
Chapter 13, Part 1: Predicate
Languages

Predicate Languages are also called First Or-

der Languages. The same applies to the

use of terms Propositional and Predicate

Logic; they are often called zero Order and

First Order Logics and we will use both

terms equally.

We will work with several different predicate

languages, depending on what applications

we have in mind. All of those languages

have some common features, and we begin

with these.

1

Propositional connectives We define the set

of propositional connectives

CON

in the same way as in the case of the propo-

sitional languages. It means that we as-

sume the following.

1. The set of connectives is non-empty

and finite, i.e.

0 < cardCON < ℵ0.

2. We consider only the connectives with

one or two arguments.

2

Quantifiers We adopt two quantifiers; ∀ (for
all, the universal quantifier) and ∃ (there
exists, the existential quantifier), i.e. we
have the following set of quantifiers

Q = {∀,∃}.
In a case of the classical logic and the log-
ics that extend it, it is possible to adopt
only one quantifier and to define the other
in terms of it and propositional connec-
tives. It is impossible in a case of some
non-classical logics, for example the intu-
itionistic logic. But even in the case of
classical logic two quantifiers express bet-
ter the common intuition, so we assume
that we have two of them.

Parenthesis. As in the propositional case, we
adopt the signs (and) for our parenthesis.,
i.e. we define a set PAR as

PAR = {(,)}.

3

Variables We assume that we always have a

countably infinite set V AR of variables, i.e.

we assume that

cardV AR = ℵ0.

We denote variables by x, y, z, ..., with in-

dices, if necessary, what we often express

by writing

V AR = {x1, x2,}.

4

The set of propositional connectives CON de-

fines a propositional part of the predicate

logic language.

Observe that what really differ one predicate

language from the other is the choice of

additional symbols to the symbols de-

scribed above.

These symbols predicate symbols, function

symbols, and constant symbols.

A particular predicate language is determined

by specifying the following sets of symbols.

5

Predicate symbols Predicate symbols repre-

sent relations.

We assume that we have an non empty, fi-

nite or countably infinite set

P

of predicate, or relation symbols. I.e. we

assume that

0 < cardP ≤ ℵ0.

We denote predicate symbols by P, Q, R, ..., with

indices, if necessary.

Each predicate symbol P ∈ P has a positive

integer #P assigned to it; if #P = n then

say P is called an n-ary (n - place) pred-

icate (relation) symbol.

6

Function symbols We assume that we have
a finite (may be empty) or countably
infinite set

F

of function symbols. I.e. we assume that

0 ≤ cardF ≤ ℵ0.

When the set F is empty we say that we deal
with a language without functional sym-
bols.

We denote functional symbols by f, g, h, ..., with
indices, if necessary.

Similarly, as in the case of predicate symbols,
each function symbol f ∈ F has a positive
integer #f assigned to it; if #f = n then
say f is called an n-ary (n - place) func-
tion symbol.

7

Constant symbols We also assume that we

have a finite (may be empty) or count-

ably infinite set

C

of constant symbols. I.e. we assume that

0 ≤ cardC ≤ ℵ0.

The elements of C are denoted by c, d, e...,

with indices, if necessary, what we often

express by writing

C = {c1, c2, ...}.

When the set C is empty we say that we deal

with a language without constant sym-

bols.

8

Sometimes the constant symbols are defined

as 0-ary function symbols, i.e.

C ⊆ F.

We single them out as a separate set for our

convenience.

Disjoint sets We assume that all of the above

sets are disjoint.

Alphabet The union of all of above disjoint

sets is called the alphabet A of the predi-

cate language, i.e.

A = V AR ∪ CON ∪ PAR ∪Q ∪P ∪ F ∪C.

9

Observe, that once the set of propositional
connectives is fixed, the predicate language
is determined by the sets P, F and C.

We use the notation

L(P,F,C)

for the predicate language L determined by
P, F and C.

If there is no danger of confusion, we may
abbreviate L(P,F,C) to just L.

If for some reason we need to stress the set
of propositional connectives involved, we
will also use the notation

LCON(P,F,C)

to denote the predicate language L deter-
mined by P, F, C and the set of proposi-
tional connectives CON .

10

We sometimes allow the same symbol to be

used as an n-place relation symbol, and

also as an m-place one; no confusion should

arise because the different uses can be told

apart easily.

If we write P (x, y), P denotes 2-argument

predicate symbol.

If we write P (x, y, z), P denotes 3-argument

predicate symbol.

Similarly for function symbols.

11

Having defined the basic elements of syntax,

the alphabet, we can now complete the for-

mal definition of the predicate language by

defining two more complex sets.

Terms The set T of all terms and

Formulas the set F of all well formed formu-

las of the language L(P,F,C).

12

Terms The set

T

of terms of the predicate language L(P,F,C)

is the smallest set T ⊂ A∗ meeting the con-

ditions:

1. any variable is a term, i.e. V AR ⊆ T ;

2. any constant symbol is a term, i.e. C ⊆
T ;

3. if f is an nplace function symbol, i.e.

f ∈ F and #f = n and t1, t2, ..., tn ∈ T ,

then f(t1, t2, ..., tn) ∈ T .

13

Example 1 If f ∈ F,#f = 1, i.e. f is a one

place function symbol, x, y are variables,

c, d are constants, i.e. x, y ∈ V AR, c, d ∈ C,

then the following are terms:

x, y, f(x), f(y), f(c), f(d),

ff(x), ff(y), ff(c), ff(d), ...etc.

Example 2 If F = ∅,C = ∅, then the set T

of terms consists of variables only, i.e.

T = V AR = {x1, x2,}.
From the above we get the following ob-

servation.

14

REMARK For any predicate language L(P,F,C),

the set T of its terms is always non-empty.

Example 3 If f ∈ F,#f = 1, g ∈ F,#g = 2,

x, y ∈ V AR, c, d ∈ C,

then some of the terms are the following:

f(g(x, y)), f(g(c, x)), g(ff(c), g(x, y)),

g(c, g(x, f(c))), g(f(g(x, y)), g(x, f(c))).

15

From time to time, the logicians are and we

may be informal about how we write terms.

For instance, if we denote a two place func-

tion symbol g by +, we may write x + y

instead +(x, y).

Because in this case we can think of x + y as

an unofficial way of designating the ”real”

term +(x, y), or even g(x, y).

Before we define the set of formulas, we

need to define one more set; the set of

atomic, or elementary formulas.

They are the ”smallest” formulas as were the

propositional variables in the case of propo-

sitional languages.

16

Atomic formulas An atomic formula of a pred-

icate language L(P,F,C) is any element of

A∗ of the form

R(t1, t2, ..., tn),

where R ∈ P,#R = n, i.e. R is n-ary rela-

tional symbol and t1, t2, ..., tn are terms.

The set of all atomic formulas is denoted by

AF
and is defines as

AF = {R(t1, t2, ..., tn) ∈ A∗ :

R ∈ P, t1, t2, ..., tn ∈ T, #R = n, n ≥ 1}.

17

Example Consider a language

L(∅, {P}, ∅),
for #P = 1.

Our language

L = L(∅, {P}∅)
is a language without neither functional,

nor constant symbols, and with one, one-

place predicate symbol P .

The set of atomic formulas contains all for-

mulas of the form P (x), for x any variable,

i.e.

AF = {P (x) : x ∈ V AR}.

18

Example Let now

L = L({f, g}, {R}, {c, d}),
for #f = 1, #g = 2 , #R = 2,

The language L has two functional symbols:

one -place symbol f and two-place symbol

g; one two-place predicate symbol R, and

two constants: c,d.

Some of the atomic formulas in this case are

the following.

R(c, d), R(x, f(c)), R(f(g(x, y)),

f(g(c, x))), R(y, g(c, g(x, f(c)))).

Now we are ready to define the set F of

all well formed formulas of the language

L(P,F,C).

19

Formulas The set

F
of all well formed formulas, called shortly

set of formulas, of the language L(P,F,C)

is the smallest set meeting the following

conditions:

1. any atomic formula of L(P,F,C) is a for-

mula, i.e.

AF ⊆ F;

2. if A is a formula of L(P,F,C), 5 is an one

argument propositional connective, then5A

is a formula of L(P,F,C), i.e. if the fol-

lowing recursive condition holds

if A ∈ F ,5 ∈ C1, then 5A ∈ F;

20

3. if A, B are formulas of L(P,F,C), ◦ is a two

argument propositional connective, then (A◦
B) is a formula of L(P,F,C), i.e. if the fol-

lowing recursive condition holds

if A ∈ F ,5 ∈ C2, then (A ◦B) ∈ F;

4. if A is a formula of L(P,F,C) and x is

a variable, then ∀xA, ∃xA are formulas of

L(P,F,C), i.e. if the following recursive

condition holds

if A ∈ F , x ∈ V AR, ∀,∃ ∈ Q then ∀xA, ∃xA ∈ F .

21

Another important notion of the Predicate

language is the notion of a scope of the

quantifier. It is defined as follows.

Scope of the quantifier In ∀xA, ∃xA, A is in

the scope of the quantifier ∀, ∃, respec-

tively.

22

Example Let L be a language of the previ-

ous example, with the set of connectives

{∩,∪,⇒,¬} i.e.

L = L{∩,∪,⇒,¬}({f, g}, {R}, {c, d}),
for #f = 1, #g = 2 , #R = 2. Some of

the formulas of L are the following.

R(c, d), ∃xR(x, f(c)), ¬R(x, y),

(∃xR(x, f(c)) ⇒ ¬R(x, y)),

(R(c, d) ∩ ∃xR(x, f(c))),

∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y).

23

The formula R(x, f(c)) is in a scope of the

quantifier ∃x in ∃xR(x, f(c)).

The formula (∃xR(x, f(c)) ⇒ ¬R(x, y)) isn’t

in a scope of any quantifier.

The formula (∃xR(x, f(c)) ⇒ ¬R(x, y)) is in

the scope of ∀ in ∀z(∃xR(x, f(c)) ⇒ ¬R(x, y)).

Now we are ready to define formally a predi-

cate language.

24

Predicate language Let A, T,F be the al-

phabet, the set of terms and the set of

formulas as defined above.

Definition A predicate language L is a triple

L = (A, T,F).

As we have said before, the language L is de-

termined by the choice of the symbols of

its alphabet, namely of the choice of con-

nectives, predicate, function, and constant

symbols. If we want specifically mention

this choice, we write

L = LCON(P,F,C) or L = L(P,F,C).

25

