CSE541 EXAMPLE 1: MIDTERM SOLUTIONS (75pts)

PART 1: DEFINITIONS TOTAL 10pts

DEF 1 Given a propositional language $\mathcal{L}_{C O N}$ for $C O N=C_{1} \cup C_{2}$, where C_{1} is the set of all unary connectives, and C_{2} is the set of all binary connectives

1. (1pts) Write the definition of the set \mathcal{F} of all formulas of $\mathcal{L}_{\text {CON }}$ for $C_{1}=\{\neg, K\}$ and $C_{2}=\{\cup\}$

Solution

$\mathcal{F} \subseteq \mathcal{A}^{*}$ and \mathcal{F} is the smallest set for which the following conditions are satisfied
(1) $V A R \subseteq \mathcal{F}$ - ATOMIC FORMULAS
(2) If $A \in \mathcal{F}$, then $\neg A \in \mathcal{F}$ and $K A \in \mathcal{F}$
(3) If $A, B \in \mathcal{F}$, then $(A \cup B) \in \mathcal{F}$
2. (1pts) Write an example of 4 formulas, each of a different degree, of the language $\mathcal{L}_{\{\neg, K, \cup\}}$

Solution

Here are, for example, formulas of the degree $0,1,2,3$, respectively

$$
a, \quad \neg a, \quad K \neg a, \quad K(a \cup \neg b)
$$

DEF 2 Given the language $\mathcal{L}_{\{\neg, K, \cup\}}$ and a M truth assignment $v: V A R \longrightarrow L V$, where $L V \neq \emptyset$ is the set of logical values on the extensional semantics \mathbf{M}. Let $T \in L V$ be its distinguished logical value.

1. (1pts) We say that a function v^{*} is the \mathbf{M} extension of v to the set \mathcal{F} of the language $\mathcal{L}_{\{\neg, K, \cup\}}$ if and only if the following conditions hold.

Solution

(i) for any $a \in V A R, v^{*}(a)=v(a)$; and
(ii) for any formulas $A, B \in \mathcal{F}$,

$$
v^{*}(\neg A)=\neg v^{*}(A), \quad v^{*}(K A)=K v^{*}(A), \quad \text { and } \quad v^{*}((A \cup B))=\cup\left(v^{*}(A), v^{*}(B)\right.
$$

We also use standard notation $\quad v^{*}((A \cup B))=v^{*}(A) \cup v^{*}(B)$
2. (1pts) We say that $\models_{\mathbf{M}} A$ if and only if

Solution

$$
v^{*}(A)=T \text { for all truth assignments } v: V A R \longrightarrow L V
$$

DEF 3 Given a language $\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}$ and its extensional semantics \mathbf{M}

1. (2pts) A formula $A \in \mathcal{F}$ is called \mathbf{M} independent from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if

Solution

the sets $\mathcal{G} \cup\{A\}$ and $\mathcal{G} \cup\{\neg A\}$ are both \mathbf{M} consistent.
I.e. when there are truth assignments v_{1}, v_{2} such that $v_{1} \models_{\mathbf{M}} \mathcal{G} \cup\{A\}$ and $v_{2} \models_{\mathbf{M}} \mathcal{G} \cup\{\neg A\}$.
2. (2pts) Give and example of a set $\mathcal{G} \subseteq \mathcal{F}$ and a formula $A \in \mathcal{F}$ that is classically independent from \mathcal{G}

Solution

Here is a very simple example: $\mathcal{G}=\{a\}$ and $A=b$
Let v_{1}, v_{2} be any truth assignments such that $v_{1}(a)=T, v_{1}(b)=T$ and $v_{2}(a)=T, v_{2}(b)=F$
Obviously, $\mathcal{G} \cup\{A\}=\{a, b\}$ and $\mathcal{G} \cup\{\neg A\}=\{a, \neg b\}$

$$
v_{1} \vDash\{a, b\} \quad \text { and } \quad v_{2} \vDash\{a, \neg b\}
$$

DEF 4 (2pts) Given a proof system $S=\left(\mathcal{L}_{\{\neg, \cup\}}, \mathcal{F}, L A, \mathcal{R}\right)$. We write $\mathbf{P}_{S}=\left\{A \in \mathcal{F}: \vdash_{S} A\right\}$
The proof system S is complete under a semantics \mathbf{M} if and only if the following condition holds.

Solution

$$
\mathbf{P}_{S}=\mathbf{T}_{M} \quad \text { for } \quad \mathbf{T}_{M}=\left\{A \in \mathcal{F}: \models_{\mathbf{M}} A\right\}
$$

PART 2: PROBLEMS (65 pts)

QUESTION 1 (25pts) By a m-valued semantics S_{m}, for a propositional language $\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ we understand any definition of connectives $\neg, \cap, \cup, \Rightarrow$ as operations on a set $L_{m}=\left\{l_{1}, l_{2}, \ldots l_{m}\right\}$ of logical values (for $m \geq 2$).
We assume that $l_{1} \leq l_{2} \leq \ldots \leq l_{m}$, i.e. the set $L_{m}=\left\{l_{1} \leq l_{2} \leq \ldots \leq l_{m}\right\}$ is totally ordered by a certain relation \leq with l_{1}, l_{m} being smallest and greatest elements, respectively. We denote $l_{1}=F, l_{m}=T$ and call them (total) False and Truth, respectively. For example, when $m=2, L_{2}=\{F, T\}, F \leq T$. Semantics S_{2} is called a classical semantics if the connectives are defined as $x \cup y=\max \{x, y\}, x \cap y=\min \{x, y\}, \neg T=F, \neg F=T$, and $x \Rightarrow y=\neg x \cup y$, for any $x, y \in L_{2}$.
Let $V A R$ be a set of propositional variables of \mathcal{L} and let S_{m} be any m-valued semantics for \mathcal{L}. A truth assignment $v: V A R \longrightarrow L_{m}$ is called a S_{m} model for a formula A of \mathcal{L} if and only if $v^{*}(A)=T$ and logical value $v^{*}(A)$ is evaluated accordingly to the semantics S_{m}. We denote is symbolically as $\nu \models_{S_{m}} A$.

1. Let S_{3} be a 3 -valued semantics for $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ defined as follows.
$L_{3}=\{F, U, T\}$, for $F \leq U \leq T$, and for any $x, y \in L_{3}$ we put $x \cap y=\min \{x, y\}, \quad x \Rightarrow y=\neg x \cup y$, where

U	F	U	T
F	F	U	T
U	U	U	U
T	T	U	T

\neg	F	U	T
	T	F	U

Consider the following classical tautologies: $\quad A_{1}=(A \cup \neg A), \quad A_{2}=(A \Rightarrow(B \Rightarrow A))$
(a) (5pts) Find S_{3} counter-models for A_{1}, A_{2}, if exist. Use shorthand notation.

Solution

Any v such that $v^{*}(A)=v^{*}(B)=U$ is a counter-model for both, A_{1} and A_{2}.
(b) (5pts) Define a 2-valued semantics C_{2} for \mathcal{L}, such that none of A_{1}, A_{2} is a S_{2} tautology. Verify your results. Use shorthand notation.

Solution

This is not the only solution, but it is the simplest and most obvious. Here it is.
We define $\neg x=F, x \Rightarrow y=F$ for all $x, y \in\{F, T\}$, and $x \cap y, x \cup y$ can be defined in the same, or another way,
as these connectives do not appear in our formulas.
2. Let $S=\left(\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, \mathbf{A 1}, \mathbf{A 2}, \mathbf{A 3}, M P\right)$ be a proof system with axioms:

A1 $(A \Rightarrow(B \Rightarrow A))$,
A2 $((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$,
A3 $((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B))$,
(a) (5pts) The system S is complete with respect to classical semantics.

Verify whether S is complete with respect to 3 -valued semantics S_{3}, defined in 1.

Solution

(This is a kind of a "free points" problem.
System S is not complete because it is not sound, as we have shown in 1.(a)
(b) (5pts) Define your own S_{2} semantics under which S is not sound.

Solution

This is not the only solution, but it is the simplest and most obvious. Here it is.
We define $x \Rightarrow y=F$ for all $x, y \in\{F, T\}$, and \neg in anyway, as for such defined \Rightarrow anv v is obviously a counter-model for A1 and in fact, for all axioms.
(c) (5pts) Define your own S_{n} semantics such that S is sound for all for $2 \leq n \leq m$

Solution

This is not, again the only solution, but it is the simplest and most obvious. Here it is.
Consider $n \in N$, such that $2 \leq n \leq m$. We define a semantics S_{n} as follows.
Let $L_{n}=\left\{l_{1}, l_{2}, \ldots l_{n}\right\}$ be the set of logical values of S_{n}. We put

$$
\neg x=T \quad \text { and } \quad x \Rightarrow y=T \quad \text { for all } x \in L_{n}
$$

QUESTION 2 (15pts)

S is the following proof system:

$$
S=\left(\mathcal{L}_{\{\Rightarrow, \cup, \neg\}}, \mathcal{F}, L A,\{(r 1),(r 2)\}\right)
$$

Logical Axioms

$L A ; \quad(a \Rightarrow(a \cup b)), \quad$ where $a, b \in V A R$
Rules of inference:

$$
(r 1) \frac{A ; B}{(A \cup \neg B)}, \quad(r 2) \frac{A ;(A \cup B)}{B} \quad \text { where } \quad A, B \in \mathcal{F}
$$

1. (10pts) Find a formal proof of $\neg(c \Rightarrow(c \cup a))$ in S, i. e. show that

$$
\vdash_{S} \neg(c \Rightarrow(c \cup a))
$$

Solution

The formal proof $\quad B_{1}, B_{2}, B_{3}, B_{4}$ of $\neg(c \Rightarrow(c \cup a))$ in S is as follows
$B_{1}: \quad(c \Rightarrow(c \cup a))$
Axiom LA for $a=c, b=a$
$B_{2}: \quad(c \Rightarrow(c \cup a))$
Axiom LA for $a=c, b=a$
$B_{3}: \quad((c \Rightarrow(c \cup a)) \cup \neg(c \Rightarrow(c \cup a)))$
Rule ($r 1$) application to B_{1} and B_{2}
$B_{4}: \quad \neg(c \Rightarrow(c \cup a))$
Rule ($r 2$) application to B_{1} and B_{3}
2. (5pts) Does above point 1. prove that $\vDash \neg(c \Rightarrow(c \cup a))$? Justify your answer

Solution

The system S is not sound. Consider rule ($r 2$).
Take any v, such that it evaluates $A=T$ and $B=F$.
The premiss $(A \cup B)$ of $(r 2)$ is T and the conclusion B is F.
Moreover, the proof $B_{1}, B_{2}, B_{3}, B_{4}$ of $((c \Rightarrow(c \cup a)) \cup \neg(c \Rightarrow(c \cup a)))$ used the rule (r2) that is not sound.

QUESTION 3 (10pts)

Consider any Hilbert proof system $S=\left(\mathcal{L}_{\{\mathrm{n}, \mathrm{\cup}, \Rightarrow, \neg\}}, \mathcal{F}, L A,\{M P\}\right)$ that is complete under classical classical semantics.
We define a set $C n(X)$ of all consequences of the set $X \subseteq \mathcal{F}$ as follows

$$
C n(X)=\left\{A \in F: X \vdash_{S} A\right\}
$$

i.e. $\operatorname{Cn}(X)$ is the set of all formulas that can be proved in S from the set $(L A \cup X)$ using the Modus Ponens rule MP as the only rule of inference

1. (5pts) Prove that for any $A, B \in F$ and any $X \subseteq F$,

$$
\text { if } A \in C n(X) \text { or } B \in C n(X), \quad \text { then } \quad(A \cup B) \in C n(X)
$$

Solution

Assume that $A \in C n(X)$ or $B \in C n(X)$.
We have, by the $\operatorname{Cn}(X)$ definition, that

$$
\text { (*) } X \vdash_{S} A \text { or } X \vdash_{S} B
$$

From Completeness of S, the fact that

$$
\vDash(A \Rightarrow(A \cup B)), \quad \vDash(B \Rightarrow(A \cup B))
$$

and from monotonicity of the Cn operation we get that

$$
\text { (**) } \quad X \vdash_{S}(A \Rightarrow(A \cup B)) \text { and } \quad X \vdash_{S}(B \Rightarrow(A \cup B))
$$

Applying the Modus Ponens rule MP to $(*)$ and $(* *)$ we get $X \vdash_{S}(A \cup B)$.
This proves

$$
X \vdash_{S}(A \Rightarrow(A \cup B))
$$

2. (5pts) Prove that the inverse implication to 2. does not hold, i.e. prove that it is not true that for any $A, B \in F$ and any $X \subseteq F$,

$$
\text { if } \quad(A \cup B) \in C n(X), \quad \text { then } \quad A \in C n(X) \text { or } B \in C n(X)
$$

Solution

We have to show that there are $A, B \in F$ and $X \subseteq F$, such that

$$
(A \cup B) \in \operatorname{Cn}(X), \quad \text { and } \quad A \notin \operatorname{Cn}(X) \text { and } \quad B \notin \operatorname{Cn}(X)
$$

This is not the only solution, but it is the simplest and most obvious counter - example Here it is.
Take $A=a, B=\neg a$ and $X=\emptyset$
Obviously, in classical semantics $\vDash(a \cup \neg a)$ and $\not \vDash a$ and $\not \vDash \neg a$
By the completeness of S we get

$$
\vdash_{S}(a \cup \neg a) \quad \text { and } \quad \vdash_{S} a \text { and } \quad \vdash_{S} \neg a
$$

This proves that

$$
(a \cup \neg a) \in C n(\emptyset), \quad \text { and } \quad a \notin C n(\emptyset) \quad \text { and } \quad \notin C n(\emptyset)
$$

Remark

By the monotonicity argument we get that $A=a, B=\neg a$ and X any subset of \mathcal{F} is also a counter - example

QUESTION 4 (15pts)

Consider the Hilbert system $H 1=\left(\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F},\{A 1, A 2\},(M P) \frac{A ;(A \Rightarrow B)}{B}\right)$ where for any $A, B \in \mathcal{F}$
$A 1 ; \quad(A \Rightarrow(B \Rightarrow A)), \quad A 2: \quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$.

1. (10pts) The Deduction Theorem holds for $H 1$.

Use the Deduction Theorem to show that $\quad(A \Rightarrow(C \Rightarrow B)) \vdash_{H 1}(C \Rightarrow(A \Rightarrow B))$

Solution

We apply the Deduction Theorem twice, i.e. we get
$(A \Rightarrow(C \Rightarrow B)) \vdash_{H}(C \Rightarrow(A \Rightarrow B))$ if and only if
$(A \Rightarrow(C \Rightarrow B)), C \vdash_{H}(A \Rightarrow B)$ if and only if
$(A \Rightarrow(C \Rightarrow B)), C, A \vdash_{H} B$
We now construct a proof of $(A \Rightarrow(C \Rightarrow B)), C, A \vdash_{H} B$ as follows
$B_{1}: \quad(A \Rightarrow(C \Rightarrow B)) \quad$ hypothesis
B_{2} : C hypothesis
B_{3} : A hypothesis
$B_{4}: \quad(C \Rightarrow B) \quad B_{1}, B_{3}$ and (MP)
$B_{5}: \quad B \quad B_{2}, B_{4}$ and (MP)
2. (5pts) Explain why 1. proves that $(\neg a \Rightarrow((b \Rightarrow \neg a) \Rightarrow b)) \vdash_{H 1}((b \Rightarrow \neg a) \Rightarrow(\neg a \Rightarrow b))$.

Solution

This is 1. for $A=\neg a, C=(b \Rightarrow \neg a)$, and $B=b$.

