CSE541 EXAMPLE 1: MIDTERM SOLUTIONS (75pts)

PART 1: DEFINITIONS TOTAL 10pts

DEF 1 Given a propositional language \mathcal{L}_{CON} for $CON = C_1 \cup C_2$, where C_1 is the set of all unary connectives,

and C_2 is the set of all binary connectives

1. (1pts) Write the **definition** of the set \mathcal{F} of **all formulas** of \mathcal{L}_{CON} for $C_1 = \{\neg, K\}$ and $C_2 = \{\cup\}$

Solution

 $\mathcal{F} \subseteq \mathcal{R}^*$ and \mathcal{F} is the **smallest** set for which the following conditions are satisfied

(1) $VAR \subseteq \mathcal{F}$ - ATOMIC FORMULAS

(2) If $A \in \mathcal{F}$, then $\neg A \in \mathcal{F}$ and $KA \in \mathcal{F}$

(3) If $A, B \in \mathcal{F}$, then $(A \cup B) \in \mathcal{F}$

2. (1pts) Write an **example** of 4 formulas, each of a different degree, of the language $\mathcal{L}_{\{\neg, K, \cup\}}$

Solution

Here are, for example, formulas of the degree 0, 1, 2, 3, respectively

 $a, \neg a, K \neg a, K(a \cup \neg b)$

- **DEF 2** Given the language $\mathcal{L}_{\{\neg, K, \cup\}}$ and a **M** truth assignment $v : VAR \longrightarrow LV$, where $LV \neq \emptyset$ is the set of logical values on the **extensional** semantics **M**. Let $T \in LV$ be its **distinguished** logical value.
- **1.** (1pts) We say that a function v^* is the **M extension** of v to the set \mathcal{F} of the language $\mathcal{L}_{\{\neg, K, \cup\}}$ if and only if the following conditions hold.

Solution

- (i) for any $a \in VAR$, $v^*(a) = v(a)$; and
- (ii) for any formulas $A, B \in \mathcal{F}$,

 $v^*(\neg A) = \neg v^*(A), \quad v^*(KA) = Kv^*(A), \text{ and } v^*((A \cup B)) = \cup (v^*(A), v^*(B))$

We also use standard notation $v^*((A \cup B)) = v^*(A) \cup v^*(B)$

2. (1pts) We say that $\models_{\mathbf{M}} A$ if and only if

Solution

 $v^*(A) = T$ for all truth assignments $v : VAR \longrightarrow LV$

DEF 3 Given a language $\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$ and its **extensional** semantics **M**

1. (2pts) A formula $A \in \mathcal{F}$ is called **M independent** from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if

Solution

the sets $\mathcal{G} \cup \{A\}$ and $\mathcal{G} \cup \{\neg A\}$ are both **M** consistent.

I.e. when there are truth assignments v_1 , v_2 such that $v_1 \models_{\mathbf{M}} \mathcal{G} \cup \{A\}$ and $v_2 \models_{\mathbf{M}} \mathcal{G} \cup \{\neg A\}$.

2. (2pts) Give and example of a set $\mathcal{G} \subseteq \mathcal{F}$ and a formula $A \in \mathcal{F}$ that is **classically independent** from \mathcal{G}

Solution

Here is a very simple example: $\mathcal{G} = \{a\}$ and A = b

Let v_1 , v_2 be any truth assignments such that $v_1(a) = T$, $v_1(b) = T$ and $v_2(a) = T$, $v_2(b) = F$

Obviously, $\mathcal{G} \cup \{A\} = \{a, b\}$ and $\mathcal{G} \cup \{\neg A\} = \{a, \neg b\}$

 $v_1 \models \{a, b\}$ and $v_2 \models \{a, \neg b\}$

DEF 4 (2pts) Given a proof system $S = (\mathcal{L}_{\{\neg, \cup\}}, \mathcal{F}, LA, \mathcal{R})$. We write $\mathbf{P}_S = \{A \in \mathcal{F} : \vdash_S A \}$

The proof system S is **complete** under a semantics **M** if and only if the following condition holds.

Solution

$$\mathbf{P}_S = \mathbf{T}_M$$
 for $\mathbf{T}_M = \{A \in \mathcal{F} : \models_{\mathbf{M}} A\}$

PART 2: PROBLEMS (65 pts)

QUESTION 1 (25pts) By a m-valued semantics S_m , for a propositional language $\mathcal{L} = \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ we understand any definition of connectives $\neg, \cap, \cup, \Rightarrow$ as operations on a set $L_m = \{l_1, l_2, ..., l_m\}$ of logical values (for $m \ge 2$).

We assume that $l_1 \le l_2 \le ... \le l_m$, i.e. the set $L_m = \{l_1 \le l_2 \le ... \le l_m\}$ is totally ordered by a certain relation \le with l_1 , l_m being smallest and greatest elements, respectively. We denote $l_1 = F$, $l_m = T$ and call them (total) False and Truth, respectively. For example, when m = 2, $L_2 = \{F, T\}$, $F \le T$. Semantics S_2 is called a classical semantics if the connectives are defined as $x \cup y = max\{x, y\}$, $x \cap y = min\{x, y\}$, $\neg T = F$, $\neg F = T$, and $x \Rightarrow y = \neg x \cup y$, for any $x, y \in L_2$.

Let *VAR* be a set of propositional variables of \mathcal{L} and let S_m be any m-valued semantics for \mathcal{L} . A truth assignment $v : VAR \longrightarrow L_m$ is called a S_m model for a formula A of \mathcal{L} if and only if $v^*(A) = T$ and logical value $v^*(A)$ is evaluated accordingly to the semantics S_m . We denote is symbolically as $v \models_{S_m} A$.

1. Let S_3 be a 3-valued semantics for $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ defined as follows.

 $L_3 = \{F, U, T\}$, for $F \le U \le T$, and for any $x, y \in L_3$ we put $x \cap y = min\{x, y\}, x \Rightarrow y = \neg x \cup y$, where

U	F	U	Т
F	F	U	Т
U	U	U	U
Т	Т	U	Т
	•		
-	F	U	Т
	Т	F	U

Consider the following classical tautologies: $A_1 = (A \cup \neg A), \quad A_2 = (A \Rightarrow (B \Rightarrow A))$

(a) (5pts) Find S_3 counter-models for A_1, A_2 , if exist. Use shorthand notation.

Solution

Any *v* such that $v^*(A) = v^*(B) = U$ is a counter-model for both, A_1 and A_2 .

(b) (5pts) Define a 2-valued semantics C_2 for \mathcal{L} , such that **none of** A_1, A_2 is a S_2 tautology. Verify your results. Use shorthand notation.

Solution

This is not the only solution, but it is the simplest and most obvious. Here it is.

We define $\neg x = F$, $x \Rightarrow y = F$ for all $x, y \in \{F, T\}$, and $x \cap y$, $x \cup y$ can be defined in the same, or another way,

as these connectives do not appear in our formulas.

2. Let $S = (\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, \mathbf{A1}, \mathbf{A2}, \mathbf{A3}, MP)$ be a proof system with axioms:

- A1 $(A \Rightarrow (B \Rightarrow A)),$
- A2 $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$
- **A3** $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)),$
- (a) (5pts) The system S is complete with respect to classical semantics.

Verify whether S is complete with respect to 3-valued semantics S_3 , defined in 1.

Solution

(This is a kind of a "free points" problem.

System S is **not complete** because it is **not sound**, as we have shown in **1**.(a)

(b) (5pts) Define your own S_2 semantics under which S is not sound.

Solution

This is not the only solution, but it is the simplest and most obvious. Here it is.

- We define $x \Rightarrow y = F$ for all $x, y \in \{F, T\}$, and \neg in anyway, as for such defined \Rightarrow any v is obviously a counter-model for A1 and in fact, for all axioms.
- (c) (5pts) Define your own S_n semantics such that S is sound for all for $2 \le n \le m$

Solution

This is not, again the only solution, but it is the simplest and most obvious. Here it is.

Consider $n \in N$, such that $2 \le n \le m$. We define a semantics S_n as follows.

Let $L_n = \{l_1, l_2, ... l_n\}$ be the set of logical values of S_n . We put

$$\neg x = T$$
 and $x \Rightarrow y = T$ for all $x \in L_n$

QUESTION 2 (15pts)

S is the following proof system:

 $S = (\mathcal{L}_{\{\Rightarrow, \cup, \neg\}}, \mathcal{F}, LA, \{(r1), (r2)\})$

Logical Axioms

LA;
$$(a \Rightarrow (a \cup b))$$
, where $a, b \in VAR$

Rules of inference:

$$(r1) \frac{A; B}{(A \cup \neg B)},$$
 $(r2) \frac{A; (A \cup B)}{B}$ where $A, B \in \mathcal{F}$

1. (10pts) Find a formal proof of $\neg(c \Rightarrow (c \cup a))$ in S, i. e. show that

$$\vdash_S \neg (c \Rightarrow (c \cup a))$$

Solution

The formal proof B_1, B_2, B_3, B_4 of $\neg(c \Rightarrow (c \cup a))$ in S is as follows

 B_1 : $(c \Rightarrow (c \cup a))$

Axiom LA for a = c, b = a

 B_2 : $(c \Rightarrow (c \cup a))$

Axiom LA for a = c, b = a

*B*₃: $((c \Rightarrow (c \cup a)) \cup \neg(c \Rightarrow (c \cup a)))$

Rule (r1) application to B_1 and B_2

 $B_4: \neg (c \Rightarrow (c \cup a))$

Rule (r2) application to B_1 and B_3

2. (5pts) Does above point **1.** prove that $\models \neg(c \Rightarrow (c \cup a))$? Justify your answer

Solution

The system S is not sound. Consider rule (r2).

Take any v, such that it evaluates A = T and B = F.

The premiss $(A \cup B)$ of (r^2) is T and the conclusion B is F.

Moreover, the proof B_1 , B_2 , B_3 , B_4 of $((c \Rightarrow (c \cup a)) \cup \neg (c \Rightarrow (c \cup a)))$ used the rule (r^2) that is not sound.

QUESTION 3 (10pts)

Consider any Hilbert proof system $S = (\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}, \mathcal{F}, LA, \{MP\})$ that is **complete** under classical classical semantics. We define a set Cn(X) of all **consequences** of the set $X \subseteq \mathcal{F}$ as follows

$$Cn(X) = \{A \in F : X \vdash_S A\}$$

i.e. Cn(X) is the set of all formulas that can be proved in *S* from the set $(LA \cup X)$ using the Modus Ponens rule MP as the only rule of inference

1. (5pts) Prove that for any $A, B \in F$ and any $X \subseteq F$,

if
$$A \in Cn(X)$$
 or $B \in Cn(X)$, then $(A \cup B) \in Cn(X)$

Solution

Assume that $A \in Cn(X)$ or $B \in Cn(X)$.

We have, by the Cn(X) definition, that

(*)
$$X \vdash_S A$$
 or $X \vdash_S B$

From Completeness of *S*, the fact that

$$\models (A \Rightarrow (A \cup B)), \quad \models (B \Rightarrow (A \cup B))$$

and from monotonicity of the Cn operation we get that

(**)
$$X \vdash_S (A \Rightarrow (A \cup B))$$
 and $X \vdash_S (B \Rightarrow (A \cup B))$

Applying the Modus Ponens rule MP to (*) and (**) we get $X \vdash_S (A \cup B)$.

This proves

$$X \vdash_S (A \Rightarrow (A \cup B))$$

2. (5pts) Prove that the inverse implication to 2. does not hold, i.e. prove that it is not true that for any $A, B \in F$ and any $X \subseteq F$,

if $(A \cup B) \in Cn(X)$, then $A \in Cn(X)$ or $B \in Cn(X)$

Solution

We have to show that **there are** $A, B \in F$ and $X \subseteq F$, such that

$$(A \cup B) \in Cn(X)$$
, and $A \notin Cn(X)$ and $B \notin Cn(X)$

This is not the only solution, but it is the simplest and most obvious counter - example Here it is.

Take A = a, $B = \neg a$ and $X = \emptyset$

Obviously, in classical semantics $\models (a \cup \neg a)$ and $\not\models a$ and $\not\models \neg a$

By the **completeness** of *S* we get

 $\vdash_S (a \cup \neg a)$ and $\nvDash_S a$ and $\nvDash_S \neg a$

This proves that

 $(a \cup \neg a) \in Cn(\emptyset)$, and $a \notin Cn(\emptyset)$ and $\notin Cn(\emptyset)$

Remark

By the monotonicity argument we get that A = a, $B = \neg a$ and X any subset of \mathcal{F} is also a **counter - example**

QUESTION 4 (15pts)

Consider the Hilbert system $H1 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \frac{A; (A \Rightarrow B)}{B})$ where for any $A, B \in \mathcal{F}$

 $A1; \ (A \Rightarrow (B \Rightarrow A)), \quad A2: \ ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))).$

1. (10pts) The **Deduction Theorem** holds for *H*1.

Use the **Deduction Theorem** to show that $(A \Rightarrow (C \Rightarrow B)) \vdash_{H1} (C \Rightarrow (A \Rightarrow B))$

Solution

We apply the **Deduction Theorem** twice, i.e. we get

 $(A \Rightarrow (C \Rightarrow B)) \vdash_H (C \Rightarrow (A \Rightarrow B))$ if and only if

 $(A \Rightarrow (C \Rightarrow B)), C \vdash_H (A \Rightarrow B)$ if and only if

$$(A \Rightarrow (C \Rightarrow B)), C, A \vdash_H B$$

We now construct a proof of $(A \Rightarrow (C \Rightarrow B)), C, A \vdash_H B$ as follows

 B_1 : $(A \Rightarrow (C \Rightarrow B))$ hypothesis

- B_2 : C hypothesis
- B_3 : A hypothesis
- $B_4: (C \Rightarrow B) \quad B_1, B_3 \text{ and } (MP)$
- B_5 : B B_2 , B_4 and (MP)

2. (5pts) Explain why **1.** proves that $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)) \vdash_{H1} ((b \Rightarrow \neg a) \Rightarrow (\neg a \Rightarrow b)).$

Solution

This is **1.** for $A = \neg a$, $C = (b \Rightarrow \neg a)$, and B = b.