined using a notion
"a formula A is valid in an algebra $\mathcal{B}^{\prime \prime}$
It is formally defined as follows

Intuitionistic Tautology

Definition

A formula A is valid in a pseudo-Boolean algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg)
$$

if and only if $v^{*}(A)=1$ holds for all variables assignments
$v: V A R \longrightarrow B$
Directly from definitions we get the following

Fact

For any formula A,
$\models_{\text {। }} A$ if and only if A is valid
in all pseudo-Boolean algebras \mathcal{B}

The Fact is often used as an equivalent definition of the intuitionistic tautology

Intuitionistic Completeness

We write now \vdash, A to denote any proof system for the intuitionistic propositional logic, and in particular the Rasiowa (1959) proof system we have defined

Intuitionistic Completeness Theorem (Mostowski 1948)
For any formula A of $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$,
\vdash । A if and only if \models । A

The intuitionistic completeness theorem follows directly from the general algebraic completeness theorem that combines results of of Mostowski (1958), Rasiowa (1951) and Rasiowa-Sikorski (1957)

Algebraic Completeness

Algebraic Completeness Theorem

For any formula A he following conditions are equivalent
(i) $\vdash \perp A$
(ii) $\models \wedge$
(iii) A is valid in every pseudo-Boolean algebra

$$
(\mathcal{G}(X), X, \emptyset, \cup, \cap, \Rightarrow, \neg)
$$

of open subsets of any topological space X
(iv) A is valid in every pseudo-Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A
Moreover, each of the conditions (i) - (iv) is equivalent to the following one.
(v) A is valid in the pseudo-Boolean algebra
$(\mathcal{G}(X), X, \emptyset, \cup, \cap, \Rightarrow, \neg)$ of open subsets of a dense-in -itself metric space $X \neq \emptyset$ (in particular of an n-dimensional Euclidean space X)

Chapter 7
Introduction to Intuitionistic and Modal Logics

PART 3: Intuitionistic Tautologies and Connection

 with Classical Tautologies
Intuitionistic Tautologies

Here are some important basic classical tautologies that are also intuitionistic tautologies
($A \Rightarrow A$)
$(A \Rightarrow(B \Rightarrow A))$
$(A \Rightarrow(B \Rightarrow(A \cap B)))$
$((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$
($A \Rightarrow \neg \neg A$)
$\neg(A \cap \neg A)$
$((\neg A \cup B) \Rightarrow(A \Rightarrow B))$
Of course, all of logical axioms A1-A11 of the proof system I are also classical and intuitionistic tautologies

Intuitionistic Tautologies

Here are some more of important classical tautologies that are intuitionistic tautologies
$((\neg A \cup B) \Rightarrow(A \Rightarrow B))$
8. $(\neg(A \cup B) \Rightarrow(\neg A \cap \neg B))$
$((\neg A \cap \neg B) \Rightarrow(\neg(A \cup B))$
$((\neg A \cup \neg B) \Rightarrow \neg(A \cap B))$
$((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$
$((A \Rightarrow \neg B) \Rightarrow(B \Rightarrow \neg A))$
$(\neg \neg \neg A \Rightarrow \neg A)$
$(\neg A \Rightarrow \neg \neg \neg A)$
$(\neg \neg(A \Rightarrow B) \Rightarrow(A \Rightarrow \neg \neg B))$
$((C \Rightarrow A) \Rightarrow((C \Rightarrow(A \Rightarrow B)) \Rightarrow(C \Rightarrow B))$

Intuitionistic Tautologies

Here are some important classical tautologies that are not intuitionistic tautologies
$(A \cup \neg A)$
$(\neg \neg A \Rightarrow A)$
$((A \Rightarrow B) \Rightarrow(\neg A \cup B))$
$(\neg(A \cap B) \Rightarrow(\neg A \cup \neg B))$
$((\neg A \Rightarrow B) \Rightarrow(\neg B \Rightarrow A))$
$((\neg A \Rightarrow \neg B) \Rightarrow(B \Rightarrow A))$
$((A \Rightarrow B) \Rightarrow A) \Rightarrow A)$

Connection Between Classical and Intuitionistic Logics

Connection Between Classical and Intuitionistic Logics

The first connection is quite obvious
It was proved by Rasiowa, Sikorski in 1964 that by adding the axiom
A12 $(A \cup \neg A)$
to the set of of logical axioms A1-A11 of the proof system I
we obtain a proof system C that is complete with respect to classical semantics
This proves the following

Theorem 1

Every formula that is intuitionistically derivable is also classically derivable, i.e. the implication

$$
\text { If } \vdash_{I} A \text { then } \vdash_{c} A
$$

holds for any $A \in \mathcal{F}$

Classical and Intuitionistic Logics

We write $\models A$ and \models, A to denote that A is a classical and intuitionistic tautology, respectively.

As both proof systems I and C are complete under respective semantics, we can re-write Theorem 1 as the following relationship between classical and intuitionistic tautologies

Theorem 2

For any formula $A \in \mathcal{F}$,
If \models, A, then $\models A$

Classical and Intuitionistic Logics

The next relationship shows how to obtain intuitionistic tautologies from the classical tautologies and vice versa The following has been proved by Glivenko in 1929 and independently by Tarski in 1938

Theorem 3 (Glivenko, Tarski)

For any formula $A \in \mathcal{F}$,
A is classically provable if and only if $\neg \neg A$ is intuitionistically provable, i.e.

$$
\vdash A \text { if and only if } \vdash, \neg \neg A
$$

where we use symbol \vdash for classical provability

Classical and Intuitionistic Logics

Theorem 4 (Tarski, 1938)
For any formula $A \in \mathcal{F}$,
A is a classical tautology if and only if $\neg \neg A$ is an intuitionistic tautology, i.e.
$\models A \quad$ if and only if $\models \downharpoonleft \neg \neg A$

Classical and Intuitionistic Logics

Theorem 5 (Gödel, 1931)
For any formulas $A, B \in \mathcal{F}$,
a formula $(A \Rightarrow \neg B)$ is classically provable if and only if it is intuitionistically provable, i.e.

$$
\vdash(A \Rightarrow \neg B) \quad \text { if and only if } \quad \vdash_{1}(A \Rightarrow \neg B)
$$

Classical and Intuitionistic Logics

Theorem 6 (Gödel, 1931)
For any formula $A, B \in \mathcal{F}$,
If A contains no connectives except \cap and \neg, then A is classically provable if and only if it is intuitionistically provable, i.e

$$
\vdash A \text { if and only if } \vdash, A
$$

Classical and Intuitionistic Logics

By the completeness of classical and intuitionisctic logics we get the following semantic version of Gödel' s Theorems 5, 6

Theorem 7

A formula $(A \Rightarrow \neg B)$ is a classical tautology if and only if it is an intuitionistic tautology, i.e.

$$
\models(A \Rightarrow \neg B) \quad \text { if and only if } \quad \models_{l}(A \Rightarrow \neg B)
$$

Theorem 8

If a formula A contains no connectives except \cap and \neg, then
$\vDash A \quad$ if and only if \models, A

On intuitionistically derivable disjunction

In classical logic it is possible for the disjunction

$$
(A \cup B)
$$

to be a tautology when neither A nor B is a tautology

The tautology $(A \cup \neg A)$ is the simplest example

This does not hold for the intuitionistic logic

This fact was stated without the proof by Gödel in 1931 and proved by Gentzen in 1935 via his proof system LI which was discussed shortly in chapter 6 and is covered in detail in this chapter and the next set of slides

On intuitionistically derivable disjunction

The following theorem was announced without proof by Gödel in 1931 and proved by Gentzen in 1935
Theorem 9 (Gödel, Gentzen)
A disjunction $(A \cup B)$ is intuitionistically provable if and only if either A or B is intuitionistically provable i.e.

$$
\vdash_{I}(A \cup B) \text { if and only if } \quad \vdash_{1} A \text { or } \vdash_{1} B
$$

We obtain, via the Completeness Theorems the following semantic version of the above

Theorem 10

A disjunction $(A \cup B)$ is intuitionistic tautology if and only if either A or B is intuitionistic tautology, i.e.

$$
\models_{\text {। }}(A \cup B) \text { if and only if } \models \text {, } A \text { or } \models_{\text {, }} B
$$

Chapter 7
 Introduction to Intuitionistic and Modal Logics

Slides Set 2

PART 4: Gentzen Sequent System LI

Gentzen Sequent System LI

G. Gentzen formulated in 1935 a first syntactically decidable (in propositional case) proof systems for classical and intuitionistic logics

He proved their equivalence with their well established, respective Hilbert style formalizations

He named his classical system LK (K for Klassisch) and intuitionistic system LI (I for Intuitionistisch)

Gentzen Sequent System LI

In order to prove the completeness of the system LK and to prove the adequacy of LI he introduced a special inference rule, called cut rule that corresponds to the Modus Ponens rule in Hilbert style proof systems

Then, as the next step he proved the now famous Hauptzatz, called in English the Cut Elimination Theorem

Gentzen Sequent System LI

Gentzen original proof system LI is a particular case of his proof system LK for the classical logic

Both of them are presented in chapter 6 together with the original Gentzen's proof of the Hauptzatz for both, LK and LI proof systems

The elimination of the cut rule and the structure of other rules makes it possible to define effective automatic procedures for proof search, what is impossible in a case of the Hilbert style systems

LI Sequents

The Gentzen system LI is defined as follows.
Let

$$
S Q=\left\{\Gamma \longrightarrow \Delta: \Gamma, \Delta \in \mathcal{F}^{*}\right\}
$$

be the set of all Gentzen sequents built out of the formulas of the language

$$
\mathcal{L}=\mathcal{L}_{\{\mathrm{u}, \cap, \Rightarrow, \neg\}}
$$

and the additional Gentzen arrow symbol \longrightarrow
We assume that all LI sequents are elements of a following subset ISQ of the set $S Q$ of all sequents

$$
\text { ISQ }=\{\Gamma \longrightarrow \Delta: \Delta \text { consists of at most one formula }\}
$$

The set ISQ is called the set of all intuitionistic sequents; the LI sequents

Axioms of LI

Logical Axioms of LI consist of any sequent from the set ISQ which contains a formula that appears on both sides of the sequent arrow \longrightarrow, i.e any sequent of the form

$$
\ulcorner, A, \Delta \longrightarrow A
$$

for $\Gamma, \Delta \in \mathcal{F}^{*}$

Rules of Inference of LI

The set inference rules of $\mathbf{L I}$ is divided into two groups: the structural rules and the logical rules

There are three Structural Rules of LI: Weakening,
Contraction and Exchange

Weakening structural rule

$$
\begin{aligned}
& (\text { weak } \rightarrow) \frac{\Gamma \longrightarrow \Delta}{A, \Gamma \longrightarrow \Delta} \\
& (\rightarrow \text { weak }) \frac{\Gamma \longrightarrow}{\Gamma \longrightarrow A}
\end{aligned}
$$

A is called the weakening formula
Remember that Δ contains at most one formula

Rules of Inference of LI

Contraction structural rule

$$
(\text { contr } \rightarrow) \quad \frac{A, A, \Gamma \rightarrow \Delta}{A, \Gamma \longrightarrow \Delta}
$$

A is called the contraction formula
Remember that Δ contains at most one formula

The rule below is not VALID for LI; we list it as it is used in the classical case

$$
(\rightarrow \text { contr }) \quad \stackrel{\Gamma \longrightarrow \Delta, A, A}{\Gamma \longrightarrow \Delta, A}
$$

Rules of Inference of LI

Exchange structural rule

$$
(\text { exch } \rightarrow) \frac{\Gamma_{1}, A, B, \Gamma_{2} \longrightarrow \Delta}{\Gamma_{1}, B, A, \Gamma_{2} \longrightarrow \Delta}
$$

Remember that Δ contains at most one formula

The rule below is not VALID for LI; we list it as it is used in the classical case

$$
(\rightarrow \text { exch }) \frac{\Delta \longrightarrow \Gamma_{1}, A, B, \Gamma_{2}}{\Delta \longrightarrow \Gamma_{1}, B, A, \Gamma_{2}}
$$

Rules of Inference of LI

Logical Rules

Conjunction rules

$$
\begin{aligned}
& (\cap \rightarrow) \quad \frac{A, B, \Gamma \longrightarrow \Delta}{(A \cap B), \Gamma \longrightarrow \Delta}, \\
& (\rightarrow \cap) \frac{\Gamma \longrightarrow A ; \Gamma \longrightarrow B}{\Gamma \longrightarrow(A \cap B)}
\end{aligned}
$$

Remember that Δ contains at most one formula

Rules of Inference of LI

Disjunction rules

$$
\begin{array}{r}
(\rightarrow \cup)_{1} \quad \frac{\Gamma \longrightarrow A}{\Gamma \longrightarrow(A \cup B)} \\
(\rightarrow \cup)_{2} \frac{\Gamma \longrightarrow B}{\Gamma \longrightarrow(A \cup B)} \\
(\cup \rightarrow) \\
\frac{A, \Gamma \longrightarrow \Delta ; B, \Gamma \longrightarrow \Delta}{(A \cup B), \Gamma \longrightarrow \Delta}
\end{array}
$$

Remember that Δ contains at most one formula

Rules of Inference of LI

Implication rules

$$
\begin{aligned}
&(\rightarrow \Rightarrow) \frac{A, \Gamma \longrightarrow B}{\Gamma \longrightarrow(A \Rightarrow B)} \\
&(\Rightarrow \rightarrow) \frac{\Gamma \rightarrow A ; B, \Gamma \rightarrow \Delta}{(A \Rightarrow B), \Gamma \rightarrow \Delta}
\end{aligned}
$$

Remember that Δ contains at most one formula

Gentzen System LI

Negation rules

$$
\begin{aligned}
& (\neg \rightarrow) \frac{\Gamma \longrightarrow A}{\neg A, \Gamma \longrightarrow} \\
& (\rightarrow \neg) \frac{A, \Gamma \longrightarrow}{\Gamma \longrightarrow \neg A}
\end{aligned}
$$

We define the Gentzen system LI as

$$
\mathbf{L I}=(\mathcal{L}, \quad I S Q, \quad L A, \quad \text { Structural rules, } \quad \text { Logical rules })
$$

LI Completeness

The completeness of the cut-free LI follows directly from LI Hauptzatz proved in chapter 6 and the intuitionistic completeness (Mostowski 1948)

Completeness of LI
For any sequent $\Gamma \longrightarrow \Delta \in I S Q$,

$$
\vdash_{L I} \Gamma \longrightarrow \Delta \quad \text { if and only of } \models_{I} \Gamma \longrightarrow \Delta
$$

In particular, for any formula A,
$\vdash_{L I} A \quad$ if and only of $\models_{l} A$

Intuitionistic Disjunction

The particular form the following theorem was stated without the proof by Gödel in 1931
The theorem proved by Gentzen in 1935 via Hauptzatz and we follow his proof

Intuitionistically Derivable Disjunction

For any formulas $A, B \in \mathcal{F}$,

$$
\vdash_{L I}(A \cup B) \text { if and only if } \vdash_{L I} A \text { or } \vdash_{L I} B
$$

In particular, a disjunction $(A \cup B)$ is intuitionistically provable in any proof system I if and only if either A or B is intuitionistically provable in I

Intuitionistic Disjunction

Proof of

$$
\vdash_{L I}(A \cup B) \text { if and only if } \vdash_{L I} A \text { or } \vdash_{L I} B
$$

Assume $\vdash_{L I}(A \cup B)$
This equivalent to $\vdash_{L I} \longrightarrow(A \cup B)$
The last step in the proof of $\longrightarrow(A \cup B)$ in Ll must be the application of the rule $(\rightarrow \cup)_{1}$ to the sequent $\longrightarrow A$, or the application of the rule $(\rightarrow \cup)_{2}$ to the sequent $\longrightarrow B$
There is no other possibilities
We have proved that $\vdash_{L I}(A \cup B)$ implies $\vdash_{L I} A$ or $\vdash_{L I} B$
The inverse implication is obvious by respective applications of rules $(\rightarrow \cup)_{1}$ or $(\rightarrow \cup)_{2}$ to the sequents $\longrightarrow A$ or $\longrightarrow B$

Decomposition Trees in LI

Decomposition Trees in LI

Search for proofs in LI is a much more complicated process then the one in classical logic systems RS or GL defined in chapter 6
Here, as in any other Gentzen style proof system, proof search procedure consists of building the decomposition trees

Remark 1

In RS the decomposition tree T_{A} of any formula A is always unique

Remark 2

In GL the "blind search" defines, for any formula A a finite number of decomposition trees,

Nevertheless, it can be proved that the search can be reduced to examining only one of them, due to the absence of structural rules

Decomposition Trees in LI

Remark 3

In LI the structural rules play a vital role in the proof construction and hence, in the proof search

The fact that a given decomposition tree ends with an nonaxiom leaf does not always imply that the proof does not exist

It might only imply that our search strategy was not good

The problem of deciding whether a given formula A does, or does not have a proof in LI becomes more complex then in the case of Gentzen system for classical logic

Decomposition Trees in LI

Before we define a heuristic method of searching for proof and deciding whether such a proof exists or not we make some observations

Observation 1

Logical rules of LI are similar to those in Gentzen type classical formalizations we already examined in previous chapters in a sense that each of them introduces a logical connective

Decomposition Trees in LI

Observation 2

The process of searching for a proof is a decomposition process in which we use the inverse of logical and structural rules as decomposition rules

For example the implication rule:

$$
(\rightarrow \Rightarrow) \frac{A, \Gamma \longrightarrow B}{\Gamma \longrightarrow(A \Rightarrow B)}
$$

becomes an implication decomposition rule (we use the same name $(\rightarrow \Rightarrow)$ in both cases)

$$
(\rightarrow \Rightarrow) \frac{\Gamma \longrightarrow(A \Rightarrow B)}{A, \Gamma \longrightarrow B}
$$

Decomposition Trees in LI

Observation 3

We write proofs as trees, so the proof search process is a process of building decomposition trees

To facilitate the process we write the decomposition rules in a tree decomposition form as follows

$$
\begin{gathered}
\Gamma \longrightarrow(A \Rightarrow B) \\
\perp(\rightarrow \Rightarrow) \\
A,\ulcorner\longrightarrow B
\end{gathered}
$$

Decomposition Trees in LI

The two premisses rule $(\Rightarrow \rightarrow)$ written as the tree decomposition rule becomes

$$
\begin{gathered}
(A \Rightarrow B), \Gamma \longrightarrow \\
\bigwedge(\Rightarrow \rightarrow) \\
\Gamma \longrightarrow A \quad B, \Gamma \longrightarrow
\end{gathered}
$$

Decomposition Trees in LI

The structural weakening rule written as the decomposition rule is

$$
(\rightarrow \text { weak }) \frac{\Gamma \longrightarrow A}{\Gamma \longrightarrow}
$$

We write it in a tree decomposition form as

$$
\begin{gathered}
\Gamma \longrightarrow A \\
\mid(\rightarrow \text { weak }) \\
\Gamma \longrightarrow
\end{gathered}
$$

Decomposition Trees in LI

We define the notion of decomposable and indecomposable formulas and sequents as follows

Decomposable formula is any formula of the degree ≥ 1 Decomposable sequent is any sequent that contains a decomposable formula

Indecomposable formula is any formula of the degree 0
i.e. is any propositional variable

Decomposition Trees in LI

Remark

In a case of formulas written with use of capital letters $A, B, C, .$. etc , we treat these letters as propositional variables, i.e. as indecomposable formulas

Indecomposable sequent is a sequent formed from indecomposable formulas only.

Decomposition Trees in LI

Decomposition Tree Construction (1)

Given a formula A we construct its decomposition tree T_{A} as follows

Root of the tree T_{A} is the sequent $\longrightarrow A$
Given a node n of the tree we identify a decomposition rule applicable at this node and write its premisses as the leaves of the node n

We stop the decomposition process when we obtain an axiom or all leaves of the tree are indecomposable

Decomposition Trees in LI

Observation 4

The decomposition tree T_{A} obtained by the Construction (1) most often is not unique

Observation 5
The fact that we find a decomposition tree T_{A} with a non-axiom leaf does not mean that $\not r_{L I} A$
This is due to the role of structural rules in LI and will be discussed later

Proof Search Examples

Examples

We perform proof search and decide the existence of proofs in LI for a given formula $A \in \mathcal{F}$ by constructing its decomposition trees T_{A}

We examine here some examples to show the complexity of the problem

Reminder

In the following and similar examples when building the decomposition trees for formulas representing general schemas we treat the capital letters $A, B, C, D \ldots$ as propositional variables, i.e. as indecomposable formulas

Examples

Example 1

Determine] whether

$$
\vdash_{\mathrm{LI}}((\neg A \cap \neg B) \Rightarrow \neg(A \cup B))
$$

Observe that
If we find a decomposition tree of A in LI such that all its leaves are axiom, we have a proof, i.e

$$
\vdash \mathrm{LI} A
$$

If all possible decomposition trees have a non-axiom leaf then the proof of A in $\mathbf{L I}$ does not exist, i.e.

Examples

Consider the following decomposition tree $\quad \mathrm{T1}_{\mathrm{A}}$

$$
\begin{gathered}
\longrightarrow((\neg A \cap \neg B) \Rightarrow(\neg(A \cup B)) \\
\mid(\longrightarrow \Rightarrow) \\
(\neg A \cap \neg B) \longrightarrow \neg(A \cup B) \\
\mid(\longrightarrow \neg) \\
(\neg A \cap \neg B),(A \cup B) \longrightarrow \\
\mid(\cap \longrightarrow) \\
\neg A, \neg B,(A \cup B) \longrightarrow \\
\mid(\neg \longrightarrow) \\
\neg B,(A \cup B) \longrightarrow A \\
\mid(\longrightarrow \text { weak) } \\
\neg B,(A \cup B) \longrightarrow \\
\mid(\neg \longrightarrow) \\
(A \cup B) \longrightarrow B \\
\Lambda(\cup \longrightarrow)
\end{gathered}
$$

$$
\begin{array}{cc}
A \longrightarrow B & B \longrightarrow B \\
\text { non - axiom } & \text { axiom }
\end{array}
$$

Examples

The tree $\mathrm{T1}_{\mathrm{A}}$ has a non-axiom leaf, so it does not constitute a proof in LI

Observe that the decomposition tree in LI is not always unique

Hence the existence of a non-axiom leaf does not yet prove that the proof of A does not exist

Consider the following decomposition tree \quad T2 ${ }_{A}$

$$
\begin{gathered}
\longrightarrow((\neg A \cap \neg B) \Rightarrow(\neg(A \cup B)) \\
\mid(\longrightarrow \Rightarrow) \\
(\neg A \cap \neg B) \longrightarrow \neg(A \cup B) \\
\mid(\longrightarrow \neg) \\
(A \cup B),(\neg A \cap \neg B) \longrightarrow \\
\mid(e x c h \longrightarrow) \\
(\neg A \cap \neg B),(A \cup B) \longrightarrow \\
\mid(\cap \longrightarrow) \\
\neg A, \neg B,(A \cup B) \longrightarrow \\
\mid(e x c h \longrightarrow) \\
\neg A,(A \cup B), \neg B \longrightarrow \\
\mid(e x c h \longrightarrow) \\
(A \cup B), \neg A, \neg B \longrightarrow \\
\Lambda(\cup \longrightarrow)
\end{gathered}
$$

$A, \neg A, \neg B \longrightarrow$	$B, \neg A, \neg B \longrightarrow$
$\mid($ exch $\longrightarrow)$	$\mid($ exch $\longrightarrow)$
$\neg A, A, \neg B \longrightarrow$	$B, \neg B, \neg A \longrightarrow$
$\mid(\neg \longrightarrow)$	$\mid($ exch $\longrightarrow)$
$A, \neg B \longrightarrow A$	$\neg B, B, \neg A \longrightarrow$
axiom	$\mid(\neg \longrightarrow)$

$$
B, \neg A \longrightarrow B ; \text { axiom }
$$

Examples

All leaves of $T 2_{A}$ are axioms
This means that the tree $T 2_{A}$ is a a proof of A in LI

We hence proved that

$$
\vdash \mathrm{LI} \quad((\neg A \cap \neg B) \Rightarrow \neg(A \cup B))
$$

Examples

Example 2: Show that

1. $\vdash \mathrm{LI}(A \Rightarrow \neg \neg A)$
2. $\quad \nvdash \mathrm{LI}(\neg \neg A \Rightarrow A)$

Solution of 1.
We construct some, or all decomposition trees of

$$
\longrightarrow(A \Rightarrow \neg \neg A)
$$

A tree T_{A} that ends with all leaves being axioms is a proof of A in LI

Examples

We construct T_{A} as follows

$$
\begin{gathered}
\longrightarrow(A \Rightarrow \neg \neg A) \\
\mid(\longrightarrow \Rightarrow) \\
A \longrightarrow \neg \neg A \\
\mid(\longrightarrow \neg) \\
\neg A, A \longrightarrow \\
\mid(\neg \longrightarrow) \\
A \longrightarrow A
\end{gathered}
$$

axiom
All leaves of T_{A} are axioms so we found the proof
We do not need to construct any other decomposition trees.

Examples

Solution of 2.
In order to prove that

$$
\Vdash_{\mathrm{LI}} \quad(\neg \neg A \Rightarrow A)
$$

we have to construct all decomposition trees of

$$
\longrightarrow(\neg \neg A \Rightarrow A)
$$

and show that each of them has a non-axiom leaf

Examples

Here is $\quad \mathrm{T} 1_{A}$

$$
\begin{aligned}
\longrightarrow & (\neg \neg A \Rightarrow A) \\
& (\longrightarrow \Rightarrow)
\end{aligned}
$$

one of 2 choices

$$
\neg \neg A \longrightarrow A
$$

$$
\text { I (} \longrightarrow \text { weak) }
$$

one of 3 choices

$$
\begin{aligned}
& \neg \neg A \longrightarrow \\
& \mid(\neg \longrightarrow)
\end{aligned}
$$

one of 3 choices

$$
\longrightarrow \neg A
$$

$$
I(\longrightarrow \neg)
$$

one of 2 choices $A \longrightarrow$
non - axiom

Here is $\quad \mathbf{T} \mathbf{2}_{A}$

$$
\begin{aligned}
& \longrightarrow(\neg \neg A \Rightarrow A) \\
& 1(\longrightarrow) \text { one of } 2 \text { choices } \\
& \neg \neg A \longrightarrow A \\
& \mid(\text { contr } \longrightarrow) \text { second of } 2 \text { choices } \\
& \neg \neg A, \neg \neg A \longrightarrow A \\
& 1(\longrightarrow \text { weak }) \text { first of } 2 \text { choices } \\
& \neg \neg A, \neg \neg A \longrightarrow \\
& \mid(\neg \longrightarrow) \text { first of } 2 \text { choices } \\
& \neg \neg A \longrightarrow \neg A \\
& \mid(\longrightarrow \neg) \text { one of } 2 \text { choices } \\
& A, \neg \neg A \longrightarrow \\
& \text { | } \text { exch } \longrightarrow) \text { one of } 2 \text { choices } \\
& \neg \neg A, A \longrightarrow \\
& \mid(\neg \longrightarrow) \text { one of } 2 \text { choices } \\
& A \longrightarrow \neg A \\
& \mid(\longrightarrow \neg) \text { first of } 2 \text { choices } \\
& A, A \longrightarrow \\
& \text { non - axiom }
\end{aligned}
$$

Structural Rules

We can see from the above decomposition trees that the "blind" construction of all possible trees only leads to more complicated trees

This is due to the presence of structural rules
The "blind" application of the rule (contr \rightarrow) gives always an infinite number of decomposition trees

In order to decide that none of them will produce a proof we need some extra knowledge about patterns of their construction, or just simply about the number o useful of application of structural rules

Structural Rules

In this case we can just make an "external" observation that the our first tree $\mathrm{T} 1_{A}$ is in a sense a minimal one
It means that all other trees would only complicate this one in an inessential way, i.e. the we will never produce a tree with all axioms leaves

One can formulate a deterministic procedure giving a finite number of trees, but the proof of its correctness is needed and that requires some extra knowledge
Within the scope of this book we accept the "external explanation as a sufficient solution

Structural Rules

As we can see from the above examples the structural rules and especially the (contr \longrightarrow) rule complicates the proof searching task.

Both Gentzen type proof systems RS and GL from the previous chapter don't contain the structural rules
They also are as we have proved, complete with respect to classical semantics.

The original Gentzen system LK which does contain the structural rules is also, as proved by Gentzen, complete

Structural Rules

Hence all three classical proof system RS, GL, LK are equivalent

This proves that the structural rules can be eliminated from the system LK

A natural question of elimination of structural rules from the system LI arises

The following example illustrates the negative answer

Examples

Example 3

We know that for any formula $A \in \mathcal{F}$,

$$
\models A \quad \text { if and only if } \quad \vdash \text { । } \quad \neg \neg A
$$

where $\models A$ means that A is classical tautology
$\vdash_{1} A$ means that A is Intutionistically provable in any intuitionistically complete proof system I
The system LI is intuitionistically complete so have that for any formula $A \in \mathcal{F}$,

$$
\models A \quad \text { if and only if } \quad \vdash \mathrm{LI} \neg \neg A
$$

Examples

Obviously $\models(\neg \neg A \Rightarrow A)$, so we must have that

$$
\vdash \mathrm{LI} \neg \neg(\neg \neg A \Rightarrow A)
$$

We are going to prove now that the rule (contr \longrightarrow) is essential to the existence of the proof $\neg \neg(\neg \neg A \Rightarrow A)$ It means that $\neg \neg(\neg \neg A \Rightarrow A)$ is not provable without the rule $($ contr $\longrightarrow)$

The following decomposition tree T_{A} is a proof of $\neg \neg(\neg \neg A \Rightarrow A)$ with use of the rule $($ contr $\longrightarrow)$

Examples

$$
\begin{gathered}
\rightarrow \neg \neg(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \neg) \\
\neg(\neg \neg A \Rightarrow A) \longrightarrow \\
\mid(\text { contr } \longrightarrow) \\
\neg(\neg \neg A \Rightarrow A), \neg(\neg \neg A \Rightarrow A) \longrightarrow \\
\mid(\neg \longrightarrow) \\
\neg(\neg \neg A \Rightarrow A) \longrightarrow(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \Rightarrow) \\
\neg \neg A, \neg(\neg \neg A \Rightarrow A) \longrightarrow A \\
\mid(\longrightarrow \text { weak) } \\
\neg \neg A, \neg(\neg \neg A \Rightarrow A) \longrightarrow \\
\mid(\neg \longrightarrow) \\
\neg(\neg \neg A \Rightarrow A) \longrightarrow \neg A \\
\mid(\longrightarrow \neg) \\
A, \neg(\neg \neg A \Rightarrow A) \longrightarrow \\
\mid(e x c h \longrightarrow) \\
\neg(\neg \neg A \Rightarrow A), A \longrightarrow \\
\mid(\neg \longrightarrow) \\
A \longrightarrow(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \Rightarrow) \\
\neg \neg A, A \longrightarrow A
\end{gathered}
$$

axiom

Contraction Rule

Assume now that the rule (contr \longrightarrow) is not available. All possible decomposition trees are as follows Tree $\mathrm{T} 1_{A}$

$$
\begin{gathered}
\longrightarrow \neg \neg(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \neg) \\
\neg(\neg \neg A \Rightarrow A) \longrightarrow \\
\mid(\neg \longrightarrow) \\
\longrightarrow(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \Rightarrow) \\
\neg \neg A \longrightarrow A \\
\mid(\longrightarrow \text { weak }) \\
\neg \neg A \longrightarrow \\
\mid(\neg \longrightarrow) \\
\longrightarrow \neg A \\
I(\longrightarrow \neg) \\
A \longrightarrow \\
\text { non }- \text { axiom }
\end{gathered}
$$

Contraction Rule

The next is $\quad \mathrm{T} 2_{A}$

$$
\begin{gathered}
\longrightarrow \neg \neg(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \neg) \\
\neg(\neg \neg A \Rightarrow A) \longrightarrow \\
\mid(\neg \longrightarrow) \\
\longrightarrow(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \text { weak }) \\
\longrightarrow \\
\text { non - axiom }
\end{gathered}
$$

Contraction Rule

The next is $T 3_{A}$

$$
\begin{gathered}
\longrightarrow \neg \neg(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \text { weak }) \\
\longrightarrow \\
\text { non }- \text { axiom }
\end{gathered}
$$

Contraction Rule

The last one is $\quad \mathrm{T}_{\mathrm{A}}$

$$
\begin{gathered}
\longrightarrow \neg \neg(\neg \neg A \Rightarrow A) \\
\mid(\rightarrow \neg) \\
\neg(\neg \neg A \Rightarrow A) \longrightarrow \\
\mid(\neg \longrightarrow) \\
\longrightarrow(\neg \neg A \Rightarrow A) \\
\mid(\longrightarrow \Rightarrow) \\
1 \\
\neg \neg A \longrightarrow A \\
I(\longrightarrow \text { weak }) \\
\neg \neg A \longrightarrow \\
\mid(\neg \longrightarrow) \\
\longrightarrow \neg A \\
\text { I }(\longrightarrow \text { weak }) \\
\longrightarrow \\
\text { non }- \text { axiom }
\end{gathered}
$$

Contraction Rule

We have considered all possible decomposition trees that do not involve the contraction rule (contr \longrightarrow) and none of them was a proof
This shows that the formula

$$
\neg \neg(\neg \neg A \Rightarrow A)
$$

is not provable in LI without $($ contr $\longrightarrow)$ rule, i.e. that we proved the following

Fact

The contraction rule (contr \longrightarrow) can not be eliminated from LI

Proof Search Heuristic Method

Proof Search Heuristic Method

Before we define a heuristic method of searching for proof in LI let's make some additional observations to the already made observations 1-5

Observation 6

The goal of constructing the decomposition tree is to obtain axioms or indecomposable leaves

With respect to this goal the use logical decomposition rules has a priority over the use of the structural rules

We use this information while describing the proof search heuristic

Proof Search Heuristic Method

Observation 7

All logical decomposition rules $(\circ \rightarrow)$, where \circ denotes any connective, must have a formula we want to decompose as the first formula at the decomposition node

It means that if we want to decompose a formula $\circ A$ the node must have a form $\circ A, \Gamma \longrightarrow \Delta$

Remember: order of decomposition is important Also sometimes it is necessary to decompose a formula within the sequence Γ first, before decomposing $\circ A$ in order to find a proof

Proof Search Heuristic Method

For example, consider two nodes

$$
n_{1}=\neg \neg A,(A \cap B) \longrightarrow B
$$

and

$$
n_{2}=(A \cap B), \neg \neg A \longrightarrow B
$$

We are going to see that the results of decomposing n_{1} and n_{2} differ dramatically
Let's decompose the node n_{1}
Observe that the only way to be able to decompose the formula $\neg \neg A$ is to use the rule (\rightarrow weak) as a first step
The two possible decomposition trees that starts at the node n_{1} are as follows

Proof Search Heuristic Method

First Tree

$$
\begin{gathered}
\neg \neg A,(A \cap B) \longrightarrow B \\
\mid(\rightarrow \text { weak }) \\
\neg \neg A,(A \cap B) \longrightarrow \\
\mid(\neg \rightarrow) \\
(A \cap B) \longrightarrow \neg A \\
\mid(\cap \rightarrow) \\
A, B \longrightarrow \neg A \\
\mid(\rightarrow \neg) \\
A, A, B \longrightarrow \\
\text { non }- \text { axiom }
\end{gathered}
$$

Proof Search Heuristic Method

Second Tree

$$
\begin{gathered}
\neg \neg A,(A \cap B) \longrightarrow B \\
\mid(\rightarrow \text { weak }) \\
\neg \neg A,(A \cap B) \longrightarrow \\
\mid(\neg \rightarrow) \\
(A \cap B) \longrightarrow \neg A \\
\mid(\rightarrow \neg) \\
A,(A \cap B) \longrightarrow \\
\mid(\cap \rightarrow) \\
A, A, B \longrightarrow \\
\text { non }- \text { axiom }
\end{gathered}
$$

Proof Search Heuristic Method

Let's now decompose the node n_{2}
Observe that following our Observation 6 we start by decomposing the formula ($A \cap B$) by the use of the rule $(\cap \rightarrow)$ as the first step
A decomposition tree that starts at the node n_{2} is as follows

$$
\mathbf{T}_{n_{2}}
$$

$$
\begin{gathered}
(A \cap B), \neg \neg A \longrightarrow B \\
\mid(\cap \rightarrow) \\
A, B, \neg \neg A \longrightarrow B
\end{gathered}
$$

axiom
This proves that the node n_{2} is provable in LI, i.e.

$$
\text { ㄴI } \quad(A \cap B), \neg \neg A \longrightarrow B
$$

Proof Search Heuristic Method

Observation 8

The use of structural rules is important and necessary while we search for proofs
Nevertheless we have to use them on the "must" basis and set up some guidelines and priorities for their use

For example, the use of weakening rule discharges the weakening formula, and hence we might loose an information that may be essential to finding the proof

We should use the weakening rule only when it is absolutely necessary for the next decomposition steps

Proof Search Heuristic Method

Hence, the use of weakening rule (\rightarrow weak) can, and should be restricted to the cases when it leads to possibility of the future use of the negation rule $(\neg \rightarrow)$

This was the case of the decomposition tree $\mathrm{T} 1_{n_{1}}$
We used the rule (\rightarrow weak) as an necessary step, but it discharged too much information and we didn't get a proof, when proof on this node existed

Proof Search Heuristic Method

Here is such a proof
$\mathbf{T} \mathbf{3}_{n_{1}}$
$\neg \neg A,(A \cap B) \longrightarrow B$
I (exch $\longrightarrow)$
$(A \cap B), \neg \neg A \longrightarrow B$
I $(\cap \rightarrow)$
$A, B, \neg \neg A \longrightarrow B$
axiom

Proof Search Heuristic Method

Method

For any $A \in \mathcal{F}$ we construct the set of decomposition trees $\mathrm{T}_{\rightarrow \mathrm{A}}$ following the rules below.

1. Use first logical rules where applicable.
2. Use (exch \rightarrow) rule to decompose, via logical rules, as many formulas on the left side of \longrightarrow as possible
Remember that the order of decomposition matters! so you have to cover different choices
3. Use (\rightarrow weak) only on a "must" basis and in connection with the possibility of the future use of the $(\neg \rightarrow)$ rule
4. Use (contr \rightarrow) rule as the last recourse and only to formulas that contain \neg or \Rightarrow as a main connective
5. Let's call a formula A to which we apply $($ contr $\rightarrow)$ rule a a contraction formula
6. The only contraction formulas are formulas containing \neg
or \Rightarrow between theirs logical connectives

Proof Search Heuristic Method

7. Within the process of construction of all possible trees use (contr \rightarrow) rule only to contraction formulas
8. Let C be a contraction formula appearing on a node n of the decomposition tree of $\mathrm{T}_{\rightarrow A}$
For any contraction formula C, any node n, we apply (contr \rightarrow) rule to the the formula C at the node n at most as many times as the number of sub-formulas of C
If we find a tree with all axiom leaves we have a proof, i.e.
$\vdash_{\llcorner I} A$
If all trees (finite number) have a non-axiom leaf we have proved that proof of A does not exist, i.e.
$\vdash_{L I} A$

Chapter 7
 Introduction to Intuitionistic and Modal Logics

Slides Set 3

PART 5: Introduction to Modal Logics
Algebraic Semantics for modal S4 and S5

Introduction to Modal Logics

The non-classical logics can be divided in two groups: those that rival classical logic and those which extend it

The Lukasiewicz, Kleene, and intuitionistic logics are in the first group
The modal logics are in the second group

The rival logics do not differ from classical logic in terms of the language employed

The rival logics differ in that certain theorems or tautologies of classical logic are rendered false, or not provable in them

Introduction to Modal Logics

The most notorious example of the rival difference of logics based on the same language is the law of excluded middle

$$
(A \cup \neg A)
$$

This is provable in, and is a tautology of classical logic

But is not provable in, and is not tautology of the intuitionistic logic

It also is not a tautology under any of the extensional logics semantics we have discussed

Introduction to Modal Logics

Logics which extend classical logic sanction all the theorems of classical logic but, generally, supplement it in two ways

Firstly, the languages of these non-classical logics are extensions of those of classical logic

Secondly, the theorems of these non-classical logics supplement those of classical logic

Introduction to Modal Logics

Modal logics are enriched by the addition of two new connectives that represent the meaning of expressions "it is necessary that" and "it is possible that"

We use the notation:
I for "it is necessary that" and
C for "it is possible that"

Other notations commonly used are:
∇, N, L for "it is necessary that" and
\diamond, P, M for " it is possible that"

Introduction to Modal Logics

The symbols N, L, P, M or alike, are often used in computer science

The symbols ∇ and \diamond were first to be used in modal logic literature

The symbols I, C come from algebraic and topological interpretation of modal logics

I corresponds to the topological interior of the set and C to its closure

Introduction to Modal Logics

The idea of a modal logic was first formulated by an American philosopher, C.I. Lewis in 1918

Lewis has proposed yet another interpretation of lasting consequences, of the logical implication

He created a notion of a modal truth, which lead to the notion of modal logic

He did it in an attempt to avoid, what some felt, the paradoxes of semantics for classical implication which accepts as true that a false sentence implies any sentence

Introduction to Modal Logics

Lewis' notions appeal to epistemic considerations and the whole area of modal logics bristles with philosophical difficulties and hence the numbers of modal logics have been created

Unlike the classical connectives, the modal connectives do not admit of truth-functional interpretation, i.e. do not accept the extensional semantics

This was the reason for which modal logics were first developed as proof systems, with intuitive notion of semantics expressed by the set of adopted axioms

Introduction to Modal Logics

The first definition of modal semantics, and hence the proofs of the completeness theorems came some 20 years later

It took yet another 25 years for discovery and development of the second and more general approach to the modal semantics

These are the two established ways of interpret modal connectives, i.e. to define the modal semantics

Introduction to Modal Logics

The historically, the first modal semantics is due to Mc Kinsey and Tarski $(1944,1946)$
It is a topological semantics that provides a powerful mathematical interpretation of some of modal logics, namely modal S4 and S5

It connects the modal notion of necessity with the topological notion of the interior of a set, and the modal notion of possibility with the notion of the closure of a set

Our choice of symbols I and C for necessity and possibility connectives comes from this interpretation

The topological interpretation mathematically powerful as it is, is less universal in providing models for other modal logics

Introduction to Modal Logics

The most recent and the most general semantics is due to Kripke (1964). It uses the notion of possible worlds.

Roughly, we say that the formula $C A$ is true if A is true in some possible world, called actual world

The formula $I A$ is true if A is true in every possible world

We present here a short version of the topological semantics in a form of algebraic models

We leave the Kripke semantics for the reader to explore from other, multiple sources

Introduction to Modal Logics

As we have already mentioned, modal logics were first developed, as was the intuitionistic logic, in a form of proof systems only

First Hilbert style modal proof system was published by Lewis and Langford in 1932

They presented a formalization for two modal logics, which they called S1 and S2

They also outlined three other proof systems, called S3, S4, and S5

Introduction to Modal Logics

Since then hundreds of modal logics have been created There are some standard books in the subject

These are, between the others:
Hughes and Cresswell (1969) for philosophical motivation for various modal logics and intuitionistic logic,

Bowen (1979) for a detailed and uniform study of Kripke models for modal logics,

Segeberg (1971) for excellent modal logics classification, Fitting (1983), for extended and uniform studies of automated proof methods for classes of modal logics

Hilbert Style Modal Proof Systems

Hilbert Style Modal Proof Systems

We present now Hilbert style formalization forS4 and S5 logics due to Mc Kinsey and Tarski (1948) and Rasiowa and Sikorski (1964)

We also discuss the relationship between S4 and S5, and between the intuitionistic logic and S4 modal logic, as first observed by Gödel

The formalizations stress the connection between S4, S5 and topological spaces which constitute models for them

Modal Language

Modal Language

We add two extra one argument connectives I and C to the propositional language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$, i.e. we adopt

$$
\mathcal{L}=\mathcal{L}_{\{\mathrm{U}, \cap, \Rightarrow, \neg, \mathrm{I}, \mathrm{C}\}}
$$

as the modal language. We read a formulas $I A, C A$ as necessary A and possible A, respectively

The language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg, \mathrm{I}, \mathrm{C}\}}$ is common to all modal logics

Modal logics differ on a choice of axioms and rules of inference, when studied as proof systems and on a choice of respective semantics

McKinsey, Tarski Proof Systems

As modal logics extend the classical logic, any modal logic contains two groups of axioms: classical and modal
McKinsey, Tarski (1948)
AG1 classical axioms
We adopt as classical axioms any complete set of axioms under classical semantics

AG2 modal axioms
M1 $\quad(I A \Rightarrow A)$
M2 $\quad(\mathrm{I}(A \Rightarrow B) \Rightarrow(\mathrm{I} A \Rightarrow \mathrm{I} B))$
M3 $\quad(I A \Rightarrow \| A)$
M4 (CA \Rightarrow ICA)

Modal S4 and S5

Rules of inference

$$
(M P) \frac{A ;(A \Rightarrow B)}{B} \text {, and (I) } \frac{A}{I A}
$$

The modal rule (I) was introduced by Gödel and is referred to as a necessitation rule

We define modal proof systems S4 and S5 as follows

$$
\begin{aligned}
& S 4=(\mathcal{L}, \mathcal{F}, \text { classical axioms, } M 1-M 3,(M P),(I)) \\
& S 5=(\mathcal{L}, \mathcal{F}, \text { classical axioms, } M 1-M 4,(M P),(I))
\end{aligned}
$$

Modal S4 and S5

Observe that the axioms of S5 extend the axioms of S4 and both system share the same inference rules, hence we have immediately the following

Fact For any formula $A \in \mathcal{F}$,

$$
\text { if } \vdash_{s 4} A \text {, then } \vdash_{s 5} A
$$

Rasiowa, Sikorski Proof Systems

It is often the case, as it is for S4 and S5, that modal connectives are definable by each other
We define them as follows

$$
\mathrm{I} A=\neg \mathrm{C} \neg A, \quad \text { and } \quad \mathrm{C} A=\neg \neg \neg A
$$

Language

We hence assume now that the language \mathcal{L} of Rasiowa, Sikorski modal proof systems contains only one modal connective
We choose it to be I and adopt the following language

$$
\mathcal{L}=\mathcal{L}_{\{\cap, U, \Rightarrow, \neg, I\}}
$$

There are, as before, two groups of axioms: classical and modal

Rasiowa, Sikorski Proof Systems

Rasiowa, Sikorski (1964)
AG1 classical axioms
We adopt as classical axioms any complete set of axioms under classical semantics

AG2 modal axioms
R1 $\quad((I A \cap \mathbf{I} B) \Rightarrow \mathbf{I}(A \cap B))$
R2 $\quad(I A \Rightarrow A)$
R3 $(I A \Rightarrow I I A)$
R4 $\quad \mathrm{I}(A \cup \neg A)$
R5 $\quad(\neg \neg \neg A \Rightarrow \| \neg \neg \neg A)$

Modal RS4 and RS5

Rules of inference

We adopt the Modus Ponens and an additional rule (RI)

$$
(M P) \frac{A ;(A \Rightarrow B)}{B} \quad \text { and } \quad(R \mathrm{I}) \frac{(A \Rightarrow B)}{(\mathrm{I} A \Rightarrow \mathrm{I} B)}
$$

We define modal proof systems RS4 and RS5 as follows $R S 4=(\mathcal{L}, \mathcal{F}$, classical axioms, R1-R4, (MP), (RI)) $R S 5=(\mathcal{L}, \mathcal{F}$, classical axioms, $R 1-R 5,(M P),(R \mathbf{I}))$

Modal RS4 and RS5

Observe that the axioms of RS5 extend the axioms of RS4 and both systems share the same inference rules, hence we have immediately the following

Fact For any formula $A \in \mathcal{F}$,

$$
\text { if } \vdash_{R S 4} A \text {, then } \vdash_{R S 5} A
$$

Algebraic Semantics for S4 and S5

Algebraic Semantics for S4 and S5

The McKinsey, Tarski proof systems S4, S5 and Rasiowa, Sikorski proof systems RS4, RS5 are complete with the respect to both topological semantics, and Kripke semantics

We shortly discuss the topological semantics, and algebraic completeness theorems

We leave the Kripke semantics for the reader to explore from other, multiple sources

Algebraic Semantics for S4 and S5

The topological semantics was initiated by McKinsey and Tarski in 1946, 1948 and consequently developed into a field of Algebraic Logic

The algebraic approach to logic is presented in detail in now classic algebraic logic books:
"Mathematics of Metamathematics", Rasiowa, Sikorski (1964),
"An Algebraic Approach to Non-Classical Logics", Rasiowa (1974)

We want to point out that the first idea of a connection between modal propositional logic and topology is due to Tang Tsao -Chen, (1938) and Dugunji (1940)

Algebraic Semantics for S4 and S5

Here are some basic definitions

Boolean Algebra

An abstract algebra $\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg)$ is said to be a Boolean algebra if it is a distributive lattice and every element $a \in B$ has a complement $\neg a \in B$

Topological Boolean algebra

By a topological Boolean algebra we mean an abstract algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg, I)
$$

where $(B, 1,0, \Rightarrow, \cap, \cup, \neg)$ is a Boolean algebra and, moreover, the following conditions hold for any $a, b \in B$

$$
I(a \cap b)=l a \cap I b, \quad l a \cap a=l a, \quad \| a=l a, \quad \text { and } \|=1
$$

Algebraic Semantics for S4 and S5

The element la is called a interior of a
The element \neg / \neg a is called a closure of a and will be denoted by Ca
Thus the operations I and C are such that

$$
C a=\neg l \neg a \quad \text { and } \quad l a=\neg C \neg a
$$

In this case we write the topological Boolean algebra as

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg, I, C)
$$

It is easy to prove that in in any topological Boolean algebra the following conditions hold for any $a, b \in B$
$C(a \cup b)=C a \cup C b, \quad C a \cup a=C a, \quad C C a=C a$ and $C 0=0$

Algebraic Semantics for S4 and S5

Example

Let X be a topological space with an interior operation I
Then the family $\mathcal{P}(X)$ of all subsets of X is a topological Boolean algebra with $1=X$, with
the operation \Rightarrow defined by the formula

$$
Y \Rightarrow Z=(X-Y) \cup Z \text { for all subsets } Y, Z \text { of } X
$$

and with set-theoretical operations of union, intersection, complementation, and the interior operation I

Every sub algebra of this algebra is a topological Boolean algebra, called a topological field of sets or, more precisely, a topological field of subsets of X

Algebraic Semantics for S4 and S5

Given a topological Boolean algebra

$$
(B, 1,0, \Rightarrow, \cap, \cup, \neg)
$$

The element $a \in B$ is said to be open (closed)
if $a=l a \quad(a=C a)$
Clopen Topological Boolean Algebra
A topological Boolean algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup \neg, I, C)
$$

such that every open element is closed and every closed element is open, i.e. such that for any $a \in B$

$$
C l a=I a \quad \text { and } \quad I C a=C a
$$

is called a clopen topological Boolean algebra

S4, S5 Tautology

We loosely say that a formula A is a modal $S 4$ tautology if and only if
any topological Boolean algebra is a model for A

We say that A is a modal $S 5$ tautology
if and only if
any clopen topological Boolean algebra is a model for A
We put it formally as follows

Modal Algebraic Model

Modal Algebraic Model

For any formula A of a modal language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg, \mathrm{I}, \mathrm{C}\}}$ and for any topological Boolean algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg, I, C)
$$

the algebra \mathcal{B} is a model for the formula A and denote it by

$$
\mathcal{B} \models A
$$

if and only if $v^{*}(A)=1$ holds for all variables assignments $v: V A R \longrightarrow B$

S4, S5 Tautology

Definition of S4 Tautology

A formula A is a modal $S 4$ tautology and is denoted by

$$
\models_{S 4} \quad A
$$

if and only if for all topological Boolean algebras \mathcal{B} we have that

$$
\mathcal{B} \models A
$$

Definition of S5 Tautology
A formula A is a modal $S 5$ tautology and is denoted by
$\models_{S 5}$ A
if and only if for all clopen topological Boolean algebras \mathcal{B} we have that

$$
\mathcal{B} \models A
$$

S4, S5 Completeness Theorem

We write $\vdash_{s 4} A$ and $\vdash_{s 5} A$ do denote provability any proof system for modal S4, S5 logics and in particular the proof systems defined here

Completeness Theorem

For any formula A of the modal language $\mathcal{L}_{\{\mathrm{U}, \cap, \Rightarrow, \neg, \mathrm{I}, \mathrm{C}\}}$

$$
\begin{array}{lll}
\vdash_{S 4} A & \text { if and only if } & \models S 4 A \\
\vdash_{S 5} A & \text { if and only if } & \models S 5 A
\end{array}
$$

The completeness for $S 4, S 4$ follows directly from the following general Algebraic Completeness Theorems

S4 Algebraic Completeness Theorem

S4 Algebraic Completeness Theorem

For any formula A of the modal language $\mathcal{L}_{\{U, \cap, \Rightarrow, \neg, I, C\}}$ the following conditions are equivalent
(i) $\vdash_{s 4} A$
(ii) $\models{ }_{S 4} A$
(iii) A is valid in every topological field of sets $\mathcal{B}(X)$
(iv) A is valid in every topological Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A
(iv) $v^{*}(A)=X$ for every variable assignment v in the topological field of sets $\mathcal{B}(X)$ of all subsets of a dense-in -itself metric space $X \neq \emptyset$ (in particular of an n-dimensional Euclidean space X)

S4 Algebraic Completeness Theorem

S5 Algebraic Completeness Theorem

For any formula A of the modal language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg, I, C\}}$ the following conditions are equivalent
(i) $\vdash_{S 5} A$
(ii) $\models{ }_{S 5} A$
(iii) A is valid in every clopen topological field of sets $\mathcal{B}(X)$
(iv) A is valid in every clopen topological Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A

S4 and S5 Decidability

The equivalence of conditions (i) and (iv) of the Algebraic Completeness Theorems proves the semantical decidability of modal S4 and S5

S4, S5 Decidability

Any complete S4, S5 proof system is semantically decidable, i.e. the following holds

$$
\vdash \vdash_{4} A \text { if and only if } \mathcal{B} \models A
$$

for every topological Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A Similarly, we also have

$$
\vdash_{s 5} A \text { if and only if } \mathcal{B} \models A
$$

for every clopen topological Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A

S4 and S5 Syntactic Decidability

S4, S5 Syntactic Decidability (Wasilewska 1967,1971)

Rasiowa stated in 1950 an an open problem of providing a cut-free RS type formalization for modal propositional S4 calculus

Wasilewska solved this open problem in 1967 and presented the result at the ASL Summer School and Colloquium in Mathematical Logic, Manchester, August 1969

It appeared in print as A Formalization of the Modal Propositional S4-Calculus, Studia Logica, North Holland, XXVII (1971)

S4 and S5 Syntactic Decidability

The paper also contained an algebraic proof of completeness theorem followed by Gentzen cut-elimination theorem, the Hauptzatz

The resulting implementation written in LISP-ALGOL was the first modal logic theorem prover created
It was done with collaboration with B. Waligorski and the authors didn't think it to be worth a separate publication Its existence was only mentioned in the published paper

The S5 Syntactic Decidability follows from the one for S4 and the following Embedding Theorems

Modal S4 and Modal S5

The relationship between S4 and S5 was first established by Ohnishi and Matsumoto in 1957-59 and is as follows .

Embedding 1

For any formula $A \in \mathcal{F}$,

$$
\begin{array}{ll}
\models_{S 4} A & \text { if and only if } \\
\models_{S 5} \text { IC } A \\
\vdash_{S 4} A & \text { if and only if }
\end{array} \vdash_{S 5} \text { ICA }
$$

Embedding 2

For any formula $A \in \mathcal{F}$
$\models_{S 5} A$ if and only if $\models{ }_{S 4}$ ICIA
$\vdash_{s 5} A$ if and only if $\vdash_{s 4}$ ICIA

On S4 derivable disjunction

In a classical logic it is possible for the disjunction $(A \cup B)$ to be a tautology when neither A nor B is a tautology
This does not hold for the intuitionistic logic. We have a following theorem similar to the intuitionistic case to the for modal S4

Theorem McKinsey, Tarski (1948)

A disjunction $(I A \cup I B)$ is $S 4$ provable if and only if either A or $B S 4$ provable, i.e.

$$
\vdash_{S 4}(I A \cup I B) \text { if and only if } \quad \vdash_{s 4} A \text { or } \vdash_{s 4} B
$$

S4 and Intuitionistic Logic, S5 and Classical Logic

S4 and Intuitionistic Logic

As we have said in the introduction, Gödel was the first to consider the connection between the intuitionistic logic and a logic which was named later S4

Gödel's proof was purely syntactic in its nature, as the semantics for neither intuitionistic logic nor modal logicS4 had not been invented yet

The algebraic proof of this fact, was first published by McKinsey and Tarski in 1948

S4 and Intuitionistic Logic

We define here the Gödel-Tarski mapping establishing the S4 and intuitionistic logic connection

We refer the reader to Rasiowa, Sikorski book "Mathematics of Metamathematics" (i965) for the algebraic proofs of its properties and respective theorems

S4 and Intuitionistic Logic

Let \mathcal{L} be a propositional language of modal logic i.e the language

$$
\mathcal{L}=\mathcal{L}_{\{\cap, U, \Rightarrow, \neg, l\}}
$$

Let \mathcal{L}_{0} be a language obtained from \mathcal{L} by elimination of the connective I and by the replacement the classical negation connective \neg by the intuitionistic negation, which we will denote here by a symbol ~
Such obtained language

$$
\mathcal{L}_{0}=\mathcal{L}_{\{\cap, \cup, \Rightarrow, \sim\}}
$$

is a propositional language of the intuitionistic logic

S4 and Intuitionistic Logic

In order to establish the connection between the languages

$$
\mathcal{L} \text { and } \mathcal{L}_{0}
$$

and hence between modal and intuitionistic logic, we consider a mapping f which to every formula $A \in \mathcal{F}_{0}$ of \mathcal{L}_{0} assigns a formula $f(A) \in \mathcal{F}$ of \mathcal{L}

We define the mapping f as follows

Gödel - Tarski Mapping

Definition of Gödel-Tarski mapping

A function

$$
f: \mathcal{F}_{0} \rightarrow \mathcal{F}
$$

such that

$$
\begin{gathered}
f(a)=\mathbf{I} a \quad \text { for any } \quad a \in \operatorname{VAR} \\
f((A \Rightarrow B))=\mathbf{I}(f(A) \Rightarrow f(B)) \\
f((A \cup B))=(f(A) \cup f(B)) \\
f((A \cap B))=(f(A) \cap f(B)) \\
f(\sim A)=I \neg f(A)
\end{gathered}
$$

where A, B are any formulas in \mathcal{L}_{0} is called a Gödel-Tarski mapping

Example

Example

Let A be a formula

$$
((\sim A \cap \sim B) \Rightarrow \sim(A \cup B))
$$

and f be the Gödel-Tarski mapping. We evaluate $f(A)$ as follows

$$
\begin{gathered}
f((\sim A \cap \sim B) \Rightarrow \sim(A \cup B))= \\
\mathbf{I}(f(\sim A \cap \sim B) \Rightarrow f(\sim(A \cup B))= \\
\mathbf{I}((f(\sim A) \cap f(\sim B)) \Rightarrow f(\sim(A \cup B))= \\
\mathbf{I}((I \neg f A \cap I \neg f B) \Rightarrow \mathbf{I} \neg f(A \cup B))= \\
\mathbf{I}((I \neg A \cap I \neg B) \Rightarrow I \neg(f A \cup f B))= \\
\mathbf{I}((I \neg A \cap I \neg B) \Rightarrow I \neg(A \cup B))
\end{gathered}
$$

S4 and Intuitionistic Logic

The following theorem established relationship between intuitionistic and modal S4 logics

Theorem

Let f be the Gödel-Tarski mapping
For any formula A of intuitionistic language \mathcal{L}_{0},

$$
\vdash_{1} A \text { if and only if } \quad \vdash_{s 4} f(A)
$$

where I, S4 denote any proof systems for intuitionistic and and S4 logic, respectively

Classical Logic and Modal S5

In order to establish the connection between the modal S5 and classical logics we consider the following G'odel-Tarski mapping between the modal language $\mathcal{L}_{\{\mathrm{n}, \mathrm{\cup}, \neg, \neg, \mathrm{l}\}}$ and its classical sub-language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

With every classical formula A we associate a modal formula $g(A)$ defined by induction on the length of A as follows:

$$
\begin{gathered}
g(a)=\mathrm{I} a, \quad g((A \Rightarrow B))=\mathrm{I}(g(A) \Rightarrow g(B),) \\
g((A \cup B))=(g(A) \cup g(B)), \quad g((A \cap B))=(g(A) \cap g(B)), \\
g(\neg A)=\mathrm{I} \neg g(A)
\end{gathered}
$$

Classical Logic and Modal S5

The following theorem establishes relationship between classical and S5 logics

Theorem

Let g be the Gödel-Tarski mapping between

$$
\mathcal{L}_{\{-, \cap, \cup, \Rightarrow\}} \quad \text { and } \quad \mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg, l\}}
$$

For any formula A of $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$,

$$
\vdash_{H} A \text { if and only if } \quad \vdash_{S 5} g(A)
$$

where $H, S 5$ denote any proof systems for classical and and S5 modal logic, respectively

