
CHAPTER 11: Automated Proof
Systems (3)

RS: Counter Models Generated by
Decomposition Trees

RS: Proof of
COMPLETENESS THEOREM
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Counter-model generated by the decompo-

sition tree.

Example: Given a formula A:

((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

and its decomposition tree TA.

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b, (a ⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c
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Consider a non-axiom leaf:

¬a, b,¬a, c

Let v be any variable assignment

v : V AR −→ {T, F}
such that it makes this non-axiom leaf FALSE,
i.e. we put

v(a) = T, v(b) = F, v(c) = F.

Obviously, we have that

v∗(¬a, b,¬a, c) = ¬T ∪ F ∪ ¬T ∪ F = F.

Moreover, all our rules of inference are sound
(to be proven formally in the next section).

Rules soundness means that if one of pre-
misses of a rule is FALSE, so is the con-
clusion.
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Hence, the soundness of the rules proves (by
induction on the degree of sequences Γ ∈
TA) that v, as defined above falsifies all

sequences on the branch of TA that ends
with the non-axiom leaf ¬a, b,¬a, c.

In particular, the formula A is on this branch,
hence

v∗(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) = F

and v is a counter-model for A.

The truth assignments defined by a non- ax-
iom leaves are called counter-models gen-

erated by the decomposition tree.

The construction of the counter-models gen-
erated by the decomposition trees are cru-
cial to the proof of the Completeness The-
orem for RS.
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F ”climbs” the Tree TA.

TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) = F

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c) = F∧
(∩)

(a ⇒ b), (a ⇒ c) = F

| (⇒)

¬a, b, (a ⇒ c) = F

| (⇒)

¬a, b,¬a, c = F

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c
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Observe that the same construction applies

to any other non-axiom leaf, if exists, and

gives the other ”F climbs the tree” picture,

and hence other counter- model for A.

By the Uniqueness of the Decomposition Tree

Theorem all possible counter-models (re-

stricted) for A are those generated by the

non- axioms leaves of the TA. In our case

the formula A has only one non-axiom leaf,

and hence only one (restricted) counter

model.
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RS: COMPLETENESS THEOREM

We prove first the Soundness Theorem for

RS; and then the completeness part of the

Completeness Theorem.

Soundness Theorem 1

For any Γ ∈ F∗,

if `RS Γ, then |= Γ.

Proof: we prove here as an example the sound-

ness of two of inference rules. We leave the

proof for the other rules as an exercise.

We show that rules (⇒) and (¬∪) of G are

sound.
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We show even more, i.e. that the premisses

and conclusion of both rules are logically

equivalent.

I.e. that for all v, v∗(Premiss(es)) = T , im-

plies that v∗(Conclusion) = T .

We hence show the following.

Equivalency: If P1, (P2) are premiss(es) of any

rule of RS, C is its conclusion, then v∗(P1) =

v∗(C) in case of one premiss rule and v∗(P1)∩
v∗(P2) = v∗(C), in case of the two pre-

misses rule.
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Consider the rule (∪).

(∪)
Γ
′
, A, B,∆

Γ′, (A ∪B),∆
.

By the definition:

v∗(Γ′, A, B,∆) = v∗(δ{Γ′,A,B,∆}) = v∗(Γ′) ∪
v∗(A) ∪ v∗(B) ∪ v∗(∆) = v∗(Γ′) ∪ v∗(A ∪
B)∪v∗(∆) = v∗(δ{Γ′,(A∪B),∆}) = v∗(Γ′, (A∪
B),∆).
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Consider the rule (¬∪).

(¬∪)
Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ∪B),∆
.

By the definition:

v∗(Γ′,¬A,∆)∩v∗(Γ′,¬B,∆) = (v∗(Γ′)∪v∗(¬A)∪
v∗(∆))∩(v∗(Γ′)∪v∗(¬B)∪v∗(∆)) = (v∗(Γ′,∆)∪
v∗(¬A))∩(v∗(Γ′,∆)∪v∗(¬B)) = by distribu-

tivity = (v∗(Γ′,∆) ∪ (v∗(¬A) ∩ v∗(¬B)) =

v∗(Γ′)∪v∗(∆)∪(v∗(¬A∩¬B)) = by the logi-

cal equivalence of (¬A∩¬B) and ¬(A∪B) =

v∗(δ{Γ′,¬(A∪B),∆} = v∗(Γ′,¬(A ∪B),∆)).

Proofs for all other rules follow the above pat-

tern (and proper logical equivalencies).
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From the above Soundness Theorem 1 we

get as a corollary, in a case when Γ is a one

formula sequence, the following soundness

lemma for formulas.

Soundness Theorem 2

For any A ∈ F,

if `RS A, then |= A.

Now we are ready to prove the Completeness

Theorem, in two forms: sequence, and for-

mula.

Completeness Theorem 1

For any formula A ∈ F,

`RS A if and only if |= A.
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Completeness Theorem 2

For any Γ ∈ F∗,

`RS Γ if and only if |= Γ.

Both proofs are carried by proving the contra-

position implication to the Completeness

Part, as the soundness part has been al-

ready proven.

Proof: as an example, we list the main steps in

the proof of a contraposition of the Com-

pleteness Theorem 1.

If 6 `RSA, then 6|= A.
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To prove the Completenes Theorem we pro-

ceed as follows.

Define, for each A ∈ F its decomposition tree

(Decomposition Tree Definition).

Prove that the decomposition tree is finite unique

(Decomposition Tree Theorem) and has

the following property:

`GA iff all leafs of the decomposition tree

of A are axioms.

What means that if 6 `RSA, then there is a

leaf L of the decomposition tree of A, which

is not an axiom.
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Observe, that by soundness, if one premiss of

a rule of RS is FALSE, so is the conclusion.

Hence by soundness and the definition of the

decomposition tree any truth assignment v

that falsifies an non axiom leaf, i.e. any

v such that v∗(L) = F falsifies A, namely

v∗(A) = F and hence constitutes a counter

model for A. This ends that proof that

6|= A.
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Essential part:

Given a formula A such that 6 `RSA and its

decomposition tree of A with a non-axiom

leaf L.

We define a counter-model v determined

by the non- axiom leat L as follows:

v(a) =





F if a appears in L
T if ¬a appears in L
any value if a does not appear in L

This proves that 6|= A and ends the proof of

the Completeness Theorem for RS.
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