cse541 LOGIC for COMPUTER SCIENCE

Professor Anita Wasilewska

LECTURE 2a

Chapter 2 Introduction to Classical Logic Languages and Semantics

Chapter 2

Introduction to Classical Logic Languages and Semantics

Lecture 2a

Part 1: Classical Logic Model

Part 2: Propositional Language

Part 3: Propositional Semantics

Part 4: Examples of Propositional Tautologies

Lecture 2b

Part 5: Predicate Language

Part 6: Predicate Tautologies- Laws for Quantifiers

Very Short History

Logic Origins: Stoic school of philosophy (3rd century B.C.), with the most eminent representative was Chryssipus.

Modern Origins: Mid-19th century

English mathematician G. Boole, who is sometimes regarded as the founder of mathematical logic

First Axiomatic System: 1879 by German logician G. Frege.

Chapter 2

Introduction to Classical Logic Languages and Semantics

Part 1: Classical Logic Model

Logic

Logic builds symbolic models of our world

Logic builds the **models** in order to describe **formally** the ways we reason in and about our world

Logic also poses questions about **correctness** of such **models** and **develops** tools to **answer** them

Classical Model Assumptions

Assumption 1

Classical logic **model** admits only two logical values

Why two logical values only?

Classical logic was created to model the **reasoning** principles of mathematics

We expect from mathematical theorems to be always either true or false and the reasonings leading to them should guarantee this without any ambiguity

Classical Model Assumptions

Assumption 2

- 1. The language in which we reason uses sentences
- **2.** The sentences are build up from basic assertions about the world using special words or phrases:

```
"not", "not true" "and", "or", " implies", "if ..... then", "from the fact that .... we can deduce", " if and only if", "equivalent", "every", "for all", "any", "some"," exists"
```

3. We use **symbols** do denote basic assertions and **special** words or phrases

Hence the name symbolic logic

Logic

Logic studies the **behavior** of the special words and phrases Special words and phrases have accepted intuitive meanings

Logic builds models to formalize these intuitive meanings

To do so we first **define** formal **symbolic languages** and then define a formal meaning of their symbols

The formal meaning is called **semantics**

Propositional Connectives

The **symbols** for he special words and phrases are called **propositional connectives**

There are different choices of **symbols** for the propositional connectives; we adopt the following:

- ¬ for "not", "not true"
- for "and"
- ∪ for "or"
- \Rightarrow for "implies", "if then", "from the fact that... we can deduce"
- ⇔ for "if and only if", "equivalent"

The **names** for the **propositional connectives** are:

- negation
- ∩ conjunction, U disjunction
- \Rightarrow implication and \Leftrightarrow equivalence.

Propositional Logic

Restricting our attention to the role of **propositional connectives** yields to what is called **propositional logic**

The basic components of the **propositional logic** are a propositional language and a propositional semantics

The **propositional logic** is a quite simple model to **justify**, **describe** and **develop**

We will devote first few chapters to it

We do it both for its own sake and because it provides a good background for developing and understanding more difficult logics to follow

Quantifiers and Predicate Logic

We use **symbols**:

- ∀ for "every", "any", "all"
- ∃ for "some"," exists", "there is"

The symbols \forall , \exists are called quantifiers

Consideration and study of the **role** of propositional connectives and quantifiers leads to what is called a **predicate logic**

The **basic components** of the **predicate logic** are predicate language and predicate semantics

The **predicate logic** is a much more complicated model

We **develop** and **study** it in **full formality** in chapters following the introduction and examination of the **propositional logic** model

Chapter 2 Introduction to Classical Logic Languages and Semantics

Part 2: Propositional Language

Propositional Language

Propositional language is a quite simple, symbolic language into which we can **translate** (**represent**) sentences of a natural language

Example

Consider natural language sentence

" If
$$2 + 2 = 5$$
, then $2 + 2 = 4$ "

We translate it into the **propositional language** as follows

We **denote** the **basic assertion** (proposition) "2 + 2 = 5" by a variable, let's say a, and the proposition "2 + 2 = 4" by a variable b

We write a connective ⇒ for "if then"

As a result we obtain a propositional language formula

$$(a \Rightarrow b)$$

Propositional Translation

Exercise

Translate a natural language sentence **S** "The fact that it is not true that at the same time 2+2=4 and 2+2=5 implies that 2+2=4"

into a corresponding propositional language formulaWe carry the translation as follows

1. We identify all words and phrases representing the logical connectives and we re-write the sentence S in a simpler form introducing parenthesis to better express its meaning

Propositional Translation

The sentence **S** becomes:

" If not
$$(2+2=4 \text{ and } 2+2=5)$$
 then $2+2=4$ "

2.

We identify the **basic assertions** (propositions) and **assign** propositional variables to them:

a: "
$$2+2=4$$
" and b: " $2+2=5$ "

Step 3

We write the propositional language formula:

$$(\neg(a \cap b) \Rightarrow a)$$

Syntax

A formal description of symbols and the definition of the set of formulas is called a syntax of a symbolic language

We use the word syntax to stress that the formulas do not carry neither formal meaning nor a logical value

We **assign** the **meaning** and **logical value** to syntactically defined formulas in a **separate step**

This next, separate step is called a **semantics** of the given symbolic language

A given symbolic language can have different semantics and the different semantics can define different logics

Natural Languages

One can think about a **natural language** as a set \mathcal{W} of all words and sentences based on a given alphabet \mathcal{A}

This leads to a simple, abstract **model** of a **natural language** NL as a pair

$$NL = (\mathcal{A}, \mathcal{W})$$

Some natural languages share the same alphabet, some have different alphabets.

All of them face serious problems with a proper recognition and definitions of accepted words and complex sentences

Symbolic Languages

We do not want the symbolic languages to share the difficulties of the natural languages

We define their components precisely and in such a way that their recognition and correctness will be easily decided

We call their words and sentences formulas and denote the set of all formulas by \mathcal{F}

We define a symbolic language as a pair

$$SL = (\mathcal{A}, \mathcal{F})$$

Symbolic Languages Categories

We distinguish two categories of symbolic languages:

propositional and predicate

We define first the propositional language

The definition of the predicate language, with its much more complicated structure will follow

Propositional Language Definition

Definition

By a propositional language \mathcal{L} we understand a pair

$$\mathcal{L} = (\mathcal{A}, \mathcal{F})$$

where \mathcal{F} is called propositional alphabet

 \mathcal{F} is called a set of all well formed formulas

Language Components: Alphabet

1. Alphabet A

The alphabet \mathcal{A} consists of a countably infinite set VAR of **propositional variables**, a finite set of **propositional connectives**, and a set of two **parenthesis**

We denote the propositional variables by letters

with indices if necessary. It means that we can also use

$$a_1, a_2, ..., b_1, b_2, ...$$

as symbols for propositional variables

Language Components: Alphabet

Propositional connectives are:

$$\neg$$
, \cap , \cup , \Rightarrow , \Leftrightarrow

The connectives have well established names

The connectives names are:

negation, conjunction, disjunction, implication, and equivalence (biconditional)

for the connectives \neg , \cap , \cup , \Rightarrow , and \Leftrightarrow , respectively

Parenthesis are symbols (and)

Language Components: Formulas

Formulas are expressions build by means of elements of the alphabet \mathcal{A} . We denote formulas by capital letters

A, B, C, D,, with indices, if necessary.

The set $\mathcal F$ of all formulas of the propositional language $\mathcal L$ is defined recursively as follows

- Base step: all propositional variables are are formulas
 They are called atomic formulas
- **2.** Recursive step: for any already defined formulas A, B, the expressions

$$\neg A$$
, $(A \cap B)$, $(A \cup B)$, $(A \Rightarrow B)$, $(A \Leftrightarrow B)$

are also formulas

3. Only those expressions are **formulas** that are determined to be so by means of conditions **1.** and **2.**

Formulas Example

By the definition, any propositional variable is a **formula**. Let's take two variables *a* and *b*.

By the recursive step we get that

$$(a \cap b), (a \cup b), (a \Rightarrow b), (a \Leftrightarrow b), \neg a, \neg b$$

are formulas

The recursive step applied again produces for example formulas :

$$\neg(a \cap b), ((a \Leftrightarrow b) \cup \neg b), \neg \neg a, \neg \neg(a \cap b)$$

Formulas

Observe that we listed only few formulas obtained in the first recursive step

As as the recursive process continue we obtain a set of well formed of formulas

The set of all formulas is countably infinite

Formulas

Remark that we put parenthesis within the **formulas** in a way to avoid ambiguity

The expression

$$a \cap b \cup a$$

is ambiguous

We don't know whether it represents a formula

$$(a \cap b) \cup a$$
 or a formula $a \cap (b \cup a)$

Observe that neither of formulas $a \cap b \cup a$, $(a \cap b) \cup a$ or $a \cap (b \cup a)$ is a well formed formula

Exercise

Consider a following set

$$S = {\neg a \Rightarrow (a \cup b), ((\neg a) \Rightarrow (a \cup b)), \neg(a \Rightarrow (a \cup b)), (a \rightarrow a)}$$

- **1.** Determine which of the elements of S are, and which are not well formed formulas of $\mathcal{L} = (\mathcal{A}, \mathcal{F})$
- 2. For any $A \notin \mathcal{F}$ re-write it as a **correct** formula and write what it says in the natural language

Solution

The formula $\neg a \Rightarrow (a \cup b)$ is **not** a well formed formula A corrected formula is $(\neg a \Rightarrow (a \cup b))$ It says: "If a is not true, then we have a or b" Another corrected formula in is $\neg (a \Rightarrow (a \cup b))$ It says: "It is not true that a implies a or b"

Solution

```
The formula ((\neg a) \Rightarrow (a \cup b)) is not correct because (\neg a) \notin \mathcal{F}
The correct formula is (\neg a \Rightarrow (a \cup b))
The formula \neg (a \Rightarrow (a \cup b)) is correct
The formula \neg (a \rightarrow a) \notin \mathcal{F} is not correct
The connective \rightarrow does not belong to the language \mathcal{L}
\neg (a \rightarrow a) is a correct formula of another propositional
language; the one that uses a symbol \rightarrow for implication
```

Exercise

Write following natural language statement:

"One likes to play bridge or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes swimming"

as a formula of the propositional language $\mathcal{L} = (\mathcal{A}, \mathcal{F})$

Solution

First we identify the needed components of the alphabet \mathcal{A} :

propositional variables: a, b, c

a denotes statement: one likes to play bridge, b denotes a statement: the weather is good, c denotes a statement: one likes swimming

Connectives: ∪, ⇒, ∪. ¬

The corresponding formula of \mathcal{L} is

$$(a \cup (b \Rightarrow (\neg a \cup c)))$$

Symbols for Connectives

The connectives symbols we use are not the only one used in mathematical, logical, or computer science literature

Some Other Symbols

Negation	Disjunction	Conjunction	Implication	Equivalence
-A	(A ∪ B)	(A ∩ B)	$(A \Rightarrow B)$	(A ⇔ B)
NA	DAB	CAB	IAB	<i>E</i> AB
Ā	(A ∨ B)	(A & B)	$(A \rightarrow B)$	$(A \leftrightarrow B)$
~ A	(A ∨ B)	(A ⋅ B)	(A ⊃ B)	(A ≡ B)
Α'	(A+B)	(A ⋅ B)	$(A \rightarrow B)$	$(A \equiv B)$

The first notation is the closest to ours and is drawn mainly from the algebra of sets and lattice theory

The second comes from the Polish logician **J. Łukasiewicz** and is called the Polish notation

The third was used by **D. Hilbert.**

The fourth comes from Peano and Russell

The fifth goes back to Schröder and Pierce

Chapter 2 Introduction to Classical Logic Languages and Semantics

Part 3: Propositional Semantics

Propositional Semantics

We present now **definitions** of propositional connectives in terms of **two logical values** true or false and discuss their **motivations**

The resulting definitions are called a **semantics** for the **classical** propositional connectives

The **semantics** presented here is fairly **informal**

The **formal definition** of **classical** propositional semantics is presented in **chapter 3**

Conjunction: Motivation and Definition

Conjunction

A **conjunction** $(A \cap B)$ is a **true** formula if both A and B are **true** formulas

If one of the formulas, or both, are **false**, then the **conjunction** is a **false** formula

Let's denote statement: "formula A is **false**" by A = F and a statement: "formula A is **true**" by A = T

Conjunction: Definition

Conjunction

The logical value of a **conjunction** depends on the logical values of its factors in a way which is express in the form of the following table (truth table)

Conjunction Table

Α	В	$(A \cap B)$
Т	Т	Т
T	F	F
F	Т	F
F	F	F

Disjunction

Disjunction

The word or is used in natural language in two different senses.

First: A or B is true if at least one of the statements A, B is true

Second: A or B is true if one of the statements A and B is true and the other is false

In mathematics and hence in logic, the word or is used in the first sense

Disjunction: Definition

Disjunction

We adopt the convention that a **disjunction** $(A \cup B)$ is true if at least one of the formulas A, B is true

Disjunction Table

Α	В	$(A \cup B)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Negation: Definition

Negation

The **negation** of a true formula is a false formula, and the negation of a false formula is a true formula

Negation Table

The semantics of the statements in the form if A, then B

needs a little bit more discussion.

In everyday language a statement *if A, then B* is interpreted to mean that B can be **inferred** from A.

In mathematics its interpretation differs from that in natural language

Consider the following

Theorem

For every natural number n,

if 6 DIVIDES n, then 3 DIVIDES n

The theorem is **true** for any natural number, hence in particular, it is **true** for numbers 2, 3, 6

Consider number 2

The following proposition is true

if 6 DIVIDES 2, then 3 DIVIDES 2

It means an implication $(A \Rightarrow B)$ in which A and B are **false** is interpreted as a **true** statement

Consider now a number 3

The following proposition is true

if 6 DIVIDES 3, then 3 DIVIDES 3,

It means that an implication $(A \Rightarrow B)$ in which A is **false** and B is **true** is interpreted as a **true statement**

Consider now a number 6

The following proposition is true

if 6 DIVIDES 6, then 3 DIVIDES 6.

It means that an implication $(A \Rightarrow B)$ in which A and B are **true** is interpreted as a **true statement**

One more case.

What happens when in the implication $(A \Rightarrow B)$ the formula

A is **true** and the formula B is **false**

Consider a sentence

if 6 DIVIDES 12, then 6 DIVIDES 5.

Obviously, this is a false statement

Implication: Definition

Implication

The above examples **justify** adopting the following definition of a semantics for the implication $(A \Rightarrow B)$

Implication Table

Α	В	$(A \Rightarrow B)$
Т	T	Т
Т	F	F
F	Т	T
F	F	Т

Equivalence Definition

Equivalence

An equivalence $(A \Leftrightarrow B)$ is **true** if both formulas A and B have the same logical value

Equivalence Table

Α	В	$(A \Leftrightarrow B)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Truth Tables Semantics

We summarize the tables for propositional connectives in the following one table.

We call it a **truth table definition** of propositional; connectives and hence we call the semantics defined here a **truth tables semantics**.

Α	В	$\neg A$	$(A \cap B)$	$(A \cup B)$	$(A \Rightarrow B)$	$(A \Leftrightarrow B)$
Т	Т	F	Т	Т	Т	T
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	T F T	F
F	F	Т	F	F	Т	Т

Truth Tables Semantics

The truth tables indicate that the logical value of of propositional connectives **independent** of the formulas A, B We write the connectives in a "formula independent" form as a set of of the following equations

$$\neg T = F, \quad \neg F = T;$$

$$(T \cap T) = T, \quad (T \cap F) = F, \quad (F \cap T) = F, \quad (F \cap F) = F;$$

$$(T \cup T) = T, \quad (T \cup F) = T, \quad (F \cup T) = T, \quad (F \cup F) = F;$$

$$(T \Rightarrow T) = T, \quad (T \Rightarrow F) = F, \quad (F \Rightarrow T) = T, \quad (F \Rightarrow F) = T;$$

$$(T \Leftrightarrow T) = T, \quad (T \Leftrightarrow F) = F, \quad (F \Leftrightarrow T) = F, \quad (T \Leftrightarrow T) = T$$

We use the above **set of connectives equations** to evaluate **logical values** of formulas

Exercise

Exercise

Show that $(A \Rightarrow (\neg A \cap B)) = F$ for the following **logical** values of its basic components: A=T and B=F
Solution

We calculate the logical value of the formula

$$(A \Rightarrow (\neg A \cap B))$$

by **substituting** the respective logical values T, F for the component formulas A, B and applying the set of **connectives equations** as follows

$$(T \Rightarrow (\neg T \cap F)) = (T \Rightarrow (F \cap F)) = (T \Rightarrow F) = F$$

Extensional Connectives

Extensional connectives are the connectives that have the following property:

the logical value of the formulas form by means of these connectives and certain given formulas depends only on the logical value(s) of the given formulas

All classical propositional connectives

$$\neg$$
, \cup , \cap , \Rightarrow , \Leftrightarrow

are extensional

Propositional Connectives

Remark

In everyday language there are expressions such as "I believe that", "it is possible that", "certainly", etc....

They are represented by some **propositional connectives** which **are not extensional**

They do not play any role in **mathematics** and so are not discussed in **classical logic**, they belong to **non-classical logics**

All Extensional Two Valued Connectives

There are many **other binary** (two valued) **extensional** propositional connectives

Here is a table of all unary connectives

Α	∇1 A	∇2 A	$\neg A$	∇ ₄ A
Т	F	Т	F	Т
F	F	F	Т	T

All Extensional Binary Connectives

Here is a table of all binary connectives

Α	В	(A∘ ₁ B)	(<i>A</i> ∩ <i>B</i>)	(A- D)	(A- D)
			(AIID)	(A∘ ₃ B)	(A∘ ₄ B)
Т	Т	F	T	F	F
Т	F	F	F	T	F
F	Т	F	F	F	Т
F	F	F	F	F	F
Α	В	(<i>A</i> ↓ <i>B</i>)	(A∘ ₆ B)	(A∘ ₇ B)	(A ⇔ B)
T	T	F	Т	T	Т
Т	F	F	T	F	F
F	Т	F	F	T	F
F	F	Т	F	F	Т
Α	В	(A∘ ₉ B)	(A∘ ₁₀ B)	(A∘ ₁₁ B)	(A ∪ B)
Т	Т	F	F	F	T
Т	F	Т	Т	F	Т
F	Т	Т	F	Т	T
F	F	F	Т	T	F
Α	В	(A∘ ₁₃ B)	$(A \Rightarrow B)$	(A ↑ B)	(A∘ ₁₆ B)
T	T	T	T	F	T
Т	F	Т	F	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т

Functional Dependency Definition

Definition

Functional dependency of connectives is the ability of defining some connectives in terms of some others

All classical propositional connectives can be defined in terms of disjunction and negation

Two binary connectives: ↓ and ↑ suffice, each of them separately, to define **all classical connectives**, whether unary or binary

Functional Dependency

The connective ↑ was discovered in 1913 by **H.M. Sheffer**, who called it **alternative negation**Now it is often called a **Sheffer**'s connective

The formula

 $A \uparrow B$ reads: not both A and B.

Negation $\neg A$ is defined as $A \uparrow A$. **Disjunction** $(A \cup B)$ is defined as $(A \uparrow A) \uparrow (B \uparrow B)$

Functional Dependency

The connective ↓ was discovered by **J. Łukasiewicz** and is called a **joint negation**

The formula

 $A \downarrow B$ reads: neither A nor B.

It was proved in 1925 by E. Żyliński that no propositional connective other than ↑ and ↓ suffices to define all the remaining classical connectives

Chapter 2 Introduction to Classical Logic Languages and Semantics

Part 4: Propositional Tautologies

Propositional Tautologies

Now we connect **syntax** (formulas of a given language \mathcal{L}) with **semantics** (assignment of truth values to the formulas of the language \mathcal{L})

In **logic** we are interested in those propositional **formulas** that must be **always true** because of their **syntactical structure without reference** to the natural language meaning of the propositions they **represent**

Such formulas are called propositional tautologies

Example

Example

Given a formula $(A \Rightarrow A)$

We evaluate the logical value of our formula for all possible logical values of its basic component A

We put our **calculation** in a form of a **table**, called a **truth table** below

A
$$(A \Rightarrow A)$$
 computation $(A \Rightarrow A)$ T $(T \Rightarrow T) = T$ TF $(F \Rightarrow F) = T$ T

The **logical value** of the formula $(A \Rightarrow A)$ is **always** T This means that it is a **propositional tautology**.

Example

Example

Here is a **truth table** for a formula $(A \Rightarrow B)$

Α	В	$(A \Rightarrow B)$ computation	$(A \Rightarrow B)$
Т	Т	$(T \Rightarrow T) = T$	Т
Т	F	$(T \Rightarrow F) = F$	F
F	Т	$(F \Rightarrow T) = T$	Т
F	F	$(F \Rightarrow F) = T$	T

The **logical value** of the formula $(A \Rightarrow B)$ is F for A = T and B = F what means that **it is not** a **propositional tautology**

Tautology Definition

Definition

For any formula $A \in \mathcal{F}$ of a propositional language $\mathcal{L} = (\mathcal{A}, \mathcal{F})$, we say that A is a propositional **tautology** if and only if the **logical value** of A is T (we write it A = T) for **all possible logical values** of its **basic components**

We write

 $\models A$

to denote that A is a tautology

Classical Tautologies

Here is a **list of some** of the most known classical **notions** and **tautologies**

Modus Ponens known to the Stoics (3rd century B.C)

$$\models ((A \cap (A \Rightarrow B)) \Rightarrow B)$$

Detachment

$$\models ((A \cap (A \Leftrightarrow B)) \Rightarrow B)$$

$$\models ((B \cap (A \Leftrightarrow B)) \Rightarrow A)$$

Sufficient and Necessary

Sufficient: Given an implication $(A \Rightarrow B)$,

A is called a sufficient condition for B to hold.

Necessary: Given an implication $(A \Rightarrow B)$,

B is called a necessary condition for A to hold.

Implication Names

Simple:

 $(A \Rightarrow B)$ is called a simple implication

Converse:

 $(B \Rightarrow A)$ is called a converse implication to $(A \Rightarrow B)$

Opposite:

 $(\neg B \Rightarrow \neg A)$ is called an opposite implication to $(A \Rightarrow B)$

Contrary:

 $(\neg A \Rightarrow \neg B)$ is called a contrary implication to $(A \Rightarrow B)$

Laws of contraposition

Laws of Contraposition

$$\models ((A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)),$$
$$\models ((B \Rightarrow A) \Leftrightarrow (\neg A \Rightarrow \neg B)).$$

These Laws make it possible to **replace**, in any deductive argument, a sentence of the form $(A \Rightarrow B)$ by $(\neg B \Rightarrow \neg A)$, and conversely

Necessary and sufficient

We read the formula $(A \Leftrightarrow B)$ as "B is necessary and sufficient for A" because of the following tautology

$$\models ((A \Leftrightarrow B)) \Leftrightarrow ((A \Rightarrow B) \cap (B \Rightarrow A)))$$

Stoics, 3rd century B.C.

Hypothetical Syllogism

$$\vdash (((A \Rightarrow B) \cap (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)),$$

$$\vdash ((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))),$$

$$\vdash ((B \Rightarrow C) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))).$$

Modus Tollendo Ponens

$$\models (((A \cup B) \cap \neg A) \Rightarrow B),$$
$$\models (((A \cup B) \cap \neg B) \Rightarrow A)$$

12 to 19 Century

Duns Scotus 12/13 century

$$\models (\neg A \Rightarrow (A \Rightarrow B))$$

Clavius 16th century

$$\models ((\neg A \Rightarrow A) \Rightarrow A)$$

Frege 1879

$$\models (((A \Rightarrow (B \Rightarrow C)) \cap (A \Rightarrow B)) \Rightarrow (A \Rightarrow C)),$$

$$\models ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$$

Frege gave the the **first formulation** of the classical propositional logic as a **formalized axiomatic system**

Apagogic Proofs

Apagogic Proofs: means proofs by reductio ad absurdum

Reductio ad absurdum: to prove A to be true,

we assume $\neg A$

If we get a contradiction, it means that we have proved *A* to be true

Correctness of this reasoning is guarantee by the following tautology

$$\models ((\neg A \Rightarrow (B \cap \neg B)) \Rightarrow A)$$

Chapter 2 Classical Tautologies

Chapter 2 contains a very extensive list of classical propositional tautologies

Read, prove , and memorize as many as you can

We will use them freely in later Chapters assuming that you are really familiar with all of them