
CHAPTER 13

Gentzen Style Proof System
for Classical Predicate Logic

- The System QRS
Part One
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System QRS Definition

Let F denote a set of formulas of a Predicate

(first Order) Logic Language

L(P,F,C) = L{∩,∪,⇒,¬}(P,F,C)

for P, F, C countably infinite sets of pred-

icate, functional, and constant symbols re-

spectively.

The rules of inference of our system QRS

will operate, as in the propositional case,

on finite sequences of formulas, i.e. ele-

ments of F∗, instead of just plain formulas

F, as in Hilbert style formalizations.

We will denote the sequences of formulas by

Γ,∆,Σ, with indices if necessary.
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Intuitive semantics If Γ is a sequence

A1, A2, ..., An

then by δΓ we will understand the disjunc-

tion of all formulas of Γ.

As we know, the disjunction in classical

logic is commutative, i.e., for any formulas

A, B, C, A∪(B∪C) ≡ (A∪B)∪C, we w will

denote any of those formulas by

A ∪B ∪ C = δ{A,B,C}.

Similarly, we will write

δΓ = A1 ∪A2 ∪ ...,∪An.

The sequence Γ is said to be satisfiable

(falsifiable) if the formula δΓ = A1 ∪A2 ∪
...,∪An is satisfiable (falsifiable).
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The sequence Γ is said to be a tautology

if the formula δΓ = A1 ∪ A2 ∪ ...,∪An is a

tautology.

The system QRS consists of two axiom schemas

and eleven rules of inference.

The rules form two groups.

First group is similar to the propositional case

and called

Each rule of this group introduces a new log-

ical connective or its negation, so we will

name them, as in the propositional case:

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬).
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The second group deals with the quantifiers.

It consists of four rules.

Two quantifiers rules introduce the univer-

sal and existential quantifiers, and are named

(∀) and (∃), respectively.

The two other rules correspond to the De Mor-

gan Laws and deal with the negation of the

universal and existential quantifiers, and ere

named (¬∀) and (¬∃), respectively.
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As the axioms we adopt any sequence which

contains any formula and its negation, i.e

any sequence of the form

Γ1, A,Γ2,¬A,Γ3

or of the form

Γ1,¬A,Γ2, A,Γ3,

for any formula A ∈ F and any sequences

of formulas Γ1,Γ2,Γ3 ∈ F∗.

We will denote the axioms by

AX ∗.
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QRS proof system is defined as

QRS = (F∗,AX ∗, (∪), (¬∪), (∩), (¬∩),

(⇒), (¬ ⇒), (¬¬), (¬∀), (¬∃), (∀), (∃))

QRS system is called a Gentzen- style for-

malization of classical predicate calculus.

In order to define the rules of inference of

QRS we need to introduce some defini-

tions. They are straightforward modifica-

tion of the corresponding definitions for the

propositional logic.
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We form, as in the propositional case, a spe-

cial subset

LIT ⊆ F
of formulas, called a set of all literals, which

is defined now as follows.

LIT = {A ∈ F : A ∈ AF}∪{¬A ∈ F : A ∈ AF},

where AF ⊆ F is the set of all atomic

(elementary) formulas of the first order

language, i.e.

AF = {P (t1, ...., tn) : P ∈ P }
P ∈ P is any n-argument predicate sym-

bol, and ti ∈ T are terms.
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The elements of the set

{A ∈ F : A ∈ AF}
are called positive literals and the ele-

ments of the set

{¬A ∈ F : A ∈ AF}
are called negative literals.

I.e atomic (elementary) formulas are called

positive literals and the negation of an atomic

(elementary) formula is called a negative

literal.

Indecomposable formulas Literals are also called

the indecomposable formulas.
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Now we form finite sequences out of for-

mulas (and, as a special case, out of liter-

als). We need to distinguish the sequences

formed out of literals from the sequences

formed out of other formulas, so we adopt

exactly the same notation as in the propo-

sitional case.

We denote by Γ
′
, ∆

′
, Σ

′
finite sequences (empty

included) formed out of literals i.e. out of

the elements of LIT i.e. we assume that

Γ
′
,∆

′
,Σ

′ ∈ LIT ∗.

We denote by Γ,∆,Σ the elements of F∗ i.e

the finite sequences (empty included) formed

out of elements of F.

We define the inference rules of QRS as fol-

lows.
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Group 1: Propositional Inference rules

Disjunction rules

(∪)
Γ
′
, A, B,∆

Γ′, (A ∪B),∆
, (¬∪)

Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ∪B),∆

Conjunction rules

(∩)
Γ
′
, A,∆ ; Γ

′
, B,∆

Γ′, (A ∩B),∆
, (¬∩)

Γ
′
,¬A,¬B,∆

Γ′,¬(A ∩B),∆
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Implication rules

(⇒)
Γ
′
,¬A, B,∆

Γ′, (A ⇒ B),∆
, (¬ ⇒)

Γ
′
, A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ⇒ B),∆

Negation rule

(¬¬)
Γ
′
, A,∆

Γ′,¬¬A,∆

where Γ
′ ∈ F∗,∆ ∈ F ′∗, A, B ∈ F .
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Group 2: Quantifiers Rules

(∃)
Γ
′
, A(t),∆, ∃xA(x)

Γ′, ∃xA(x),∆

where t is an arbitrary term.

(∀)
Γ
′
, A(y),∆

Γ′, ∀xA(x),∆

where y is a free individual variable which does

not appear in any formula in the conclu-

sion, i.e. in the sequence Γ
′
, ∀xA(x),∆.

The variable y in (∀) is called the eigenvari-

able.
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The condition: where y is a free individual

variable which does not appear in any for-

mula in the conclusion is called the eigen-

variable condition.

All occurrences of y in A(y) of the rule (∀)
are fully indicated.
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(¬∀)
Γ
′
, ∃x¬A(x),∆

Γ′,¬∀xA(x),∆

(¬∃)
Γ
′
, ∀x¬A(x),∆

Γ′,¬∃xA(x),∆

Γ
′ ∈ LIT ∗,∆ ∈ F∗, A, B ∈ F .

Note that A(t), A(y) denotes a formula ob-

tained from A(x) by writing t, y, respec-

tively, in place of all occurrences of x in

A.
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