
Chapter 12:
Gentzen Sequent Calculus for

Intuitionistic Logic

PART 2: Examples of proof search decom-

position trees in LI

Search for proofs in LI is a much more com-

plicated process then the one in classical

logic systems RS or GL.

Proof search procedure consists of building

the decomposition trees.

Remark 1: in RS the decomposition tree TA

of any formula A is always unique.

1



Remark 2: in GL the ”blind search” defines,
for any formula A a finite number of de-
composition trees, but it can be proved
that the search can be reduced to examin-
ing only one of them, due to the absence
of structural rules.

Remark 3: In LI the structural rules play a vi-
tal role in the proof construction and hence,
in the proof search.

The fact that a given decomposition tree ends
with an axiom leaf does not always imply
that the proof does not exist. It might
only imply that our search strategy was not
good.

The problem of deciding whether a given for-
mula A does, or does not have a proof in
LI becomes more complex then in the case
of Gentzen system for classical logic.

2



Example 1

Determine whether

`LI −→ A

for A = ((¬A ∩ ¬B) ⇒ ¬(A ∪B)).

If we find a decomposition tree such that all

its leaves are axiom, we have a proof.

If all possible decomposition trees have a non-

axiom leaf, proof of A in LI does not exist.

3



Consider the following decomposition tree

T1A

−→ ((¬A ∩ ¬B) ⇒ (¬(A ∪B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪B)

| (−→ ¬)

(A ∪B), (¬A ∩ ¬B) −→
| (exch −→)

(¬A ∩ ¬B), (A ∪B) −→
| (∩ −→)

¬A,¬B, (A ∪B) −→
| (¬ −→)

¬B, (A ∪B) −→ A

| (−→ weak)

¬B(A ∪B) −→
| (¬ −→)

(A ∪B) −→ B∧
(∪ −→)

A −→ B

non− axiom

B −→ B

axiom

4



The tree T1A has a non-axiom leaf, so it

does not constitute a proof in LI.

Observe that the decomposition tree in LI is

not always unique.

Hence this fact does not yet prove that proof

doesn’t exist.

5



Let’s consider now the following tree

T2A

−→ ((¬A ∩ ¬B) ⇒ (¬(A ∪B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪B)

| (−→ ¬)

(A ∪B), (¬A ∩ ¬B) −→
| (exch −→)

(¬A ∩ ¬B), (A ∪B) −→
| (∩ −→)

¬A,¬B, (A ∪B) −→
| (exch −→)

¬A, (A ∪B),¬B −→
| (exch −→)

(A ∪B),¬A,¬B −→∧
(∪ −→)

6



A,¬A,¬B −→

| (exch −→)

¬A, A,¬B −→
| (¬ −→)

A,¬B −→ A

axiom

B,¬A,¬B −→

| (exch −→)

B,¬B,¬A −→
| (exch −→)

¬B, B,¬A −→
| (¬ −→)

B,¬A −→ B

axiom

All leaves of T2A are axioms, what proves

that T2A is a proof of A.

Hence we proved that

((¬A ∩ ¬B) ⇒ ¬(A ∪B)).



Example 2: Proof that

Part 1

`LI −→ (A ⇒ ¬¬A),

Part 2

6 `LI −→ (¬¬A ⇒ A).

Solution of Part 1: We construct some, or

all decomposition trees of

−→ (A ⇒ ¬¬A).

The tree that ends with all axioms leaves is

a proof of (A ⇒ ¬¬A) in LI.

7



Consider the following decomposition tree of

−→ A, for A = (A ⇒ ¬¬A)..

TA

−→ (A ⇒ ¬¬A).

| (−→⇒)

A −→ ¬¬A

| (−→ ¬)

¬A, A −→
| (¬ −→)

A −→ A

axiom

All leaves of TA are axioms what proves that

TA is a proof of −→ (A ⇒ ¬¬A).

We don’t need to construct other decom-

position trees.

8



Solution of Part 2: in order to prove that

6 `LI −→ (¬¬A ⇒ A)

we have to construct all decomposition trees

of

(−→ A ⇒ ¬¬A)

and show that each of them has an non-

axiom leaf.

9



Decomposition trees construction is as fol-

lows.

T1A

−→ (¬¬A ⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

one of 2 choices

¬¬A −→
| (¬ −→)

one of 2 choices

−→ ¬A

| (−→ ¬)

one of 2 choices

A −→
non− axiom

10



Another tree is:

T2A

−→ (¬¬A ⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A
]

| (contr −→)

second of 2 choices

¬¬A,¬¬A −→ A

| (−→ weak)

first of 2 choices

¬¬A,¬¬A −→
| (¬ −→)

first of 2 choices

¬¬A −→ ¬A

| (−→ ¬)

the only choice

A,¬¬A −→
| (exch −→)

the only choice

¬¬A, A −→
11



| (−→ ¬)

the only choice

A −→ ¬A

| (−→ ¬)

first of 2 choices

A, A −→
non− axiom



We can see from the above decomposition trees

that the ”blind” construction of all possi-

ble trees only leads to more complicated

trees.

This is due to the presence of structural rules.

Observe that the ”blind” application of the

rule (contr →) gives an infinite number of

decomposition trees.

In order to decide that none of them will pro-

duce a proof we need some extra knowl-

edge about patterns of their construction,

or just simply about the number useful of

application of structural rules within the

proofs.

12



In this case we can just make an ”external”

observation that the our first tree T1A is

in a sense a minimal one; that all other

trees would only complicate this one in an

inessential way, i.e. we will never produce

a tree with all axioms leaves.

One can formulate a deterministic procedure

giving a finite number of trees, but the

proof of its correctness require some extra

knowledge.

Within the scope of this book we accept the

”external” explanation as a sufficient solu-

tion, provided it is correct.

13



As we can see from the above examples struc-

tural rules and especially the (contr −→)

rule complicates the proof searching task.

Both Gentzen type proof systems RS and

GL from the previous chapter don’t con-

tain the structural rules.

They also are complete with respect to clas-

sical semantics.

The original Gentzen system LK which does

contain the structural rules is also com-

plete.

14



Hence, all three classical proof system RS,

GL, LK are equivalent.

This proves that the structural rules can be

eliminated from the system LK.

A natural question of elimination of structural

rules from the intutionistic Gentzen system

LI arizes.

The following example illustrates the nega-

tive answer.

15



Example 3 We know, by the theorem about

the connection between classical and in-

tuitionistic logic and corresponding Com-

pleteness Theorems that

For any formula A ∈ F,

|= A if and only if `I ¬¬A,

|= A means that A is a classical tautology,

`I means that A is intutionistically provable,

i.e. is provable in any intuitionistically com-

plete proof system.

The system LI is intuitionistically complete,

so we have that for any formula A,

|= A if and only if `LI ¬¬A.

16



Obviously |= (¬¬A ⇒ A), so we know that

¬¬(¬¬A ⇒ A)

must have a proof in LI.

We are going to prove the structural rule

(contr −→)

is essential to the existence of its proof.

The formula ¬¬(¬¬A ⇒ A) is not provable in

LI without the rule (contr −→).

The following decomposition tree is a proof

of A = ¬¬(¬¬A ⇒ A) in LI.

17



TA

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

one of 2 choices

¬(¬¬A ⇒ A) −→
| (contr −→)

one of 2 choices

¬(¬¬A ⇒ A),¬(¬¬A ⇒ A) −→
| (¬ −→)

one of 2 choices

¬(¬¬A ⇒ A) −→ (¬¬A ⇒ A)

| (−→⇒)

one of 3 choices

¬(¬¬A ⇒ A),¬¬A −→ A

| (−→ weak)

one of 2 choices

¬(¬¬A ⇒ A),¬¬A −→
| (exch −→)

one of 3 choices

¬¬A,¬(¬¬A ⇒ A) −→
| (¬ −→)

18



one of 3 choices

¬(¬¬A ⇒ A) −→ ¬A

| (−→ ¬)

one of 3 choices

A,¬(¬¬A ⇒ A) −→
| (exch −→)

one of 2 choices

¬(¬¬A ⇒ A), A −→
| (¬ −→)

one of 3 choices

A −→ (¬¬A ⇒ A)

| (−→⇒)

one of 3 choices

¬¬A, A −→ A

axiom



Assume now that the rule (contr −→) is not

available.

All possible decomposition trees are as fol-

lows.

T1A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

one of 2 choices

¬(¬¬A ⇒ A) −→
| (¬ −→)

only one choice

−→ (¬¬A ⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

only one choice

¬¬A −→
| (¬ −→)

19



only one choice

−→ ¬A

| (−→ ¬)

one of 2 choices

A −→
non− axiom



Next one is

T2A

−→ ¬¬(¬¬A ⇒ A)

| (−→ weak)

second of 2 choices

−→

non− axiom

20



And the next is

T3A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→ weak)

second of 2 choices

−→

non− axiom

21



And the last one is

T4A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→
| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)
]

¬¬A −→ A

| (−→ weak)

only one choice

¬¬A −→
| (¬ −→)

only one choice

−→ ¬A

| (−→ weak)

second of 2 choices

−→
non− axiom

This proves that the formula ¬¬(¬¬A ⇒ A)
is not provable in LI without (contr −→)
rule, i.e. that this rule can’t be eliminated.

22


