
Chapter 11: Automated Proof
Systems (1)

SYSTEM RS OVERVIEW

Hilbert style systems are easy to define and

admit a simple proof of the Completeness

Theorem but they are difficult to use.

Automated systems are less intuitive then

the Hilbert-style systems, but they will al-

low us to give an effective automatic proce-

dure for proof search, what was impossible

in a case of the Hilbert-style systems.

The first idea of this type was presented by

G. Gentzen in 1934.

1

PART 1: RS SYSTEM

RS proof system presented here is due to H.

Rasiowa and R. Sikorski and appeared

for the first time in 1961. It extends eas-

ily to Predicate Logic and admits a CON-

STRUCTIVE proof of Completeness The-

orem (first given by Rasiowa- Sikorski).

PART 2: GENTZEN SYSTEM

We present two Gentzen Systems; a modern

version and the original version. BOTH ex-

tend easily to Predicate Logic and admit a

CONSTRUCTIVE proof of Completeness

Theorem via Rasiowa-Sikorski method. The

Original Gentzen system is easily adopted

to a complete system foir the Intuitionistic

Logic and will be presented in Chapter 12.

2

Language of RS is

L = L{¬,⇒,∪,∩}.

The rules of inference of our system RS

operate on finite sequences of formulas.

Set of expressions E = F∗.

Notation: elements of E are finite sequences

of formulas and we denote them by

Γ,∆,Σ,

with indices if necessary.

Meaning of Sequences: the intuitive mean-

ing of a sequence Γ ∈ F∗ is that the truth

assignment v makes it true if and only if

it makes the formula of the form of the

disjunction of all formulas of Γ true.

3

For any sequence Γ ∈ F∗,

Γ = A1, A2, ..., An

we define

δΓ = A1 ∪A2 ∪ ... ∪An.

Formal Semantics for RS Let v : V AR −→
{T, F} be a truth assignment, v∗ its classi-

cal semantics extension to the set of for-

mulas F.

We formally extend v to the set F∗ of all

finite sequences of F as follows.

v∗(Γ) = v∗(δΓ) = v∗(A1)∪v∗(A2)∪...∪v∗(An).

4

Model The sequence Γ is said to be sat-

isfiable if there is a truth assignment v :

V AR −→ {T, F} such that v∗(Γ) = T .

Such a truth assignment v is called a model

for Γ.

Counter- Model The sequence Γ is said to be

falsifiable if there is a truth assignment v,

such that v∗(Γ) = F .

Such a truth assignment v is also called a

counter-model for Γ.

5

Tautology The sequence Γ is said to be a

tautology if v∗(Γ) = T for all truth assign-

ments v : V AR −→ {T, F}.

Example Let Γ be a sequence

a, (b ∩ a),¬b, (b ⇒ a).

The truth assignment v for which v(a) = F

and v(b) = T falsifies Γ, i.e. is a counter-

model for Γ, as shows the following com-

putation.

v∗(Γ) = v∗(δΓ) = v∗(a)∪ v∗(b∩a)∪ v∗(¬b)∪
v∗(b ⇒ a) = F ∪ (F ∩ T) ∪ F ∪ (T ⇒ F) =

F ∪ F ∪ F ∪ F = F.

6

Rules of inference of RS are of the form:

Γ1

Γ
or

Γ1 ; Γ2

Γ
,

where Γ1,Γ2 and Γ are sequences Γ1,Γ2 are
called premisses and Γ is called the conclu-
sion of the rule of inference.

Each rule of inference introduces a new log-
ical connective, or a negation of a logical
connective.

We name the rule that introduces the logi-
cal connective ◦ in the conclusion sequent
Γ by (◦).

The notation (¬◦) means that the negation
of the logical connective ◦ is introduced in
the conclusion sequence Γ.

7

System RS contains seven inference rules:

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬).

Before we define the rules of inference of RS

we need to introduce some definitions.

8

Literals

LT = V AR ∪ {¬a : a ∈ V AR}.

The variables are called positive literals.

Negations of variables are called negative lit-

erals.

We denote by Γ
′
, ∆

′
, Σ

′
finite sequences (empty

included) formed out of literals i.e

Γ
′
,∆

′
,Σ

′ ∈ LT ∗.

We will denote by Γ,∆,Σ the elements of F∗.

9

Axioms AL of RS We adopt as an axiom any

sequence which contains any propositional

variable and its negation, i.e any sequence

Γ
′
1, a,Γ

′
2,¬a,Γ

′
3,

Γ
′
1,¬a,Γ

′
2, a,Γ

′
3.

10

Inference rules of RS

Disjunction rules

(∪)
Γ
′
, A, B,∆

Γ′, (A ∪B),∆
, (¬∪)

Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ∪B),∆

Conjunction rules

(∩)
Γ
′
, A,∆ ; Γ

′
, B,∆

Γ′, (A ∩B),∆
, (¬∩)

Γ
′
,¬A,¬B,∆

Γ′,¬(A ∩B),∆

Implication rules

(⇒)
Γ
′
,¬A, B,∆

Γ′, (A ⇒ B),∆
, (¬ ⇒)

Γ
′
, A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ⇒ B),∆

Negation rule

(¬¬)
Γ
′
, A,∆

Γ′,¬¬A,∆

where Γ
′ ∈ LT ∗,∆ ∈ F∗, A, B ∈ F .

11

The Proof System RS Formally we define:

RS = (L, E,AL, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒
), (¬¬))

Proof Tree By a proof tree, or RS-proof of

Γ we understand a tree TΓ of sequences

satisfying the following conditions:

1. The topmost sequence, i.e the root of TΓ

is Γ,

2. all leafs are axioms,

3. the nodes are sequences such that each

sequence on the tree follows from the ones

immediately preceding it by one of the rules.

12

We picture, and write our proof trees with

the node on the top, and leafs on the very

bottom, instead of more common way, where

the leafs are on the top and root is on the

bottom of the tree.

We write our proof trees indicating addition-

ally the name of the inference rule used at

each step of the proof.

For example, if the proof of a theorem from

three axioms was obtained by the subse-

quent use of the rules (∩), (∪), (∪), (∩), (∪),

and (¬¬), (⇒),

We represent it as the following tree:

theorem; provable formula

| (⇒)

conclusion of (¬¬)

| (¬¬)

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

conclusion of (∩)

| (∪)

axiom

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

axiom axiom

13

Trees represent a certain visualization for

the proofs and any formal proof in any sys-

tem can be represented in a tree form.

Example The proof tree in RS of the de Mor-

gan law

(¬(a ∩ b) ⇒ (¬a ∪ ¬b))

is the following.

14

(¬(a ∩ b) ⇒ (¬a ∪ ¬b))

| (⇒)

¬¬(a ∩ b), (¬a ∪ ¬b)

| (¬¬)

(a ∩ b), (¬a ∪ ¬b)

∧
(∩)

a, (¬a∪¬b)

| (∪)

a,¬a,¬b

b, (¬a∪¬b)

| (∪)

b,¬a,¬b

15

To obtain a ”linear ” formal proof (written

in a vertical form) of it we just write down

the tree as a sequence, starting from the

leafs and going up (from left to right) to

the root.

a,¬a,¬b

b,¬a,¬b

a, (¬a ∪ ¬b)

b, (¬a ∪ ¬b

(a ∩ b), (¬a ∪ ¬b)

¬¬(a ∩ b), (¬a ∪ ¬b)

(¬(a ∩ b) ⇒ (¬a ∪ ¬b)).

16

The search for the proof of (¬(a∪b) ⇒ (¬a∩
¬b)) consists of building a certain tree and
proceeds as follows.

(¬(a ∪ b) ⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

| (¬¬)

(a ∪ b), (¬a ∩ ¬b)

| (∪)

a, b, (¬a ∩ ¬b)

∧
(∩)

a, b,¬a a, b,¬b

17

We construct its formal proof, written in a

vertical manner, by writing the two axioms,

which form the two premisses of the rule

(∩) one above the other. All other se-

quences remain the same.

a, b,¬b

a, b,¬a

a, b, (¬a ∩ ¬b)

(a ∪ b), (¬a ∩ ¬b)

¬¬(a ∪ b), (¬a ∩ ¬b)

(¬(a ∪ b) ⇒ (¬a ∩ ¬b))

18

The tree generated by the proof search is called

a decomposition tree.

Example of decomposition tree for

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

is the following.

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b, (a ⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

19

The decomposition tree generated by this search

contains an non-axiom leaf and hence is

not a proof.

Moreover, it proves, as the decomposition (proof

search) tree is unique that the proof of the

formula

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

DOES not EXIST in the system RS.

20

Counter-model generated by the decompo-

sition tree.

Example: Given a formula A:

((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

and its decomposition tree TA.

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b, (a ⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

21

Consider a non-axiom leaf:

¬a, b,¬a, c

Let v be any variable assignment

v : V AR −→ {T, F}
such that it makes this non-axiom leaf False,
i.e. we put

v(a) = T, v(b) = F, v(c) = F.

Obviously, we have that

v∗(¬a, b,¬a, c) = F.

Moreover, all our rules of inference are sound
(to be proven formally in the next section).

Rules soundness means that if one of pre-
misses of a rule is FALSE, so is the con-
clusion.

22

Hence, the soundness of the rules proves (by

induction on the degree of sequences Γ ∈
TA) that v, as defined above falsifies all

sequences on the branch of TA that ends

with the non-axiom leaf ¬a, b,¬a, c.

In particular, the formula A is on this branch,

hence

v∗(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) = F

and v is a counter-model for A.

The truth assignments defined by a non- ax-

iom leaves are called counter-models gen-

erated by the decomposition tree.

The construction of the counter-models gen-

erated by the decomposition trees are cru-

cial to the proof of the Completeness The-

orem for RS.

We prove first the following Completeness The-

orem for formulas A ∈ F,

Completeness Theorem 1 For any formula

A ∈ F,

`RS A if and only if |= A.

and then we deduce from it the following

full Completeness Theorem for sequences

Γ ∈ F∗.

Completeness Theorem 2

For any Γ ∈ F∗,

`RS Γ if and only if |= Γ.

The Completeness Theorem consists of two

parts:

Soundness Part: (Soundness Theorem) for any

A ∈ F,

if `RS A, then |= A.

Completeness Part: For any formula A ∈ F,

if |= A, then `RS A.

Soundness Theorem for RS

For any Γ ∈ F∗,

if `RS Γ, then |= Γ.

In particular, for any A ∈ F,

if `RS A, then |= A.

We prove as an example the soundness of two

of inference rules: (⇒) and (¬∪) of G.

We show even more, that the premisses and

conclusion of both rules are logically equiv-

alent.

23

If P1, (P2) are premiss(es) of a rule, C is its

conclusion, then

v∗(P1) = v∗(C)

in case of one premiss rule and

v∗(P1) ∩ v∗(P2) = v∗(C),

in case of the two premisses rule.

Consider the rule (∪).

(∪)
Γ
′
, A, B,∆

Γ′, (A ∪B),∆
.

We evaluate: v∗(Γ′, A, B,∆) = v∗(δ{Γ′,A,B,∆}) =

v∗(Γ′) ∪ v∗(A) ∪ v∗(B) ∪ v∗(∆) = v∗(Γ′) ∪
v∗(A ∪ B) ∪ v∗(∆) = v∗(δ{Γ′,(A∪B),∆}) =

v∗(Γ′, (A ∪B),∆).

24

Consider the rule (¬∪).

(¬∪)
Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ∪B),∆
.

We evaluate: v∗(Γ′,¬A,∆) ∩ v∗(Γ′,¬B,∆) =

(v∗(Γ′)∪v∗(¬A)∪v∗(∆))∩(v∗(Γ′)∪v∗(¬B)∪
v∗(∆)) = (v∗(Γ′,∆)∪v∗(¬A))∩(v∗(Γ′,∆)∪
v∗(¬B)) = by distributivity = (v∗(Γ′,∆) ∪
(v∗(¬A)∩v∗(¬B)) = v∗(Γ′)∪v∗(∆)∪(v∗(¬A∩
¬B)) = by the logical equivalence of (¬A∩
¬B) and ¬(A ∪ B) = v∗(δ{Γ′,¬(A∪B),∆} =

v∗(Γ′,¬(A ∪B),∆)).

25

We prove now the Completeness Part of the

Completeness Theorem:

If 6 `RSA, then 6|= A.

STEPS needed for proof:

Step 1 Define, for each A ∈ F its decompo-

sition tree TA.

Step 2 (Lemma 1) Prove that the decompo-

sition tree TA is unique.

Step 3 (Lemma 2) Prove that TA has the fol-

lowing property:

Proof of A in RS does not exist (6 `RS)A,

iff there is a leaf of TA which is not an

axiom.

26

Step 4 (Lemma 3) Prove that given A with
TA with a non-axiom leaf, we have that
for any truth assignment v, such that
v∗(non-axiom leaf) = F, v also falsifies A,
i.e.

v∗(A) = F.

Proof of Completeness: Assume that A is any
formula is such that

6 `RSA.

By the STEP 3, the decomposition tree
TA contains a non-axiom leaf.

The non-axiom leaf LA defines a truth
assignment v which falsifies A, as follows:

v(a) =





F if a appears in LA
T if ¬a appears in LA
any value if a does not appear in LA

This proves by STEP 4 that 6|= A.

27

