
Chapter 10: Introduction to
Intuitionistic Logic

PART 2: Hilbert Proof System for proposi-
tional intuitionistic logic.

Language is a propositional language

L = L{∪,∩,⇒,¬}
with the set of formulas denoted by F.

Axioms

A1 ((A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))),

A2 (A ⇒ (A ∪B)),

A3 (B ⇒ (A ∪B)),
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A4 ((A ⇒ C) ⇒ ((B ⇒ C) ⇒ ((A ∪ B) ⇒
C))),

A5 ((A ∩B) ⇒ A),

A6 ((A ∩B) ⇒ B),

A7 ((C ⇒ A) ⇒ ((C ⇒ B) ⇒ (C ⇒ (A∩B))),

A8 ((A ⇒ (B ⇒ C)) ⇒ ((A ∩B) ⇒ C)),

A9 (((A ∩B) ⇒ C) ⇒ (A ⇒ (B ⇒ C)),

A10 (A ∩ ¬A) ⇒ B),

A11 ((A ⇒ (A ∩ ¬A)) ⇒ ¬A),

where A, B, C are any formulas in L.
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Rules of inference: we adopt a Modus Po-

nens rule

(MP)
A ; (A ⇒ B)

B

as the only inference rule.

A proof system I

I = ( L, F ,A1−A11, (MP) ),

for L, A1 - A11 defined above, is called

Hilbert Style Formalization for Intuitionis-

tic Propositional Logic.

This set of axioms is due to Rasiowa (1959).

It differs from Heyting original set of ax-

ioms but they are equivalent.
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We introduce, as usual, the notion of a for-

mal proof in I and denote by

`I A

the fact that A has a formal proof in I, or

that that A is intuitionistically provable.

We write

|=I A

to denote that the formula A is intuition-

istic tautology.

Completeness Theorem for I For any formula

A ∈ F,

`I A ı and only if |=I A.
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The Completeness Theorem gives us the right

to replace the notion of a theorem (prov-

able formula) of a given intuitionistic proof

system by an independent of the proof sys-

tem and more intuitive ( as we all have

some notion of truthfulness) notion of the

intuitionistic tautology.

The intuitionistic logic has been created as

a rival to the classical one. So a question

about the relationship between these two

is a natural one.

5



The following classical tautologies are prov-

able in I and hence, by the Completeness

Theorem, are also intuitionistic tautologies.

1. (A ⇒ A),

2. (A ⇒ (B ⇒ A)),

3. (A ⇒ (B ⇒ (A ∩B))),

4. ((A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))),

5. (A ⇒ ¬¬A),

6. ¬(A ∩ ¬A),

7. ((¬A ∪B) ⇒ (A ⇒ B)),
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8. (¬(A ∪B) ⇒ (¬A ∩ ¬B)),

9. ((¬A ∩ ¬B) ⇒ (¬(A ∪B)),

10. ((¬A ∪ ¬B) ⇒ (¬(A ∩B)),

11. ((A ⇒ B) ⇒ (¬B ⇒ ¬A)),

12. ((A ⇒ ¬B) ⇒ (B ⇒ ¬A)),

13. (¬¬¬A ⇒ ¬A),

14. (¬A ⇒ ¬¬¬A),

15. (¬¬(A ⇒ B) ⇒ (A ⇒ ¬¬B)),

16. ((C ⇒ A) ⇒ ((C ⇒ (A ⇒ B)) ⇒ (C ⇒
B)).
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Examples of classical tautologies that are not

intuitionistic tautologies

17. (A ∪ ¬A),

18. (¬¬A ⇒ A),

19. ((A ⇒ B) ⇒ (¬A ∪B)),

20. (¬(A ∩B) ⇒ (¬A ∪ ¬B)),

21. ((¬A ⇒ B) ⇒ (¬B ⇒ A)),

22. ((¬A ⇒ ¬B) ⇒ (B ⇒ A)),

23. ((A ⇒ B) ⇒ A) ⇒ A).

8



Connections between Classical and Intuition-
istic logics.

The first connection is quite obvious. Let
us observe that if we add the axiom

A12 (A ∪ ¬A)

to the set of axioms of the system I we
obtain a complete Hilbert proof system C

for the classical logic.

This proves the following.

Theorem 1 Every formula that is derivable
intuitionistically is classically derivable, i.e.

if `IA, then ` A

where we use symbol ` for classical (com-
plete classical proof system) provability.
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By the Completeness Theorem we get the fol-

lowing.

Theorem 2 For any formula A ∈ F,

if |=I A, then |= A.

The next relationship shows how to obtain

intuitionistic tautologies from the classical

tautologies and vice versa.

The following relationships were proved by

Glivenko in 1929 and independently, in a

semantic form by Tarski in 1938.
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Theorem 3 (Glivenko ) For any formula A ∈
F, A is a classically provable if and only if

¬¬A is an intuitionistically provable, i.e.

`IA iff ` ¬¬A

where we use symbol ` for classical (com-

plete classical proof system) provability.

Theorem 4 (Tarski) For any formula A ∈
F, A is a classical tautology if and only

if ¬¬A is an intuitionistic tautology, i.e.

|= A if and only if |=I ¬¬A.
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The following relationships were proved by

Gödel in 1331.

Theorem 5 (Gödel) For any A, B ∈ F, a

formula (A ⇒ ¬B) is a classically provable

if and only if it is an intuitionistically prov-

able, i.e.

` (A ⇒ ¬B) if and only if `I (A ⇒ ¬B).

Theorem 6 (Gödel) If a formula A contains

no connectives except ∩ and ¬, then A is

a classically provable if and only if it is an

intuitionistically provable tautology.

By the Completeness Theorems for classical

and intuitionisctic logics we get the follow-

ing equivalent semantic form of theorems

5 and 6.
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Theorem 7 For any A, B ∈ F, a formula (A ⇒
¬B) is a classical tautology if and only if it

is an intuitionistic tautology, i.e.

|= (A ⇒ ¬B) if and only if |=I (A ⇒ ¬B).

Theorem 8 If a formula A contains no con-

nectives except ∩ and ¬, then A is a clas-

sical tautology if and only if it is an intu-

itionistic tautology.



On intuitionistically derivable disjunctions.

In a classical logic it is possible for the dis-

junction (A ∪ B) to be a tautology when

neither A nor B is a tautology. The tautol-

ogy (A∪¬A) is the simplest example. This

does not hold for the intuitionistic logic.

Theorem 9 (stated without the proof by Gödel

in 1910)

For any A, B ∈ F, a formula (A ∪ B) is in-

tuitionistically provable if and only if A is

intuitionistically provable or B is intuition-

istically provable i.e.

` (A∪B) if and only if `I A, or `I B.
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Theorem 9 was proved by Gentzen in 1935

via his proof system LI which is presented

and discussed in the next chapter.

We obtain, via the Completeness Theorem

the following equivalent semantic version

of the above.

Theorem 10 (Tarski) For any A, B ∈ F, a

disjunction (A ∪ B) is intuitionistic tautol-

ogy if and only if either A or B is intuition-

istic tautology, i.e.

|=I (A∪B) if and only if |=I A or |=I B.
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