
LOGICS FOR COMPUTER SCIENCE:
Classical and Non-Classical

Anita Wasilewska

Chapter 10
Predicate Automated Proof Systems

Completeness of Classical Predicate Logic

CHAPTER 10 SLIDES

Chapter 10
Predicate Automated Proof Systems

Completeness of Classical Predicate Logic

Slides Set 1

PART 1: QRS Proof System

PART 2: Proof of QRS Completeness

Slides Set 2

PART 3: Skolemization and Clauses

Chapter 10
Predicate Automated Proof Systems

Completeness of Classical Predicate Logic

Slides Set 1

PART 1: QRS Proof System

Predicate Automated Proof Systems
Introduction

We define and discuss here Rasiowa and Sikorski Gentzen
style proof system QRS for classical predicate logic

The propositional version of it, the RS proof system, was
studied in detail in chapter 6

These both proof systems RS and QRS admit a constructive
proof of completeness theorem

Predicate Automated Proof Systems
Introduction

We adopt Rasiowa, Sikorski (1961) technique of construction
a counter model determined by a decomposition tree to prove
QRS completeness theorem

The proof, presented here is a generalization of the
completeness proofs of RS and other Gentzen style
propositional systems presented in details in chapter 6.

We refer the reader to the chapter 6 as it provides a good
introduction to the subject

Predicate Automated Proof Systems
Introduction

The other Gentzen type predicate proof system, including the
original Gentzen proof systems LK, LI for classical and
intuitionistic predicate logics are obtained from their
propositional versions discussed in detail in chapter 6 by
adding the Quantifiers Rules to them

It can be done in a similar way as a generalization of the
propositional RS to the the predicate QRS system presented
here

We leave these generalizations as an exercises for the reader

Predicate Automated Proof Systems
Introduction

We also leave as an exercise the predicate language version
of Gentzen proof of cut elimination theorem, Hauptzatz (1935)

The Hauptzatz proof for the predicate classical LK and
intuitionistic LI systems is easily obtained from the
propositional proof included in chapter 6

There are of course other types of automated proof systems
based on different methods of deduction

Predicate Automated Proof Systems
Introduction

There is a Natural Deduction mentioned by Gentzen in his
Hauptzatz paper in 1935

It was later and fully developed by Dag Prawitz 1965)

It is now called Prawitz, or Gentzen-Prawitz Natural Deduction

There is a Semantic Tableaux deduction method invented by
Evert Beth (1955)

It was consequently simplified and further developed by
Raymond Smullyan (1968)

It is now often called Smullyan Semantic Tableaux

Predicate Automated Proof Systems
Introduction

Finally, there is Resolution

The resolution method can be traced back to Davis and
Putnam (1960)

Their work is still known as Davis-Putnam method

The difficulties of Davis-Putnam method were eliminated by
John Alan Robinson (1965)

He consequently developed it into what we call now Robinson
Resolution, or just Resolution

Predicate Automated Proof Systems
Introduction

The resolution proof system for propositional or predicate
logic operates on a set of clauses as a basic expressions and
uses a resolution rule as the only rule of inference

We define and prove correctness of effective procedures of
converting any formula A into a corresponding set of clauses
in both propositional and predicate cases

QRS Proof System

QRS Proof System

The components of the proof system QRS are as follows

Language L
L = L{∩,∪,⇒,¬}(P,F,C)

for P, F, C countably infinite sets of predicate, functional, and
constant symbols respectively

Expressions E

Let F denote a set of formulas of L. We adopt as the set of
expressions the set of all finite sequences of formulas, i.e.

E = F ∗

We will denote the expressions of QRS, i.e. the finite
sequences of formulas by

Γ, ∆, Σ, with indices if necessary

Rules of Inference of QRS

The system QRS consists of two axiom schemas and eleven
rules of inference

The rules of inference form two groups

First group is similar to the propositional case and contains
propositional connectives rules:

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

Second group deals with the quantifiers and consists of four
rules:

(∀), (∃), (¬∀), (¬∃)

Logical Axioms of RS

We adopt as logical axioms of QRS any sequence of
formulas which contains a formula and its negation, i.e any
sequence

Γ1, A , Γ2, ¬A , Γ3

Γ1, ¬A , Γ2, A , Γ3

where A ∈ F is any formula

We denote by LA the set of all logical axioms of QRS

Proof System QRS

Formally we define the system QRS as follows

QRS = (L{∩,∪,⇒,¬}(P,F,C), F ∗, LA , R)

where the set R of inference rules contains the following rule

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬), (∀), (∃), (¬∀), (¬∃)

and LA is the set of all logical axioms defined on previous slide

Literals in QRS

Definition

Any atomic formula , or a negation of atomic formula is
called a literal

We form, as in the propositional case, a special subset

LT ⊆ F

of formulas, called a set of all literals defined now as follows

LT = {A ∈ F : A ∈ AF } ∪ {¬A ∈ F : A ∈ AF }

The elements of the set {A ∈ F : A ∈ AF } are called
positive literals

The elements of the set {¬A ∈ F : A ∈ AF } are called
negative literals

Sequences of Literals

We denote by
Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals i.e

Γ
′

, ∆
′

, Σ
′

∈ LT∗

We will denote by
Γ, ∆, Σ . . .

the elements of F ∗

Connectives Inference Rules of QRS

Group 1

Disjunction rules

(∪)
Γ
′

, A ,B , ∆

Γ′ , (A ∪ B), ∆
(¬∪)

Γ
′

, ¬A , ∆ ; Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

Conjunction rules

(∩)
Γ
′

, A , ∆ ; Γ
′

, B , ∆

Γ′ , (A ∩ B), ∆
(¬∩)

Γ
′

, ¬A , ¬B , ∆

Γ′ , ¬(A ∩ B), ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

Connectives Inference Rules of QRS

Group 1

Implication rules

(⇒)
Γ
′

, ¬A ,B , ∆

Γ′ , (A ⇒ B), ∆
(¬ ⇒)

Γ
′

, A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ⇒ B), ∆

Negation rule

(¬¬)
Γ
′

, A , ∆

Γ′ , ¬¬A , ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

Quantifiers Inference Rules of QRS

Group 2: Universal Quantifier rules

(∀)
Γ
′

, A(y), ∆

Γ′ , ∀xA(x), ∆
(¬∀)

Γ
′

, ¬∀xA(x), ∆

Γ′ , ∃x¬A(x), ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

The variable y in rule (∀) is a free individual variable which
does not appear in any formula in the conclusion, i.e. in any
formula in the sequence Γ

′

,∀xA(x),∆

The variable y in the rule (∀) is called the eigenvariable

All occurrences] of y in A(y) of the rule (∀) are fully indicated

Quantifiers Inference Rules of QRS

Group 2: Existential Quantifier rules

(∃)
Γ
′

, A(t), ∆,∃xA(x)

Γ′ , ∃xA(x), ∆
(¬∃)

Γ
′

, ¬∃xA(x), ∆

Γ′ , ∀x¬A(x), ∆

where t ∈ T is an arbitrary term, Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

Note that A(t),A(y) denotes a formula obtained from A(x)
by writing the term t or y, respectively, in place of all
occurrences of x in A

Proofs and Proof Trees

By a formal proof of a sequence Γ in the proof system QRS
we understand any sequence

Γ1, Γ2, Γn

of sequences of formulas (elements of F ∗), such that

1. Γ1 ∈ LA , Γn = Γ, and

2. for all i (1 ≤ i ≤ n), Γi ∈ LA , or Γi is a conclusion of one of
the inference rules of QRS with all its premisses placed in the
sequence Γ1, Γ2, Γi−1

Proofs and Proof Trees

We write, as usual,
`QRS Γ

to denote that the sequence Γ has a formal proof in QRS

As the proofs in QRS are sequences (definition of the formal
proof) of sequences of formulas (definition of expressions E)
we will not use ” ; ” to separate the steps of the proof, and
write the formal proof as

Γ1; Γ2; Γn

Proofs and Proof Trees

We write, however, the formal proofs in QRS as we did the
propositional case (chapter 6), in a form of trees rather then
in a form of sequences

We adopt hence the following definition

Proof Tree

By a proof tree, or QRS - tree proof of Γ we understand a tree
TΓ of sequences satisfying the following conditions:

1. The topmost sequence, i.e the root of TΓ is Γ,

2. all leafs are axioms,

3. the nodes are sequences such that each sequence on
the tree follows from the ones immediately preceding it by one
of the rules of inference rules

Proof Trees

We picture, and write the proof trees with the root on the top,
and leafs on the very bottom

In particular cases, as in the propositional case, we write the
proof trees indicating additionally the name of the inference
rule used at each step of the proof

For example, when in a proof of a formula A we use
subsequently the rules

(∩), (∪), (∀), (∩), (¬¬), (∀), (⇒)

we represent the proof of A as the following tree

Proof Trees

TA

Formula A

| (⇒)

conclusion of (∀)

| (∀)

conclusion of (¬¬)

| (¬¬)

conclusion of (∩)∧
(∩)

conclusion of (∀)

| (∀)

axiom

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

axiom axiom

DecompositionTrees

The main advantage of the Gentzen type proof systems lies
in the way we are able to search for proofs in them

Moreover, such proof search happens to be deterministic
and automatic

We conduct proof search by treating inference rules as
decomposition rules (see chapter 6) and by building
decomposition trees

A general principle of building decomposition trees is the
following.

DecompositionTrees

Decomposition Tree TΓ

For each Γ ∈ F ∗, a decomposition tree TΓ is a tree build as
follows

Step 1. The sequence Γ is the root of TΓ

For any node ∆ of the tree we follow the steps bellow

Step 2. If ∆ is indecomposable or an axiom, then ∆
becomes a leaf of the tree

DecompositionTrees

Step 3. If ∆ is decomposable, then we traverse ∆ from left
to right to identify the first decomposable formula B and
identify inference rule treated as decomposition rule that is
determined uniquely by B

We put its left and right premisses as the left and right leaves,
respectively

Step 4. We repeat steps 2. and 3. until we obtain only
leaves or an infinite branch

In particular case when when Γ has only one element, namely
a a formula A ∈ F , we call it a decomposition tree of A and
denote by TA

QRS Decomposition Trees

Given a formula A ∈ F , we define its decomposition tree
TA as follows

Observe that the inference rules of QRS can be divided in two
groups: propositional connectives rules

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒)

and quantifiers rules

(∀), (∃), (¬∀) (¬∃)

We define the decomposition tree in the case of the
propositional rules and the quantifiers rules (¬∀), (¬∃) in
the same way as for the propositional language (chapter 6)

QRS Decomposition Trees

The case of the rules (∀) and (∃) is more complicated, as
the rules contain the specific conditions under which they
are applicable

To define the way of decomposing the sequences of the form

Γ
′

,∀xA(x),∆ or Γ
′

,∃xA(x),∆,

i.e. to deal with the rules quantifiers rules (∀) and (∃) we
assume that all terms form a one-to one sequence

ST t1, t2,, tn,

Observe, that by the definition, all free variables are terms,
hence all free variables appear in the sequence ST of all
terms

QRS Decomposition Trees

Let Γ be a sequence on the tree in which the first
indecomposable formula has the quantifier ∀ as its main
connective. It means that Γ is of the form

Γ
′

, ∀xA(x), ∆

We write a sequence

Γ
′

, A(y), ∆

below Γ on the tree as its child, where the variable y fulfills
the following condition
Condition 1 : the variable y is the first free variable in the
sequence ST of terms such that y does not appear in any
formula in Γ

′

,∀xA(x),∆

Observe, that the condition the Condition 1 corresponds to
the restriction put on the application of the rule (∀)

QRS Decomposition Trees

Let now the first indecomposable formula in Γ has the
quantifier ∃ as its main connective. It means that Γ is of the
form

Γ
′

, ∃xA(x), ∆

We write a sequence

Γ
′

, A(t), ∆,∃xA(x)

as its child, where the term t fulfills the following condition

Condition 2: the term t is the first term in the sequence ST
of all terms such that the formula A(t) does not appear in
any sequence on the tree which is placed above

Γ
′

,A(t),∆,∃xA(x)

QRS Decomposition Trees

Observe that the sequence ST of all terms is one- to - one
and by the Condition 1 and Condition 2 we always chose
the first appropriate term (variable) from the sequence ST

Hence the decomposition tree definition guarantees that the
decomposition process is also unique in the case of the
quantifier rules (∀) and (∃)

From all above, and we conclude the following

QRS Decomposition Trees

Uniqueness Theorem

For any formula A ∈ F ,

(i) the decomposition tree TA is unique

(ii) Moreover, the following conditions hold

1. If the decomposition tree TA is finite and all its leaves
are axioms, then

`QRS A

2. If TA is finite and contains a non-axiom leaf, or TA is
infinite, then

0QRS A

Examples of Decomposition Trees

In all the examples below, the formulas A(x), B(x) represent
any formulas

But as there is no indication about their particular
components, they are treated as indecomposable formulas

For example, the decomposition tree of the formula A
representing the de Morgan Law

(¬∀xA(x)⇒ ∃x¬A(x))

is constructed as follows

Examples of Decomposition Trees

TA

(¬∀xA(x)⇒ ∃x¬A(x))

| (⇒)

¬¬∀xA(x),∃x¬A(x)

| (¬¬)

∀xA(x),∃x¬A(x)

| (∀)

A(x1),∃x¬A(x)

where x1 is a first free variable in the sequence ST such that x1 does not appear in

∀xA(x),∃x¬A(x)

| (∃)

A(x1),¬A(x1),∃x¬A(x)

where x1 is the first term (variables are terms) in the sequence ST such that ¬A(x1) does

not appear on a tree above A(x1),¬A(x1),∃x¬A(x)

Axiom

Examples of Decomposition Trees

The above tree TA ended with one leaf being axiom, so it
represents a proof in QRS of the de Morgan Law

(¬∀xA(x)⇒ ∃x¬A(x))

and . we have proved that

` (¬∀xA(x)⇒ ∃x¬A(x))

The decomposition tree TA for a formula

(∀xA(x)⇒ ∃xA(x))

is constructed as follows

Examples of Decomposition Trees

TA

(∀xA(x)⇒ ∃xA(x))

| (⇒)

¬∀xA(x),∃xA(x)

| (¬∀)

¬∀xA(x),∃xA(x)

∃x¬A(x),∃xA(x)

| (∃)

¬A(t1),∃xA(x),∃x¬A(x)

where t1 is the first term in the sequence ST, such that ¬A(t1) does not appear on the tree

above ¬A(t1),∃xA(x),∃x¬A(x)

| (∃)

¬A(t1),A(t1),∃x¬A(x),∃xA(x)

where t1 is the first term in the sequence ST, such that A(t1) does not appear on the tree

above ¬A(t1),A(t1),∃x¬A(x),∃xA(x)

Axiom

Examples of Decomposition Trees

The above tree also ended with the only leaf being the axiom,
hence we have proved that

` (∀xA(x)⇒ ∃xA(x))

We know that the the inverse implication

(∃xA(x)⇒ ∀xA(x))

is not a predicate tautology

Let’s now look at its decomposition tree TA

Examples of Decomposition Trees

TA

∃xA(x)

| (∃)

A(t1),∃xA(x)

where t1 is the first term in the sequence ST, such that A(t1) does not appear on the tree

above A(t1),∃xA(x)

| (∃)

A(t1),A(t2),∃xA(x)

where t2 is the first term in the sequence ST, such that A(t2) does not appear on the tree

above A(t1),A(t2),∃xA(x), i.e. t2 , t1

| (∃)

A(t1),A(t2),A(t3),∃xA(x)

where t3 is the first term in the sequence ST, such that A(t3) does not appear on the tree

above A(t1),A(t2),A(t3),∃xA(x), i.e. t3 , t2 , t1

| (∃)

Examples of Decomposition Trees

We continue the decomposition

| (∃)

A(t1),A(t2),A(t3),A(t4),∃xA(x)

where t4 is the first term in the sequence ST, such that A(t4) does not appear on the

tree above A(t1),A(t2),A(t3),A(t4),∃xA(x), i.e. t4 , t3 , t2 , t1

| (∃)

.....

| (∃)

.....

infinite branch

Obviously, the above decomposition tree is infinite, what
proves that

0 ∃xA(x)

Examples of Decomposition Trees

We construct now a proof in QRS of the quantifiers
distributivity law

(∃x(A(x) ∩ B(x))⇒ (∃xA(x) ∩ ∃xB(x)))

and show that the proof in QRS of the inverse implication

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x)))

does not exist, i.e. that

0 ((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x)))

The decomposition tree TA of the first formula is the following

Examples of Decomposition Trees

TA

(∃x(A(x) ∩ B(x))⇒ (∃xA(x) ∩ ∃xB(x)))

| (⇒)

¬∃x(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∃)

∀x¬(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (∀)

¬(A(x1) ∩ B(x1)), (∃xA(x) ∩ ∃xB(x))

where x1 is a first free variable in the sequence ST such that x1 does not appear in

∀x¬(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∩)

¬A(x1),¬B(x1), (∃xA(x) ∩ ∃xB(x))∧
(∩)

Examples of Decomposition Trees

∧
(∩)

¬A(x1),¬B(x1),∃xA(x)

| (∃)

¬A(x1),¬B(x1),A(t1),∃xA(x)

where t1 is the first term in the sequence

ST, such that A(t1) does not appear on the

tree above ¬A(x1),¬B(x1),A(t1),∃xA(x)

| (∃)

....

¬A(x1),¬B(x1), ...A(x1),∃xA(x)

axiom

¬A(x1),¬B(x1),∃xB(x)

| (∃)

¬A(x1),¬B(x1),B(t1),∃xB(x)

| (∃)

...

| (∃)

¬A(x1),¬B(x1), ...B(x1),∃xB(x)

axiom

Examples of Decomposition Trees

Observe, that it is possible to choose eventually a term
ti = x1, as the formula A(x1) does not appear on the tree
above

¬A(x1),¬B(x1), ...A(x1),∃xA(x)

By the definition of the sequence ST, the variable x1 is placed
somewhere in it, i.e. x1 = ti , for certain i ≥ 1

It means that after i applications of the step (∃) in the
decomposition tree, we will get an axiom leaf

¬A(x1),¬B(x1), ...A(x1),∃xA(x)

Examples of Decomposition Trees

All leaves of the above tree TA are axioms, what means that
we proved

`QRS (∃x(A(x) ∩ B(x))⇒ (∃xA(x) ∩ ∃xB(x))).

We construct now, as the last example, a decomposition tree
TA of the formula

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x)))

Examples of Decomposition Trees

TA

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x)))

| (⇒)

¬(∃xA(x) ∩ ∃xB(x))∃x(A(x) ∩ B(x))

| (¬∩)

¬∃xA(x),¬∃xB(x),∃x(A(x) ∩ B(x))

| (¬∃)

∀x¬A(x),¬∃xB(x),∃x(A(x) ∩ B(x))

| (∀)

¬A(x1),¬∃xB(x),∃x(A(x) ∩ B(x))

| (¬∃)

¬A(x1),∀x¬B(x),∃x(A(x) ∩ B(x))

| (∀)

Examples of Decomposition Trees

| (∀)

¬A(x1),¬B(x2),∃x(A(x) ∩ B(x))

By the reasoning similar to the reasonings in the previous examples we get that x1 , x2

| (∃)

¬A(x1),¬B(x2), (A(t1) ∩ B(t1)),∃x(A(x) ∩ B(x))

where t1 is the first term in the sequence ST such that (A(t1) ∩ B(t1)) does not appear on

the tree above ¬A(x1),¬B(x2), (A(t1) ∩ B(t1)),∃x(A(x) ∩ B(x)) Observe, that it is

possible that t1 = x1, as (A(x1) ∩ B(x1)) does not appear on the tree above. By the

definition of the sequence ??, x1 is placed somewhere in it, i.e. x1 = ti , for certain i ≥ 1.

For simplicity, we assume that t1 = x1 and get the sequence:

¬A(x1),¬B(x2), (A(x1) ∩ B(x1)),∃x(A(x) ∩ B(x))∧
(∩)

Examples of Decomposition Trees

∧
(∩)

¬A(x1),¬B(x2),

A(x1),∃x(A(x) ∩ B(x))

Axiom

¬A(x1),¬B(x2),

B(x1),∃x(A(x) ∩ B(x))

| (∃)

¬A(x1),¬B(x2),B(x1),

(A(x2) ∩ B(x2)),∃x(A(x) ∩ B(x))

see COMMENT ∧
(∩)

Examples of Decomposition Trees

COMMENT: where x2 = t2 (x1 , x2) is the first term in the sequence ST, such that

(A(x2) ∩ B(x2)) does not appear on the tree above

¬A(x1),¬B(x2), (B(x1), (A(x2)∩B(x2)),∃x(A(x)∩B(x)). We assume that t2 = x2 for the

reason of simplicity.

∧
(∩)

¬A(x1),

¬B(x2),

B(x1),A(x2),

∃x(A(x) ∩ B(x))

| (∃)

...

| (∃)

infinite branch

¬A(x1),

¬B(x2),

B(x1),B(x2),

∃x(A(x) ∩ B(x))

Axiom

Examples of Decomposition Trees

The above decomposition tree TA contains an infinite branch
what means that

0QRS ((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x)))

Chapter 10
Predicate Automated Proof Systems

Slides Set 1

PART 2: Proof of QRS Completeness

QRS Completeness

Our main goal now is to prove the Completeness Theorem for
the predicate proof system QRS

The proof of the Completeness Theorem presented here is
due to Rasiowa and Sikorski (1961), as is the proof system
QRS

We adopted Rasiowa - Sikorski proof of QRS completeness
to propositional case in chapter 6

QRS Completeness

The completeness proofs, in the propositional case and in
predicate case, are constructive as they are based on a direct
construction of a counter model for any unprovable formula

The construction of the counter model for the unprovable
formula A uses in both cases the decomposition tree TA

Rasiowa-Sikorski type of constructive proofs by defining
counter models determined by the decomposition trees relay
heavily of the notion of strong soundness

QRS Semantics

Given a first order language L

L = L{∩,∪,⇒,¬}(P,F,C)

with the set VAR of variables and the set F of formulas

We define, after chapter 8 a notion of a model and a counter-
model of a formula A ∈ F

We establish the semantics for QRS by extending it to the
the set

F ∗

of all finite sequences of formulas of L

QRS Semantics

Model

A structureM = [M, I] is called a model of A ∈ F

if and only if
(M, v) |= A

for all assignments v : VAR −→ M

We denote it by
M |= A

M is called the universe of the model, I the interpretation

QRS Semantics

Counter - Model

A structureM = [M, I] is called a counter- model of A ∈ F

if and only if there is v : VAR −→ M, such that

(M, v) 6|= A

We denote it by
M 6|= A

QRS Semantics

Tautology

A formula A ∈ F is called a predicate tautology and denoted
by |= A if and only if

all structuresM = [M, I] are models of A , i.e.

|= A if and only if M |= A

for all structures M = [M, I] for L

QRS Semantics

For any sequence Γ ∈ F ∗, by δΓ we understand any
disjunction of all formulas of Γ

A structureM = [M, I] is called a model of a sequence
Γ ∈ F ∗ and denoted by

M |= Γ

if and only if M |= δΓ

The sequence Γ ∈ F ∗ is a predicate tautology

if and only if the formula δΓ is a predicate tautology, i.e.

|= Γ if and only if |= δΓ

Strong Soundnesss

Our goal now is to prove the Completeness Theorem for
QRS

The correctness of the Rasiowa-Sikorski constructive
proof depends on the strong soundness of the rules of
inference of QRS

We define it (in general case) as follows

Strong Soundnesss

Strongly Sound Rules

Given a predicate language proof system

S = (L,E, LA ,R)

An inference rule r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

is strongly sound if the following condition holds for any
structure M = [M, I] for L

M |= {P1,P2, .Pm} if and only if M |= C

Strong Soundnesss

A predicate language proof system S = (L,E, LA ,R) is
strongly sound if and only if all logical axioms LA are
tautologies and all its rules of inference r ∈ R are strongly
sound

Strong Soundness Theorem
The proof system QRS is strongly sound

Proof
We have already proved in chapter 6 strong soundness of the
propositional rules. The quantifiers rules are strongly sound
by straightforward verification and is left as an exercise

Soundnesss Theorem

The strong soundness property is stronger then soundness
property, hence also the following holds

QRS Soundness Theorem

For any Γ ∈ F ∗,

if `QRS Γ, then |= Γ

In particular, for any formula A ∈ F ,

if `QRS A , then |= A

Proof of Completeness Theorem

Completeness Theorem

For any Γ ∈ F ∗,

`QRS Γ if and only if |= Γ

In particular, for any formula A ∈ F ,

`QRS A if and only if |= A

Proof We prove the completeness part. We need to prove
the formula A case only because the case of a sequence Γ
can be reduced to the formula case of δΓ. I.e. we prove the
implication:

if |= A , then `QRS A

Proof of Completeness Theorem

We do it, as in the propositional case, by proving the opposite
implication

if 0QRS A then 6|= A

This means that we want prove that for any formula A ,
unprovability of A in QRS allows us to define its counter-
model.

The counter- model is determined, as in the propositional
case, by the decomposition tree TA

We have proved the following

Tree Theorem

Each formula A , generates its unique decomposition tree TA

and A has a proof only if this tree is finite and all its end
sequences (leaves) are axioms

Proof of Completeness Theorem

The Tree Theorem says says that we have two cases to
consider:

(C1) the tree TA is finite and contains a leaf which is not
axiom, or

(C2) the tree TA is infinite

We will show how to construct a counter- model for A in both
cases:

a counter- model determined by a non-axiom leaf of the
decomposition tree TA ,

or a counter- model determined by an infinite branch of TA

Proof of Completeness Theorem

Proof in case (C1)

The tree TA is finite and contains a non- axiom leaf

Before describing a general method of constructing the
counter-model determined by the decomposition tree TA we
describe it, as an example, for a case of a general formula

(∃xA(x)⇒ ∀xA(x)),

and its particular case

(∃x(P(x) ∩ R(x, y))⇒ ∀x(P(x) ∩ R(x, y))),

where P, R are one and two argument predicate symbols,
respectively

Proof of Completeness Theorem

First we build its decomposition tree:
TA

(∃x(P(x) ∩ R(x, y))⇒ ∀x(P(x) ∩ R(x, y)))

| (⇒)

¬∃x(P(x) ∩ R(x, y)),∀x(P(x) ∩ R(x, y))

| (¬∃)

∀x¬(P(x) ∩ R(x, y)),∀x(P(x) ∩ R(x, y))

| (∀)

¬(P(x1) ∩ R(x1, y)),∀x(P(x) ∩ R(x, y))

where x1 is a first free variable in the sequence of term ST such that x1 does not

appear in ∀x¬(P(x) ∩ R(x, y)),∀x(P(x) ∩ R(x, y))

| (¬∩)

¬P(x1),¬R(x1, y),∀x(P(x) ∩ R(x, y))

| (∀)

Proof of Completeness Theorem

| (∀)

¬P(x1),¬R(x1, y), (P(x2) ∩ R(x2, y))

where x2 is a first free variable in the sequence of term ST such that x2 does not appear in

¬P(x1),¬R(x1, y),∀x(P(x) ∩ R(x, y)), the sequence ST is one-to- one, hence x1 , x2∧
(∩)

¬P(x1),¬R(x1, y),P(x2)

x1 , x2, Non-axiom
¬P(x1),¬R(x1, y),R(x2, y)

x1 , x2, Non-axiom

Proof of Completeness Theorem

There are two non-axiom leaves

In order to define a counter-model determined by the tree TA

we need to chose only one of them

Let’s choose the leaf

LA = ¬P(x1),¬R(x1, y),P(x2)

We use the non-axiom leaf LA to define a structure
M = [M, I] and an assignment v, such that

(M, v) 6|= A

Such definedM is called a counter - model determined by
the tree TA

Proof of Completeness Theorem

We take a the universe ofM the set T of all terms of the
language L, i.e. we put M = T.

We define the interpretation I as follows.

For any predicate symbol Q ∈ P,#Q = n we put that

QI(t1, . . . tn) is true (holds) for terms t1, . . . tn
if and only if

the negation ¬QI(t1, . . . tn) of the formula Q(t1, . . . tn) appears
on the leaf LA

and QI(t1, . . . tn) is false (does not hold) for terms t1, . . . tn,
otherwise

For any functional symbol f ∈ F,#f = n we put

fI(t1, . . . tn) = f(t1, . . . tn)

Proof of Completeness Theorem

It is easy to see that in particular case of our non-axiom leaf

LA = ¬P(x1), ¬R(x1, y), P(x2)

PI(x1) is true (holds) for x1, and not true for x2

RI(x1, y) is true (holds) for x1 and for any y ∈ VAR

Proof of Completeness Theorem

We define the assignment v : VAR −→ T as identity,

i.e., we put v(x) = x for any x ∈ VAR

Obviously, for such defined structure [M, I] and the
assignment v we have that

([T, I], v) |= P(x1), ([T, I], v) |= R(x1, y), ([T, I], v) 6|= P(x2)

We hence obtain that

([T, I], v) 6|= ¬P(x1),¬R(x1, y),P(x2)

This proves that such defined structure [T, I] is a counter
model for a non-axiom leaf LA and by the Strong
Soundness we proved that

6|= (∃x(P(x) ∩ R(x, y))⇒ ∀x(P(x) ∩ R(x, y)))

C1: Proof of Completeness Theorem

C1: General Method

Let A be any formula such that

0QRS A

Let TA be a decomposition tree of A

By the fact that 0QRS and C1, the tree TA is finite and has
a non axiom leaf

LA ⊆ LT∗

By definition, the leaf LA contains only atomic formulas and
negations of atomic formulas

C1: Counter Model Definition

We use the non-axiom leaf LA to define a structure

M = [M, I], an assignment v : VAR −→ M, such that

(M, v) 6|= A

Such defined structure M is called a counter - model
determined by the tree TA

C1: Counter Model Definition

Structure M Definition

Given a formula A and a non-axiom leaf LA

We define a structure

M = [M, I]

and an assignment v : VAR −→ M as follows

1. We take a the universe ofM the set T of all terms of
the language L , i.e. we put

M = T

C1: Counter Model Definition

2. For any predicate symbol Q ∈ P,#Q = n,

QI ⊆ Tn

is such that QI(t1, . . . tn) holds (is true) for terms t1, . . . tn

if and only if

the negation ¬Q(t1, . . . tn) of the formula Q(t1, . . . tn)

appears on the leaf LA and

QI(t1, . . . tn) does not hold (is false) for terms t1, . . . , tn
otherwise

C1: Counter Model Definition

3. For any constant c ∈ C, we put cI = c

For any variable x, we put xI = x

For any functional symbol f ∈ F, #f = n

fI : Tn −→ T

is identity function, i.e. we put

fI(t1, . . . tn) = f(t1, . . . tn)

for all t1, . . . tn ∈ T

4. We define the assignment v : VAR −→ T as identity,
i.e. we put for all x ∈ VAR

v(x) = x

C1: Counter Model Definition

Obviously, for such defined structure [T, I] and the
assignment v we have that

([T, I], v) 6|= P if formula P appears in LA ,

([T, I], v) |= P if formula ¬P appears in LA

This proves that the structureM = [T, I] and assignment v
are such that

([T, I], v) 6|= LA

C1: Counter Model Definition

By the Strong Soundness Theorem we have that

(([T, I], v) 6|= A

This proves M 6|= A and we proved that

6|= A

This ends the proof of the case C1

C2: Counter Model Definition

Proof of case C2: TA is infinite

The case of the infinite tree is similar to the C1 case, even if
a little bit more complicated

Observe that the rule (∃) is the only rule of inference
(decomposition) which can ”produces” an infinite branch

We first show how to construct the counter-model in the
case of the simplest application of this rule, i.e. in the case of
the atomic formula

∃xP(x)

for P one argument relational symbol. All other cases are.
similar to this one

C2: Particular Case n

The infinite branch BA in the following

BA

∃xP(x)

| (∃)

P(t1),∃xP(x)

where t1 is the first term in the sequence of terms, such that P(t1) does not appear

on the tree above P(t1),∃xP(x)

| (∃)

P(t1),P(t2),∃xP(x)

where t2 is the first term in the sequence of terms, such that P(t2) does not appear

on the tree above P(t1),P(t2),∃xP(x), i.e. t2 , t1

| (∃)

C2: Particular Case

| (∃)

P(t1),P(t2),P(t3),∃xP(x)

where t3 is the first term in the sequence of terms, such that P(t3) does not appear

on the tree above P(t1),P(2),P(t3),∃xP(x), i.e. t3 , t2 , t1

| (∃)

P(t1),P(t2),P(t3),P(t4),∃xP(x)

| (∃)

.....

| (∃)

.....

The infinite branch BA , written from the top, in oder of
appearance of formulas is

BA = {∃xP(x), P(t1), A(t2), P(t2), P(t4),}

where t1, t2, is a one - to one sequence of all terms

C2: Particular Case n

The infinite branch

BA = {∃xP(x), P(t1), A(t2), P(t2), P(t4),}

contains with the formula ∃xP(x) all its instances P(t), for
all terms t ∈ T

We define the structure M = [M, I] and the assignment v
as we did previously, i.e.

we take as the universe M the set T of all terms, and define
PI as follows:

PI(t) holds if ¬P(t) ∈ BA , and

PI(t) does not hold if P(t) ∈ BA

C2: Particular Case

For any constant c ∈ C, we put cI = c, for any variable x,
we put xI = x

For any functional symbol f ∈ F, #f = n

fI : Tn −→ T

is identity function, i.e. we put

fI(t1, . . . tn) = f(t1, . . . tn)

for all t1, . . . tn ∈ T

C2: Particular Case

We define the assignment v : VAR −→ T as identity, i.e. we
put for all x ∈ VAR

v(x) = x

It is easy to see that for any formula P(t) ∈ B,

([T , I], v) 6|= P(t)

But the P(t) ∈ B are all instances of the formula ∃xP(x),
hence

([T , I], v) 6|= ∃xP(x)

and we proved
6|= ∃xP(x)

C2: General Method

C2: General Method

Let A be any formula such that

0QRS A

Let TA be an infinite decomposition tree of the formula A

Let BA be the infinite branch of TA , written from the top, in
order of appearance of sequences Γ ∈ F ∗ on it, where
Γ0 = A , i.e.

BA = {Γ0, Γ1, Γ2, . . . Γi , Γi+1, . . . }

C2: General Method

Given the infinite branch

BA = {Γ0, Γ1, Γ2, . . . Γi , Γi+1, . . . }

We define a set
LF ⊆ F

of all indecomposable formulas appearing in at least one

sequence Γi , i ≤ j, i.e. we put

LF = {B ∈ LT : there is Γi ∈ BA , such that B iappiears Γi}

C2: General Method

Note, that the following holds

(1) If i ≤ i′ and an indecomposable formula appears in Γi ,
then it also appears in Γi′

(2) Since none of Γi is an axiom, for every atomic formula
P ∈ AF , at most one of the formulas P and ¬P is in LF

Counter Model Definition

Counter Model Definition

Let T be the set of all terms. We define the structure
M = [T, I], the interpretation I of constants and functional
symbols, and the assignment v in the set T , as in previous
cases

We define the interpretation I of predicates Q ∈ P as follows

For any predicate symbol Q ∈ P,#Q = n, we put

(1) QI(t1, . . . tn) does not hold (is false) for terms t1, . . . tn
if and only if

QI(t1, . . . tn) ∈ LF

(2) QI(t1, . . . tn) does holds (is true) for terms t1, . . . tn
if and only if

[QI(t1, . . . tn) < LF

Counter Model Definition

Directly from the definition we we have that M 6|= LF

Our goal now is to prove that

M 6|= A

For this purpose we first introduce, for any formula A ∈ F , an
inductive definition of the order ordA of the formula A

(1) If A ∈ AF , then ord A = 1

(2) If ordA = n, then ord¬A = n + 1

(3) If ordA ≤ n and ordB ≤ n, then
ord(A ∪ B) = ord(A ∩ B) = ord(A ⇒ B) = n + 1

(4) If ordA(x) = n, then ord∃xA(x) = ord∀xA(x) = n + 1

Proof of Completeness Theorem

We conduct the proof of M 6|= A by contradiction.

Assume that
M |= A

Consider now a set MF of all formulas B appearing in one
of the sequences Γi of the branch BA , such that

M |= B

We write the the set MF formally as follows

MF = {B ∈ F : for some Γi ∈ BA , B is in Γi and M |= B}

Proof of Completeness Theorem

Observe that the formula A is in MF so

MF , ∅

Let B′ be a formula in MF such that

ordB′ ≤ ordB for every B ∈ MF

There exists Γi ∈∈ BA that is of the form Γ′,B′,∆ with an
indecomposable Γ′

We have that B′ can not be of the form

(∗) ¬∃xA(x) or ¬∀xA(x)

for if B′ of the (∗) form is in MF , then also formula
∀x¬A(x) or ∃x¬A(x) is in MF and the orders of the two
formulas are equal

Proof of Completeness Theorem

We carry the same order argument and show that B′ can
not be of the form

(∗∗) (A ∪ B), ¬(A ∪ B), (A ∩ B), ¬(A ∩ B),

(A ⇒ B), ¬(A ⇒ B), ¬¬A , ∀xA(x)

The formula B′ can not be of the form

(∗ ∗ ∗) ∃xB(x)

since then there exists term t and j such that i ≤ j, and
B′(t) appears in Γj and the formula B(t) is such that

M |= B

Proof of Completeness Theorem

Thus B(t) ∈ MF and ordB(t) < ordB′

This contradicts the definition of B′

Since B′ is not of the forms (∗), (∗∗), (∗ ∗ ∗), B′ is
indecomposable. Thus B′ ∈ LF and consequently

M 6|= B′

On the other hand B′ is in the set MF and hence is one of
the formulas satisfying

M |= B′

This contradiction proves that M 6|= A and hence we proved
that

6|= A

This ends the proof of the Completeness Theorem for QRS

