
Gentzen Sequent Calculus for
Intuitionistic Logic

PART 3: Proof Search Heuristics

Before we define a heuristic method of search-
ing for proof in LI let’s make some obser-
vations.

Observation 1 : the logical rules of LI are
similar to those in Gentzen type classical
formalizations we examined in previous chap-
ters in a sense that each of them introduces
a logical connective.

Observation 2 : The process of searching for
a proof is hence a decomposition process
in which we use the inverse of logical and
structural rules as decomposition rules.

1



For example the implication rule:

(→⇒)
A,Γ −→ B

Γ −→ (A ⇒ B)

becomes an implication decomposition rule

(we use the same name (→⇒) in both cases)

(→⇒)
Γ −→ (A ⇒ B)

A,Γ −→ B
.

Observation 3 : we write our proofs in a form

of trees, instead of sequences of expres-

sions, so the proof search process is a pro-

cess of building a decomposition tree.

2



To facilitate the process we write the decom-

position rules in a ”tree ” form. For exam-

ple the the above implication decomposi-

tion rule is written as follows

Γ −→ (A ⇒ B)

| (→⇒)

A,Γ −→ B.

The two premisses implication rule (⇒→) writ-

ten as the tree decomposition rule becomes

(A ⇒ B),Γ −→
∧

(⇒→)

Γ −→ A B,Γ −→

3



Observation 4 : we stop the decomposition

process when we obtain an axiom or in-

decomposable leaf. The indecomposable

leaf is a sequent built from indecompos-

able formulas only, i.e. formulas that do

not contain logical connectives.

Observation 5 : Our goal while constructing

the decomposition tree is to obtain axiom

or indecomposable leaves. With respect

to this goal the use logical decomposition

rules has a priority over the use of the

structural rules and we use this information

while describing the proof search heuristic.

Observation 6 : all logical decomposition rules

(◦ →), where ◦ denotes any connective,

must have a formula we want to decom-

pose as the first formula at the decompo-

sition node.

4



When we decompose a formula ◦A, the node

must have a form ◦A,Γ −→ ∆. Some-

times it is necessary to decompose a for-

mula within the sequence Γ first in order

to find a proof.

For example, consider two nodes

n1 = ¬¬A, (A ∩B) −→ B

and

n2 = (A ∩B),¬¬A −→ B.

We are going to see that the results of de-

composing n1 and n2 differ dramatically.

5



We decompose the node n1.

Observe that the only way to be able to de-

compose the formula ¬¬A is to use the rule

(→ weak) first.

The two possible decomposition trees that

starts at the node n1 are as follows.

T1n1

¬¬A, (A ∩B) −→ B

| (→ weak)

¬¬A, (A ∩B) −→
| (¬ →)

(A ∩B) −→ ¬A

| (∩ →)

A, B −→ ¬A

| (→ ¬)

A, A, B −→
non− axiom

6



Next tree is

T2n1

¬¬A, (A ∩B) −→ B

| (→ weak)

¬¬A, (A ∩B) −→
| (¬ →)

(A ∩B) −→ ¬A

| (→ ¬)

A, (A ∩B) −→
| (∩ →)

A, A, B −→
non− axiom

Now we decompose the node n2.

Observe that following Observation 5 we start

by decomposing the formula (A∩B) by the

use of the rule (∩ →) first.

7



A decomposition tree that starts at the node

n2 is as follows.

Tn2

(A ∩B),¬¬A −→ B

| (∩ →)

A, B,¬¬A −→ B

axiom

This proves that the node n2 is provable in

LI, i.e.

`LI (A ∩B),¬¬A −→ B.

8



Of course, we have also that the node n1 is

also provable in LI, as one can obtain the

node n2 from it by the use of the rule

(exch →).

Observation 7: the use of structural rules are

important and necessary while we search

for proofs. Nevertheless we have to use

them on the ”must” basis and set up some

guidelines and priorities for their use.

For example, use of weakining rule discharges

the weakening formula, and hence an infor-

mation that may be essential to the proof.

We should use it only when it is absolutely

necessary for the next decomposition steps.

9



Hence, the use of weakining rule (→ weak)

can, and should be restricted to the cases

when it leads to possibility of the use of

the negation rule (¬ →).

In the case of the decomposition tree T1n1

we used it as an necessary step, but still

it discharged too much information and we

didn’t get a proof, when proof of the node

existed.

In fact, the first rule in our search should have

been the exchange rule, followed by the

conjunction rule (no information discharge!)

not the weakening (discharge of informa-

tion) followed by negation rule.

10



The full proof of the node n1 is the follow-

ing.

T3n1

¬¬A, (A ∩B) −→ B

| (exch −→)

T2A

(A ∩B),¬¬A −→ B

(A ∩B),¬¬A −→ B

| (∩ →)

A, B,¬¬A −→ B

axiom

As a result of the observations 1- 7 we adopt

the following heuristics for proof search in

LI.

11



Decomposition Tree Generation rules.

1. Use first rules logical rules where applicable
without the use of (→ weak).

2. Use (exch →) rule to decompose as many
formulas on the left side of −→ as possible.

3. Use (→ weak) only on a ”must” basis in
connection with (¬ →).

4. Use (contr →) rule as the last recourse and
only to formulas that contain ¬ or ⇒ as
connectives.

5. Within the process use (contr →) rule only a
finite number of times, no more times that
number of all sub-formulas of the formula
you are building the tree for.

12


