cse541
 LOGIC for COMPUTER SCIENCE

Professor Anita Wasilewska

LECTURE 2a

Chapter 2

Introduction to Classical Logic Languages and Semantics

Chapter 2
 Introduction to Classical Logic Languages and Semantics

Lecture 2a
Part 1: Classical Logic Model
Part 2: Propositional Language
Part 3: Propositional Semantics
Part 4: Examples of Propositional Tautologies
Lecture 2b
Part 5: Predicate Language
Part 6: Predicate Tautologies- Laws for Quantifiers

Very Short History

Logic Origins: Stoic school of philosophy (3rd century B.C.), with the most eminent representative was Chryssipus.

Modern Origins: Mid-19th century
English mathematician G. Boole, who is sometimes regarded as the founder of mathematical logic

First Axiomatic System: 1879 by German logician G. Frege.

Chapter 2
Introduction to Classical Logic Languages and Semantics

Part 1: Classical Logic Model

Logic

Logic builds symbolic models of our world

Logic builds the models in order to describe formally the ways we reason in and about our world

Logic also poses questions about correctness of such models and develops tools to answer them

Classical Model Assumptions

Assumption 1

Classical logic model admits only two logical values

Why two logical values only?

Classical logic was created to model the reasoning principles of mathematics

We expect from mathematical theorems to be always either true or false and the reasonings leading to them should guarantee this without any ambiguity

Classical Model Assumptions

Assumption 2

1. The language in which we reason uses sentences
2. The sentences are build up from basic assertions about the world using special words or phrases:
"not", "not true" "and", "or", " implies", "if then", "from the fact that we can deduce", " if and only if", "equivalent", "every", "for all", "any", "some"," exists"
3. We use symbols do denote basic assertions and special words or phrases

Hence the name symbolic logic

Logic

Logic studies the behavior of the special words and phrases Special words and phrases have accepted intuitive meanings

Logic builds models to formalize these intuitive meanings

To do so we first define formal symbolic languages and then define a formal meaning of their symbols

The formal meaning is called semantics

Propositional Connectives

The symbols for he special words and phrases are called propositional connectives
There are different choices of symbols for the propositional connectives; we adopt the following:
\neg for "not", "not true"
\cap for "and"
\cup for "or"
\Rightarrow for " implies" , "if then", "from the fact that... we can deduce"
\Leftrightarrow for " if and only if", "equivalent"
The names for the propositional connectives are:
\neg negation
\cap conjunction, \cup disjunction
\Rightarrow implication and \Leftrightarrow equivalence.

Propositional Logic

Restricting our attention to the role of propositional connectives yields to what is called propositional logic
The basic components of the propositional logic are a propositional language and a propositional semantics The propositional logic is a quite simple model to justify, describe and develop
We will devote first few chapters to it
We do it both for its own sake and because it provides a good background for developing and understanding more difficult logics to follow

Quantifiers and Predicate Logic

We use symbols:
\forall for "every", "any", "all"
ヨ for "some"," exists", "there is"
The symbols \forall, \exists are called quantifiers
Consideration and study of the role of propositional connectives and quantifiers leads to what is called a predicate logic
The basic components of the predicate logic are predicate language and predicate semantics

The predicate logic is a much more complicated model We develop and study it in full formality in chapters following the introduction and examination of the propositional logic model

Chapter 2

Introduction to Classical Logic Languages and Semantics

Part 2: Propositional Language

Propositional Language

Propositional language is a quite simple, symbolic language into which we can translate (represent) sentences of a natural language

Example

Consider natural language sentence
" If $2+2=5$, then $2+2=4$ "
We translate it into the propositional language as follows
We denote the basic assertion (proposition) " $2+2=5$ " by
a variable, let's say a, and the proposition " $2+2=4$ " by a variable b
We write a connective \Rightarrow for "if then"
As a result we obtain a propositional language formula

$$
(a \Rightarrow b)
$$

Propositional Translation

Exercise

Translate a natural language sentence \mathbf{S}
"The fact that it is not true that at the same time $2+2=4$ and $2+2=5$ implies that $2+2=4$ "
into a corresponding propositional language formula
We carry the translation as follows

1. We identify all words and phrases representing the logical connectives and we re-write the sentence \mathbf{S} in a simpler form introducing parenthesis to better express its meaning

Propositional Translation

The sentence S becomes:
" If not $(2+2=4$ and $2+2=5)$ then $2+2=4$ "
2.

We identify the basic assertions (propositions) and assign propositional variables to them:

$$
a: " 2+2=4 " \text { and } b: " 2+2=5 "
$$

Step 3

We write the propositional language formula:

$$
(\neg(a \cap b) \Rightarrow a)
$$

Syntax

A formal description of symbols and the definition of the set of formulas is called a syntax of a symbolic language
We use the word syntax to stress that the formulas do not carry neither formal meaning nor a logical value We assign the meaning and logical value to syntactically defined formulas in a separate step
This next, separate step is called a semantics of the given symbolic language
A given symbolic language can have different semantics and the different semantics can define different logics

Natural Languages

One can think about a natural language as a set \mathcal{W} of all words and sentences based on a given alphabet \mathcal{A}
This leads to a simple, abstract model of a natural language NL as a pair

$$
N L=(\mathcal{A}, \mathcal{W})
$$

Some natural languages share the same alphabet, some have different alphabets.
All of them face serious problems with a proper recognition and definitions of accepted words and complex sentences

Symbolic Languages

We do not want the symbolic languages to share the difficulties of the natural languages
We define their components precisely and in such a way that their recognition and correctness will be easily decided
We call their words and sentences formulas and denote the set of all formulas by \mathcal{F}
We define a symbolic language as a pair

$$
S L=(\mathcal{A}, \mathcal{F})
$$

Symbolic Languages Categories

We distinguish two categories of symbolic languages:

propositional and predicate

We define first the propositional language

The definition of the predicate language, with its much more complicated structure will follow

Propositional Language Definition

Definition

By a propositional language \mathcal{L} we understand a pair

$$
\mathcal{L}=(\mathcal{A}, \mathcal{F})
$$

where \mathcal{A} is called propositional alphabet
\mathcal{F} is called a set of all well formed formulas

Language Components: Alphabet

1. Alphabet \mathcal{A}

The alphabet \mathcal{A} consists of
a countably infinite set VAR of propositional variables, a finite set of propositional connectives, and a set of two parenthesis
We denote the propositional variables by letters

$$
a, b, c, p, q, r, \ldots \ldots .
$$

with indices if necessary. It means that we can also use

$$
a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots
$$

as symbols for propositional variables

Language Components: Alphabet

Propositional connectives are:

$$
\neg, \cap, \cup, \Rightarrow, \Leftrightarrow
$$

The connectives have well established names
The connectives names are:
negation, conjunction, disjunction, implication, and equivalence (biconditional)
for the connectives $\neg, \cap, \cup, \Rightarrow$, and \Leftrightarrow, respectively

Parenthesis are symbols (and)

Language Components: Formulas

Formulas are expressions build by means of elements of the alphabet \mathcal{A}. We denote formulas by capital letters
$A, B, C, D, \ldots .$. , with indices, if necessary.
The set \mathcal{F} of all formulas of the propositional language \mathcal{L} is defined recursively as follows

1. Base step: all propositional variables are are formulas

They are called atomic formulas
2. Recursive step: for any already defined formulas A, B, the expressions

$$
\neg A,(A \cap B),(A \cup B),(A \Rightarrow B),(A \Leftrightarrow B)
$$

are also formulas
3. Only those expressions are formulas that are determined to be so by means of conditions $\mathbf{1}$. and 2 .

Formulas Example

By the definition, any propositional variable is a formula. Let's take two variables a and b.

By the recursive step we get that

$$
(a \cap b),(a \cup b),(a \Rightarrow b),(a \Leftrightarrow b), \neg a, \neg b
$$

are formulas
The recursive step applied again produces for example formulas:

$$
\neg(a \cap b), \quad((a \Leftrightarrow b) \cup \neg b), \quad \neg \neg a, \quad \neg \neg(a \cap b)
$$

Formulas

Observe that we listed only few formulas obtained in the first recursive step

As as the recursive process continue we obtain a set of well formed of formulas

The set of all formulas is countably infinite

Formulas

Remark that we put parenthesis within the formulas in a way to avoid ambiguity
The expression

$$
a \cap b \cup a
$$

is ambiguous
We don't know whether it represents a formula

$$
(a \cap b) \cup a \text { or a formula } a \cap(b \cup a)
$$

Observe that neither of formulas $a \cap b \cup a,(a \cap b) \cup a$ or $a \cap(b \cup a)$ is a well formed formula

Exercises

Exercise

Consider a following set

$$
\mathcal{S}=\{\neg a \Rightarrow(a \cup b),((\neg a) \Rightarrow(a \cup b)), \neg(a \Rightarrow(a \cup b)),(a \rightarrow a)\}
$$

1. Determine which of the elements of \mathcal{S} are, and which are not well formed formulas of $\mathcal{L}=(\mathcal{A}, \mathcal{F})$
2. For any $A \notin \mathcal{F}$ re-write it as a correct formula and write what it says in the natural language

Exercises

Solution

The formula $\neg a \Rightarrow(a \cup b)$ is not a well formed formula
A corrected formula is $(\neg a \Rightarrow(a \cup b))$
It says: "If a is not true, then we have a or b"
Another corrected formula in is $\neg(a \Rightarrow(a \cup b))$
It says: "It is not true that a implies a or b"

Exercises

Solution

The formula $((\neg a) \Rightarrow(a \cup b))$ is not correct because $(\neg a) \notin \mathcal{F}$
The correct formula is $(\neg a \Rightarrow(a \cup b))$
The formula $\neg(a \Rightarrow(a \cup b))$ is correct
The formula $\neg(a \rightarrow a) \notin \mathcal{F}$ is not correct
The connective \rightarrow does not belong to the language \mathcal{L}
$\neg(a \rightarrow a)$ is a correct formula of another propositional language; the one that uses a symbol \rightarrow for implication

Exercises

Exercise

Write following natural language statement:
"One likes to play bridge or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes swimming"
as a formula of the propositional language $\mathcal{L}=(\mathcal{A}, \mathcal{F})$

Solution

First we identify the needed components of the alphabet \mathcal{A} :
propositional variables: a, b, c
a denotes statement: one likes to play bridge, b denotes a statement: the weather is good, c denotes a statement: one likes swimming
Connectives: $\cup, \Rightarrow, \cup . \neg$
The corresponding formula of \mathcal{L} is

$$
(a \cup(b \Rightarrow(\neg a \cup c)))
$$

Symbols for Connectives

The connectives symbols we use are not the only one used in mathematical, logical, or computer science literature Some Other Symbols

Negation	Disjunction	Conjunction	Implication	Equivalence
$-A$	$(A \cup B)$	$(A \cap B)$	$(A \Rightarrow B)$	$(A \Leftrightarrow B)$
$N A$	$D A B$	$A A B$	$I A B$	$E A B$
\bar{A}	$(A \vee B)$	$(A \& B)$	$(A \rightarrow B)$	$(A \leftrightarrow B)$
$\sim A$	$(A \vee B)$	$(A \cdot B)$	$(A \supset B)$	$(A \equiv B)$
A^{\prime}	$(A+B)$	$(A \cdot B)$	$(A \rightarrow B)$	$(A \equiv B)$

The first notation is the closest to ours and is drawn mainly from the algebra of sets and lattice theory
The second comes from the Polish logician J. Łukasiewicz and is called the Polish notation

The third was used by D. Hilbert.
The fourth comes from Peano and Russell
The fifth goes back to Schröder and Pierce

Chapter 2

Introduction to Classical Logic Languages and Semantics

Part 3: Propositional Semantics

Propositional Semantics

We present now definitions of propositional connectives in terms of two logical values true or false and discuss their motivations

The resulting definitions are called a semantics for the classical propositional connectives

The semantics presented here is fairly informal

The formal definition of classical propositional semantics is presented in chapter 3

Conjunction: Motivation and Definition

Conjunction

A conjunction $(A \cap B)$ is a true formula if both A and B are true formulas

If one of the formulas, or both, are false, then the conjunction is a false formula

Let's denote statement: "formula A is false " by $A=F$ and a statement: "formula A is true " by $A=T$

Conjunction: Definition

Conjunction

The logical value of a conjunction depends on the logical values of its factors in a way which is express in the form of the following table (truth table)
Conjunction Table

A	B	$(A \cap B)$
T	T	T
T	F	F
F	T	F
F	F	F

Disjunction

Disjunction

The word or is used in natural language in two different senses.
First: A or B is true if at least one of the statements A, B is true
Second: A or B is true if one of the statements A and B is true and the other is false

In mathematics and hence in logic, the word or is used in the first sense

Disjunction: Definition

Disjunction

We adopt the convention that a disjunction $(A \cup B)$ is true if at least one of the formulas A, B is true
Disjunction Table

A	B	$(A \cup B)$
T	T	T
T	F	T
F	T	T
F	F	F

Negation: Definition

Negation

The negation of a true formula is a false formula, and the negation of a false formula is a true formula

Negation Table

A	$\neg A$
T	F
F	T

Implication: Motivation and Definition

The semantics of the statements in the form
if A, then B
needs a little bit more discussion.
In everyday language a statement if A, then B is interpreted to mean that B can be inferred from A.
In mathematics its interpretation differs from that in natural language

Implication: Motivation and Definition

Consider the following
Theorem
For every natural number n, if 6 DIVIDES n, then 3 DIVIDES n
The theorem is true for any natural number, hence in particular, it is true for numbers $2,3,6$
Consider number 2
The following proposition is true

$$
\text { if } 6 \text { DIVIDES 2, then } 3 \text { DIVIDES } 2
$$

It means an implication $(A \Rightarrow B)$ in which A and B are false is interpreted as a true statement

Implication: Motivation and Definition

Consider now a number 3
The following proposition is true
if 6 DIVIDES 3 , then 3 DIVIDES 3,
It means that an implication $(A \Rightarrow B)$ in which A is false and B is true is interpreted as a true statement
Consider now a number 6
The following proposition is true

$$
\text { if } 6 \text { DIVIDES 6, then } 3 \text { DIVIDES } 6 .
$$

It means that an implication $(A \Rightarrow B)$ in which A and B are true is interpreted as a true statement

Implication: Motivation and Definition

One more case.
What happens when in the implication $(A \Rightarrow B)$ the formula A is true and the formula B is false

Consider a sentence
if 6 DIVIDES 12, then 6 DIVIDES 5.
Obviously, this is a false statement

Implication: Definition

Implication

The above examples justify adopting the following definition of a semantics for the implication $(A \Rightarrow B)$ Implication Table

A	B	$(A \Rightarrow B)$
T	T	T
T	F	F
F	T	T
F	F	T

Equivalence Definition

Equivalence

An equivalence $(A \Leftrightarrow B)$ is true if both formulas A and B have the same logical value
Equivalence Table

A	B	$(A \Leftrightarrow B)$
T	T	T
T	F	F
F	T	F
F	F	T

Truth Tables Semantics

We summarize the tables for propositional connectives in the following one table.
We call it a truth table definition of propositional; connectives and hence we call the semantics defined here a truth tables semantics.

A	B	$\neg A$	$(A \cap B)$	$(A \cup B)$	$(A \Rightarrow B)$	$(A \Leftrightarrow B)$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Truth Tables Semantics

The truth tables indicate that the logical value of of propositional connectives independent of the formulas A, B We write the connectives in a "formula independent" form as a set of of the following equations

$$
\begin{aligned}
& \neg T=F, \quad \neg F=T ; \\
& (T \cap T)=T, \quad(T \cap F)=F, \quad(F \cap T)=F, \quad(F \cap F)=F ; \\
& (T \cup T)=T, \quad(T \cup F)=T, \quad(F \cup T)=T, \quad(F \cup F)=F ; \\
& (T \Rightarrow T)=T, \quad(T \Rightarrow F)=F, \quad(F \Rightarrow T)=T, \quad(F \Rightarrow F)=T ; \\
& (T \Leftrightarrow T)=T, \quad(T \Leftrightarrow F)=F, \quad(F \Leftrightarrow T)=F, \quad(T \Leftrightarrow T)=T
\end{aligned}
$$

We use the above set of connectives equations to evaluate logical values of formulas

Exercise

Exercise

Show that $\quad(A \Rightarrow(\neg A \cap B))=F \quad$ for the following logical values of its basic components: $A=T$ and $B=F$

Solution

We calculate the logical value of the formula

$$
(A \Rightarrow(\neg A \cap B))
$$

by substituting the respective logical values T , F for the component formulas A, B and applying the set of connectives equations as follows

$$
(T \Rightarrow(\neg T \cap F))=(T \Rightarrow(F \cap F))=(T \Rightarrow F)=F
$$

Extensional Connectives

Extensional connectives are the connectives that have the following property:
the logical value of the formulas form by means of these connectives and certain given formulas depends only on the logical value(s) of the given formulas

All classical propositional connectives

$$
\neg, \cup, \cap, \Rightarrow, \Leftrightarrow
$$

are extensional

Propositional Connectives

Remark

In everyday language there are expressions such as
"I believe that", "it is possible that", " certainly", etc....
They are represented by some propositional connectives which are not extensional

They do not play any role in mathematics and so are not discussed in classical logic, they belong to non-classical logics

All Extensional Two Valued Connectives

There are many other binary (two valued) extensional propositional connectives
Here is a table of all unary connectives

A	$\nabla_{1} A$	$\nabla_{2} A$	$\neg A$	$\nabla_{4} A$
T	F	T	F	T
F	F	F	T	T

All Extensional Binary Connectives

Here is a table of all binary connectives

A	B	$\left(A \circ_{1} B\right)$	$(A \cap B)$	$\left(A \circ_{3} B\right)$	$\left(A \circ_{4} B\right)$
T	T	F	T	F	F
T	F	F	F	T	F
F	T	F	F	F	T
F	F	F	F	F	F
A	B	$(A \downarrow B)$	$\left(A{ }_{6} B\right)$	$\left(A \circ_{7} B\right)$	$(A \Leftrightarrow B)$
T	T	F	T	T	T
T	F	F	T	F	F
F	T	F	F	T	F
F	F	T	F	F	T
A	B	$\left(A{ }_{9} B\right)$	$\left(A \circ_{10} B\right)$	$\left(A \circ_{11} B\right)$	$(A \cup B)$
T	T	F	F	F	T
T	F	T	T	F	T
F	T	T	F	T	T
F	F	F	T	T	F
A	B	$\left(A \circ_{13} B\right)$	$(A \Rightarrow B)$	$(A \uparrow B)$	$\left(A \circ_{16} B\right)$
T	T	T	T	F	
T	F	T	F	T	T
F	T	F	T	T	T
F	F	T	T	T	T
			T		

Functional Dependency Definition

Definition

Functional dependency of connectives is the ability of defining some connectives in terms of some others

All classical propositional connectives can be defined in terms of disjunction and negation

Two binary connectives: \downarrow and \uparrow suffice, each of them separately, to define all classical connectives, whether unary or binary

Functional Dependency

The connective \uparrow was discovered in 1913 by H.M. Sheffer, who called it alternative negation
Now it is often called a Sheffer's connective

The formula
$A \uparrow B$ reads: not both A and B.

Negation $\neg A$ is defined as $A \uparrow A$.
Disjunction $(A \cup B)$ is defined as $(A \uparrow A) \uparrow(B \uparrow B)$

Functional Dependency

The connective \downarrow was discovered by J. Łukasiewicz and is called a joint negation

The formula
$A \downarrow B$ reads: neither A nor B.

It was proved in 1925 by E. Żyliński that no propositional connective other than \uparrow and \downarrow suffices to define all the remaining classical connectives

Chapter 2

Introduction to Classical Logic Languages and Semantics

Part 4: Propositional Tautologies

Propositional Tautologies

Now we connect syntax (formulas of a given language \mathcal{L}) with semantics (assignment of truth values to the formulas of the language \mathcal{L})

In logic we are interested in those propositional formulas that must be always true because of their syntactical structure without reference to the natural language meaning of the propositions they represent

Such formulas are called propositional tautologies

Example

Example

Given a formula $(A \Rightarrow A)$
We evaluate the logical value of our formula for all possible logical values of its basic component A
We put our calculation in a form of a table, called a truth table below

A	$(A \Rightarrow A)$ computation	$(A \Rightarrow A)$
T	$(T \Rightarrow T)=T$	\mathbf{T}
F	$(F \Rightarrow F)=T$	\mathbf{T}

The logical value of the formula $(A \Rightarrow A)$ is always T
This means that it is a propositional tautology.

Example

Example

Here is a truth table for a formula $(A \Rightarrow B)$

A	B	$(A \Rightarrow B)$ computation	$(A \Rightarrow B)$
T	T	$(T \Rightarrow T)=T$	\mathbf{T}
T	F	$(T \Rightarrow F)=F$	\mathbf{F}
F	T	$(F \Rightarrow T)=T$	\mathbf{T}
F	F	$(F \Rightarrow F)=T$	\mathbf{T}

The logical value of the formula $(A \Rightarrow B)$ is F for $A=T$ and $B=F$ what means that it is not a propositional tautology

Tautology Definition

Definition

For any formula $A \in \mathcal{F}$ of a propositional language $\mathcal{L}=(\mathcal{A}, \mathcal{F})$, we say that A is a propositional tautology
if and only if the logical value of A is T (we write it $A=T$) for all possible logical values of its basic components

We write

$$
\vDash A
$$

to denote that A is a tautology

Classical Tautologies

Here is a list of some of the most known classical notions and tautologies
Modus Ponens known to the Stoics (3rd century B.C)

$$
\vDash((A \cap(A \Rightarrow B)) \Rightarrow B)
$$

Detachment

$$
\begin{aligned}
& \models((A \cap(A \Leftrightarrow B)) \Rightarrow B) \\
& \models((B \cap(A \Leftrightarrow B)) \Rightarrow A)
\end{aligned}
$$

Sufficient and Necessary

Sufficient: Given an implication $(A \Rightarrow B)$,
A is called a sufficient condition for B to hold.
Necessary : Given an implication $(A \Rightarrow B)$,
B is called a necessary condition for A to hold.

Implication Names

Simple:

$(A \Rightarrow B)$ is called a simple implication

Converse:

$(B \Rightarrow A)$ is called a converse implication to $(A \Rightarrow B)$
Opposite:
$(\neg B \Rightarrow \neg A)$ is called an opposite implication to $(A \Rightarrow B)$
Contrary:
$(\neg A \Rightarrow \neg B)$ is called a contrary implication to $(A \Rightarrow B)$

Laws of contraposition

Laws of Contraposition

$$
\begin{aligned}
& \models((A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow \neg A)), \\
& \models((B \Rightarrow A) \Leftrightarrow(\neg A \Rightarrow \neg B)) .
\end{aligned}
$$

These Laws make it possible to replace, in any deductive argument, a sentence of the form $(A \Rightarrow B)$ by $(\neg B \Rightarrow \neg A)$, and conversely

Necessary and sufficient

We read the formula $(A \Leftrightarrow B)$ as
"B is necessary and sufficient for A "
because of the following tautology

$$
\models((A \Leftrightarrow B)) \Leftrightarrow((A \Rightarrow B) \cap(B \Rightarrow A)))
$$

Stoics, 3rd century B.C.

Hypothetical Syllogism

$$
\begin{aligned}
& \models(((A \Rightarrow B) \cap(B \Rightarrow C)) \Rightarrow(A \Rightarrow C)), \\
& \models((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))), \\
& \models((B \Rightarrow C) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C))) .
\end{aligned}
$$

Modus Tollendo Ponens

$$
\begin{aligned}
& \vDash(((A \cup B) \cap \neg A) \Rightarrow B), \\
& \models(((A \cup B) \cap \neg B) \Rightarrow A)
\end{aligned}
$$

12 to 19 Century

Duns Scotus 12/13 century

$$
\models(\neg A \Rightarrow(A \Rightarrow B))
$$

Clavius 16th century

$$
\models((\neg A \Rightarrow A) \Rightarrow A)
$$

Frege 1879

$$
\begin{aligned}
& \models(((A \Rightarrow(B \Rightarrow C)) \cap(A \Rightarrow B)) \Rightarrow(A \Rightarrow C)), \\
& \models((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))
\end{aligned}
$$

Frege gave the the first formulation of the classical propositional logic as a formalized axiomatic system

Apagogic Proofs

Apagogic Proofs: means proofs by reductio ad absurdum

Reductio ad absurdum: to prove A to be true, we assume $\neg A$

If we get a contradiction, it means that we have proved A to be true

Correctness of this reasoning is guarantee by the following tautology

$$
\vDash((\neg A \Rightarrow(B \cap \neg B)) \Rightarrow A)
$$

Chapter 2 Classical Tautologies

Chapter 2 contains a very extensive list of classical propositional tautologies

Read, prove, and memorize as many as you can

We will use them freely in later Chapters assuming that you are really familiar with all of them

