
cse541
LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 4

Chapter 4
GENERAL PROOF SYSTEMS

PART 1: Introduction- Intuitive definitions

PART 2: Formal Definition of a Proof System

PART 3: Formal Proofs and Simple Examples

PART 4: Consequence, Soundness and Completeness

PART 5: Decidable and Syntactically Decidable Proof
Systems

PART 1: General Introduction

Proof Systems - Intuitive Definition

Proof systems are built to prove, it means to construct
formal proofs of statements formulated in a given language

First component of any proof system is hence its formal
language L

Proof systems are inference machines with statements
called provable statements being their final products

Semantical Link

The starting points of the inference machine of a proof
system S are called its axioms

We distinguish two kinds of axioms: logical axioms LA
and specific axioms SA

Semantical link: we usually build a proof systems for a
given language and its semantics i.e. for a logic defined
semantically

Semantical Link

We always choose as a set of logical axioms LA some
subset of tautologies, under a given semantics

We will consider here only proof systems with finite sets of
logical or specific axioms , i.e we will examine only finitely
axiomatizable proof systems

Semantical Link

We can, and we often do, consider proof systems with
languages without yet established semantics

In this case the logical axioms LA serve as description of
tautologies under a future semantics yet to be built

Logical axioms LA of a proof system S are hence not only
tautologies under an established semantics, but they can
also guide us how to define a semantics when it is yet
unknown

Specific Axioms

The specific axioms SA consist of statements that
describe a specific knowledge of an universe we want to use
the proof system S to prove facts about

Specific axioms SA are not universally true

Specific axioms SA are true only in the universe we are
interested to describe and investigate by the use of the
proof system S

Formal Theory

Given a proof system S with logical axioms LA

Specific axioms SA of the proof system S is any finite set of
formulas that are not tautologies, and hence they are always
disjoint with the set of logical axioms LA of S

The proof system S with added set of specific axioms SA
is called a formal theory based on S

Inference Machine

The inference machine of a proof system S is defined by a
finite set of inference rules

The inference rules describe the way we are allowed to
transform the information within the system with axioms as
a staring point

We depict it informally on the next slide

Inference Machine

AXIOMS

↓ ↓ ↓

RULES applied to AXIOMS

↓ ↓ ↓

RULES applied to any expressions above

↓ ↓ ↓

Provable formulas

Semantical Link

Semantical link:

Rules of inference of a system S have to preserve the
truthfulness of what they are being used to prove

The notion of truthfulness is always defined by a given
semantics M

Rules of inference that preserve the truthfulness are called
sound rules under a given semantics M

Rules of inference can be sound under one semantics and
not sound under another

Soundness Theorem

Goal 1

When developing a proof system S the first goal is prove the
following theorem about it and its semantics M

Soundness Theorem

For any formula A of the language of the system S

If a formula A is provable from logical axioms LA of S only,

then A is a tautology under the semantics M

Propositional Proof Systems

We discuss here first only proof systems for propositional
languages and call them proof systems for different
propositional logics

Remember

The notion of soundness is connected with a given
semantics

A proof system S can be sound under one semantics, and
not sound under the other

For example a set of axioms and rules sound under classical
logic semantics might not be sound under Ł logic semantics,
or K logic semantics, or others

Completeness of the Proof Systems

In general there are many proof systems that are sound
under a given semantics, i.e. there are many sound proof
systems for a given logic semantically defined

Given a proof system S with logical axioms LA that is
sound under a semantics M.

Notation

Denote by TM the set of all tautologies defined by the
semantics M, i.e. we have that

TM = {A ∈ F : |=M A }

Completeness Property

A natural question arises:

Are all tautologies i.e formulas A ∈ TM provable in the
system S ??

We assume that we have already proved that S is sound
under the semantics M

The positive answer to this question is called completeness
property of the system S .

Completeness Theorem

Goal 2

Given for a sound proof system S under its semantics M, our
the second goal is to prove the following theorem about S

Completeness Theorem

For any formula A of the language of S

A is provable in S iff A is a tautology under the
semantics M

We write the Completeness Theorem symbolically as

`S A iff |=M A

Completeness Theorem is composed of two parts:

Soundness Theorem and the Completeness Part that
proves the completeness property of a sound proof system

Proving Soundness and Completeness

Proving the Soundness Theorem for S under a semantics M
is usually a straightforward and not a very difficult task

We first prove that all logical axioms LA are tautologies,

and then we prove that all inference rules of the system S
preserve the notion of the truth

Proving the completeness part of the Completeness
Theorem is always a crucial, difficult and sometimes
impossible task

OUR PLAN

We will study two proofs of the Completeness Theorem for
classical propositional proof system in Chapter 5

We will present a constructive proofs of Completeness
Theorem for two different Gentzen style automated theorem
proving systems for classical Logic in Chapter 6

We discuss the Inuitionistic Logic in Chapter 7

Predicate Logics are discussed Chapters 8, 9, 10, 11

PART 2
PROOF SYSTEMS: Formal Definitions

Proof System S

In this section we present formal definitions of the following
notions

Proof system S

Formal proof from logical axioms in a proof system S

Formal proof from specific axioms in a proof system S

Formal Theory based on a proof system S

We also give examples of different simple proof systems

Components: Language

Language L of a proof system S is any formal language L

L = (A,F)

We assume as before that both sets A and F are
enumerable, i.e. we deal here with enumerable languages

The Language L can be propositional or first order
(predicate) but we discuss propositional languages first

Components: Expressions

Expressions E of a proof system S

Given a set F of well formed formulas of the language L of
the system S

We often extend the set F to some set E of expressions
build out of the language L and some extra symbols, if
needed

In this case all other components of S are also defined on
basis of elements of the set of expressions E

In particular, and most common case we have that E = F

Expressions Examples

Automated theorem proving systems usually use as their
basic components different sets of expressions build out of
formulas of the language L

In Chapters 6 and 10 we consider finite sequences of
formulas instead of formulas, as basic expressions of the
proof systems RS and RQ

We also present there proof systems that use yet other kind of
expressions, called original Gentzen sequents or their
modifications

Some systems use yet other expressions such as clauses,
sets of clauses, or sets of formulas, others use yet still
different expressions

Semantical Link

We always have to extend a given semantics M for the
language L of the system S to the set E of all expression of
the system S

Sometimes, like in case of Resolution based proof systems
we have also to prove a semantic equivalency of new
created expressions E (sets of clauses in Resolution case)
with appropriate formulas of L

Example

For example, in the automated theorem proving system RS
presented in Chapter 6 the basic expressions E are finite
sequences of formulas of L = L{¬,∩,∪,⇒}.

We extend our classical semantics for L to the set F ∗ of all
finite sequences of formulas as follows:

For any v : VAR −→ {F ,T } and

any ∆ ∈ F ∗, ∆ = A1,A2, ..An, we put

v∗(∆) = v∗(A1,A2, ..An)

= v∗(A1) ∪ v∗(A2) ∪ ∪ v∗(An)

i.e. in a shorthand notation

∆ ≡ (A1 ∪ A2 ∪ ... ∪ An)

Components: Logical Axioms

Logical axioms LA of S form a non-empty subset of the set
E of expressions of the proof system S, i.e.

LA ⊆ E

In particular, LA is a non-empty subset of formulas, i.e.

LA ⊆ F

We assume here that the set LA of logical axioms is always
finite , i.e. that we consider here finitely axiomatizable
systems

In general, we assume that the set LA is primitively recursive
i.e. that there is an effective procedure to determine whether a
given expression E ∈ E is or is not in AL

Components: Axioms

Semantical link
Given a semantics M for L and its extension to the set E
of all expressions
We extend the notion of tautology to the expressions and
write

|=M E

to denote that the expression E ∈ E is a tautology under
semantics M and we put

TM = {E ∈ E : |=M E}

Logical axioms LA are always a subset of expressions that
are tautologies of under the semantics M, i.e.

LA ⊆ TM

Components: Rules of Inference

Rules of inference R

We assume that a proof system contains only a finite number
of inference rules

We assume that each rule has a finite number of premisses
and one conclusion

We also assume that one can effectively decide, for any
inference rule, whether a given string of expressions form its
premisses and conclusion or do not, i.e. that

All rules r ∈ R are primitively recursive

Components: Rules of Inference

Definition

Each rule of inference r ∈ R is a relation defined in the set
Em, where m ≥ 1 with values in E, i.e.

r ⊆ Em × E

Elements P1,P2, . . . Pm of a tuple (P1,P2, . . . Pm,C) ∈ r
are called premisses of the rule r and C is called its
conclusion

All r ∈ R are primitively recursive relations

Components: Rules of Inference

We write the inference rules in a following convenient way

One premiss rule

(r)
P1

C
Two premisses rule

(r)
P1 ; P2

C

m premisses rule

(r)
P1 ; P2 ; ; Pm

C

Semantic Link: Sound Rules of Inference

Given some m premisses rule

(r)
P1 ; P2 ; ; Pm

C
Semantical link

Given a semantics M for the language L and for the set of
expressions E

We want the rules of inference r ∈ R to preserve
truthfulness i.e. to be sound under the semantics M

General Definition: Sound Rule of Inference

Definition

Given an inference rule r ∈ R

(r)
P1 ; P2 ; ; Pm

C
We say that the inference rule r ∈ R is sound under a
semantics M

if and only if

all M - models of the set {P1,P2, .Pm} of its premisses
are also M - models of its conclusion C

Propositional Definition: Sound Rule of Inference

In propositional languages case, the semantics M, and hence
the M - models are defined in terms of the truth assignment
v : VAR −→ LV , where LV is the set of logical values for the
semantics M

Definition

An inference rule r ∈ R, such that

(r)
P1 ; P2 ; ; Pm

C

is sound under a semantics M

if and only if

the condition below holds or any v : VAR −→ LV

If v |=M {P1,P2, .Pm} , then v |=M C

Example

Given a rule of inference

(r)
(A ⇒ B)

(B ⇒ (A ⇒ B))

Prove that (r) is sound under classical semantics

Let v be any truth assignment, such that v |=(A ⇒ B), i.e.
by definition v∗(A ⇒ B) = T

We evaluate logical value of the conclusion under v as
follows

v∗(B ⇒ (A ⇒ B)) = v∗(B)⇒ T = T

for any B and any value of v∗(B)

This proves that v |= (B ⇒ (A ⇒ B)) and hence the
soundness of (r)

Formal Definition: Proof System

Definition

By a proof system we understand a quadruple

S = (L,E, LA ,R)

where

L = {A,F } is a language of S with a set F of formulas

E is a set of expressions of S

In particular case E = F

LA ⊆ E is a non- empty, finite set of logical axioms of S

R is a non- empty, finite set of rules of inference of S

PART 3: Formal Proofs
Simple Examples of Proof Systems

Provable Expressions

A final product of a single or multiple use of the inference
rules of S, with axioms taken as a starting point are called
provable expressions of the proof system S

A single use of an inference rule is called a direct
consequence

A multiple application of rules of inference with axioms taken
as a starting point is called a proof

Definition: Direct Consequence

Formal definitions are as follows

Direct consequence

For any rule of inference r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

C is called a direct consequence of P1, ...Pm by virtue of
the rule r ∈ R

Definition: Formal Proof

Formal Proof of an expression E ∈ E in a proof system

S = (L,E, LA ,R)

is a sequence
A1, A2, , An for n ≥ 1

of expressions from E, such that

A1 ∈ LA , An = E

and for each 1 < i ≤ n, either Ai ∈ LA or Ai is a direct
consequence of some of the preceding expressions by
virtue of one of the rules of inference

n ≥ 1 is the length of the proof A1, A2, , An

Formal Proof Notation

We write
`S E

to denote that E ∈ E has a proof in S

When the proof system S is fixed we write ` E

Any E ∈ E, such that `S E is called a provable
expression of S

The set of all provable expressions of S is denoted by
PS , i.e. we put

PS = {E ∈ E : `S E}

PART 4: Hypothesis, Consequence,
Soundness and Completeness

Proof from Hypothesis

While proving expressions we often use some extra
information available, besides the axioms of the proof system.

This extra information is called hypothesis in the proof.

Let Γ ⊆ E be a set expressions called hypothesis

A proof of E ∈ E from the set of hypothesis Γ in S is a
formal proof in S, where the expressions from Γ are
treated as additional hypothesis added to the set LA of the
logical axioms of the system S

Notation: Γ `S A

We read it : A has a proof in S from the set Γ (and logical
axioms LA)

Definition: Proof from Hypothesis

Definition

We say that A has a proof in S from the set Γ (and
logical axioms LA) if and only if

there is a sequence A1, ...An of expressions from E,
such that

A1 ∈ LA ∪ Γ, An = A

and for each 1 < i ≤ n, either Ai ∈ LA ∪ Γ or Ai is a
direct consequence of some of the preceding expressions
by virtue of one of the rules of inference

We denote it as Γ `S A

Special Cases

We usually consider and use the case when the set of
hypothesis is finite.

Case of Γ ⊆ E finite set and Γ = {B1,B2, ...,Bn}

We use notation
B1,B2, ...,Bn `S A

for {B1,B2, ...,Bn} `S A

Case of Γ = ∅ is also a special one.

By the definition of a proof of A from Γ, ∅ ` A means that
in the proof of A we use only axioms LA of S

We hence use notation `S A
to denote that A has a proof from empty Γ; i.e. A has a
proof from logical axioms only

Definition: Consequences of Γ

Definition

For any Γ ⊆ E , and A ∈ E ,

If Γ `S A , then A is called a consequence of Γ in S

Definition

We denote by CnS(Γ) the set of all consequences of Γ in
S, i.e. we put

CnS(Γ) = {A ∈ E : Γ `S A }

Definition: Consequence Operation

Observe that by defining a consequence of Γ in S, we define
in fact a function which to every set Γ ⊆ E assigns a set of
all its consequences CnS(Γ)

We denote this function by CnS and adopt the following

Definition

Any function
CnS : 2E −→ 2E

such that for every Γ ∈ 2E

CnS(Γ) = {A ∈ E : Γ `S A }

is called the consequence operation in S

Consequence Operation: Monotonicity

Take any consequence operation

CnS : 2E −→ 2E

Monotonicity Property

For any sets Γ,∆ of expressions of S,

if Γ ⊆ ∆ then CnS(Γ) ⊆ CnS(∆)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of
the formal proof

Consequence Operation: Transitivity

Take any consequence operation

CnS : 2E −→ 2E

Transitivity Property

For any sets Γ1, Γ2, Γ3 of expressions of S,

if Γ1 ⊆ CnS(Γ2) and Γ2 ⊆ CnS(Γ3), then Γ1 ⊆ CnS(Γ3)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of
the formal proof

Consequence Operation: Finiteness

Take any consequence operation

CnS : 2E −→ 2E

Finiteness Property

For any expression A ∈ E and any set Γ ⊆ E,

A ∈ CnS(Γ) if and only if there is a finite subset Γ0 of Γ
such that A ∈ CnS(Γ0)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of
the formal proof

Definition: Sound S

Definition

Given a proof system

S = (L,E, LA ,R)

We say that the system S is sound under a semantics M
iff the following conditions hold

1. LA ⊆ TM

2. Each rule of inference r ∈ R is sound

Example

Given a proof system:

S = (L{¬,⇒}, F , {(A ⇒ A), (A ⇒ (¬A ⇒ B))}, (r)
(A⇒B)

(B⇒(A⇒B))
)

1. Prove that S is sound under classical semantics

2. Prove that S is not sound under K semantics

Example

1. Both axioms of S are basic classical tautologies and we
have just proved that the rule of inference (r) is sound, hence
S is sound

2. Axiom (A ⇒ A) is not a K semantics tautology

Any truth assignment v such that v∗(A) =⊥ is a
counter-model for it

This proves that S is not sound under K semantics

Soundness Theorem

Let PS be the set of all provable expressions of S i.e.

PS = {A ∈ E : `S A }

Let TM be a set of all expressions of S that are tautologies
under a semantics M, i.e.

TM = {A ∈ E : |=M A }

Soundness Theorem for S and semantics M

PS ⊆ TM

i.e. for any A ∈ E, the following implication holds

If `S A , then |=M A .

Exercise: prove by Mathematical Induction over the length of
a proof that if S is sound, the Soundness Theorem holds for S

Completeness Theorem

Completeness Theorem for S and semantics M

PS = TM

i.e. for any A ∈ E, the following holds

`S A if and only if |=M A

The Completeness Theorem consists of two parts:

Part 1: Soundness Theorem

PS ⊆ TM

Part 2: Completeness Part of the Completeness Theorem

TM ⊆ PS

Syntactic Consistency: Formal Theories

Formal theories play crucial role in mathematics and were
historically defined for classical predicate (first order) logic
and consequently for other non-classical logics

They are routinely called first order theories

We discuss them in detail in Chapter 10 dealing formally with
classical predicate logic

First order theories are hence based on a proof systems S
with a predicate (first order) language L

We sometimes consider formal theories based on proof
systems with a propositional language L and we call them
propositional theories

Syntactic Consistency: Formal Theories

Given a proof system S = (L, E, LA , R)

We build (define) a formal theory based on S as follows.

1. We select a certain finite subset SA of expressions of
S, disjoint with the logical axioms LA of S

The set SA is called a set of specific axioms of the formal
theory based on S

2. We use set SA of specific axioms to define a language
LSA , called a language of the formal theory

Here we have two cases

Syntactic Consistency: Formal Theories

c1 S is a first order proof system, i.e. L of S is a
predicate language

We define the language LSA by restricting the sets of
constant, functional, and predicate symbols of L to constant,
functional, predicate symbols appearing in the set SA of
specific axioms

Both languages LSA and L share the same set of
propositional connectives

c2 S is a propositional proof system, i.e. L of S is a
propositional language LSA is defined by restricting L to
connectives appearing in the set SA

Syntactic Consistency: Formal Theories

Definition

Given a proof system S = (L, E, LA , R) and finite subset
SA of expressions of S, disjoint with the logical axioms LA

The system
T = (L, E, LA , SA , R)

is called a formal theory based on S

The set SA is the set of specific axioms of T

The language LSA defined by c1 or c2 is called the language
of the theory T

Syntactic Consistency

Definition

A theory
T = (L, E, LA , SA , R)

is consistent if and only if there exists an expression
E ∈ ESA such that E < T(SA), i.e. such that

SA 0S E

otherwise the theory T is inconsistent.

Observe that the definition has purely syntactic meaning

Syntactic Consistency: Formal Theories

The consistency definition reflexes our intuition what proper
notion of provability should mean

Namely, it says that a formal theory T based on a proof
system S is consistent only when it does not prove all
expressions (formulas in particular cases) of LSA

The theory T such that it proves everything stated in LSA

obviously should be, and is defined as inconsistent

Syntactic Consistency: Formal Theories

In particular, we have the following syntactic definition of
consistency and inconsistency for any proof system S

Definition

A proof system
S = (L, E, LA , R)

is consistent if and only if there exists E ∈ E such that
E < PS , i.e. such that

0S E

otherwise S is inconsistent

Formal Theory

Given a proof system S = (L, E, LA , R). Let a set SA ⊆ E
be such that

SA ∩ TM = ∅

A formal theory with the set of specific axioms SA is denoted
by T(SA) and defined as follows

T(SA) = (LSA , E, LA , SA , R)

The set of all expressions of the language LSA provable from
the set specific axioms SA (and logical axioms LA) i.e. the set

T(SA) = {A ∈ E : SA `S A }

is called the set of all theorems of the theory T(SA)

Soundness of the Theory

Soundness Theorem for a formal theory T(SA) based on a
proof system S says:

For any formula A of the language LSA of the theory T(SA),

if a formula A is provable in the theory T(SA),

then A is true in any model of the set of specific axioms
SA of T(SA)

Syntactic Completeness of Formal Theories

The Completeness Theorem for the proof system S
established equivalency of the notion of provability and
tautology:

PS = TM

Observe the equation PS = TM holds for a theorie T(SA)
only when the set of its specific axioms SA = ∅

We nevertheless talk about Complete/Incomplete theories

as the final goal of the course (and the book) is to prove the

Gödel Incompleteness Theorem for the Peano formal

theory of the Arithmetic of Natural Numbers

Complete Formal Theory

Definition

A formal theory T(SA) based on a language with negation
¬ is complete if and only if for any A of the language of

the theory T(SA) the following holds

A ∈ T(SA) or ¬A ∈ T(SA)

Otherwise a theory T(SA) is incomplete

The completeness of a theory means that we can prove or
disapprove any statement formulated within it

It hence corresponds to the natural meaning of the notion of a
complete information

Syntactic Consistence

Definition

A formal theory T(SA) based on a language with negation ¬
is consistent if and only if
there is no formula A of the language of the theory T(SA)

such that
A ∈ T(SA) and ¬A ∈ T(SA)

Otherwise T(SA) is inconsistent

The notions of consistency, inconsistency and completeness,
incompleteness describe are the most important properties of
any theory

PART 5: Decidable and Syntactically Decidable Proof Systems

Decidable and Syntactically Decidable Proof Systems

A proof system S is called decidable when there is a finite,
mechanical method for determining, given any expression
A ∈ E whether there is a proof of A in S; i.e. whether
A ∈ PS

otherwise S is called undecidable

Observe that the above notion of decidability of the system
does not require to find a proof

It requires only a mechanical procedure of deciding whether a
proof exists for any expression of the system.

Example

We prove now that A Hilbert style proof system S for classical
propositional logic presented in Chapter 9 is decidable

We first prove the Completeness Theorem for it

PS = TM

We get that for any A ∈ E

A < PS iff A < TM

We have proved already that that the notion of classical
propositional tautology, i.e. the statement A < TM is
decidable

We conclude: the system S is decidable

Syntactically Decidable Systems

A proof system S is syntactically decidable if it is possible
to define for it a finite, mechanical method that generates a
proof for any given expression A of S

otherwise the system S is not not syntactically decidable

We call such syntactically decidable systems automated
theorem proving systems

Syntactically Decidable Systems

All Gentzen type proof systems presented here are both
decidable or semi-decidable and syntactically decidable or
syntactically semi-decidable.

We usually call them automated theorem proving systems
for different logics under consideration.

Resolution based proof systems are also wildly known
examples of the syntactically decidable, or semi-decidable
systems.

Finding a Gentzen Type, or Resolution type formalization for
a given logic is a standard question one asks about any logic
being developed.

Formal Proofs

Remember that the notion of a formal proof in a system S
is purely syntactical in its nature

Formal Proof carries a semantical meaning via established
semantics and the Soundness Theorem

The rules of inference of a proof system define only how to
transform strings of symbols of the language into another
string of symbols.

The formal proof, by the definition says that in order to prove
an expression A in a system S one has to construct of a
sequence of proper transformations, defined by the rules of
inference.

Simple System S1

Consider a very simple proof system system S1 with E = F

S1 = (L{P,⇒}, F , LA1 = {(A ⇒ A)}, (r)
B

PB
),

where A ,B ∈ F are any formulas and

where P is some one argument connective;

we might read PA for example as ” it is possible that A”

Observe that even the system S1 has only one axiom, it
represents an infinite number of formulas.

We call such axiom axiom schema

Simple System S2

Consider now a system S2

S2 = (L{P,⇒}, F LA2 = {(a ⇒ a)}, (r)
B

PB
),

where a ∈ VAR is any variable (atomic formula) and B ∈ F is
any formula

Observe that even the system S1 has only one axiom, it is
also an axiom schema
Observe that for example a formula

((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

is an axiom of system S1

but is not an axiom of the system S2

Some Provable Formulas

We have that

`S1((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

because

((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c))) ∈ LA1

other provable formulas are

`S1P(a ⇒ a), `S2P(a ⇒ a),

`S1PP(a ⇒ a), `S2PP(a ⇒ a)

Formal Proofs

Formal proofs in both systems of above formulas are identical
and are as follows.

Formal proof of P(a ⇒ a) in S1 and S2 is:

A1 = (a ⇒ a), A2 = P(a ⇒ a)
axiom rule application

for B = (a ⇒ a)

Formal Proofs

Formal proof of PP(a ⇒ a) in S1 and S2 is:

A1 = (a ⇒ a), A2 = P(a ⇒ a), A3 = PP(a ⇒ a)
axiom rule application rule application

for B = (a ⇒ a) for B = P(a ⇒ a)

Proof Search

Let’s search for a proof (if exists) of the formula A below in
S2

A = PP((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

Observe, that if A had the proof, the only last step in this proof

would be the application of the rule (r) B
PB) to the formula

P((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

This formula, in turn, if it had the proof, the only last step in its
proof would be the application of the rule r to the formula

((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

The search process stops here

Proof Search

Observe that

((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c))) < LA2

what means that our search for the proof has failed;

i.e. our found sequence of formulas does not constitute a
proof

Moreover, the search was, at each step unique what proves
that the proof of A in S2 does not exist, i.e.

0S2 PP((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

Proof Search Procedure

We easily generalize above example to a proof search
procedure to any formula A of S1 or S2 as follows

Procedure SP

Step: Check the main connective of A

If main connective is P, it means that A was obtained by the
rule r

Erase the main connective P

Repeat until no P as a main connective is l eft.

If the main connective is ⇒ check if a formula is an axiom

If it is an axiom, stop and yes we have a proof

If it is not an axiom, stop and no, proof does not exist

Syntactical Decidability

The Procedure SP is a finite, effective, automatic procedure
of searching for a proof of formulas in both our proof systems.

This proves the following.

Fact Proof systems S1 and S2 are syntactically decidable

Semantical link

Remark that we haven’t defined a semantics for the language
L{⇒,P} of systems S1,S2

We can’t talk about the soundness of these systems yet

but we can think how to define a sound semantics for our
systems.

If we want to understand statement PA as ” A is possible” we
need to define some kind of modal semantics.

Semantical link

All known modal semantics extend the classical semantics,
i.e. they are the same as classical one on non-modal
connectives

Hence under any possible modal semantics axioms S1,S2 of
would be a sound axiom under standard modal logics
semantics, as they are classical tautologies.

To assure the soundness of both systems we must have a
modal semantics M that makes the rule

(r)
B

PB

sound under the modal semantics M

General Question 1

General Q1: Are all proof systems decidable?

Answer Q1: No, not all proof systems are decidable

The most ”natural” and historically first developed proof
system for classical predicate logic is not decidable

General Question 2

General Q2 Can we give an example of a logic and its
complete proof system which is not decidable, but the logic
does have another complete, syntactically decidable proof
system?

Answer Q2: Hilbert style proof system for classical
propositional logic presented in chapter 5 is complete and
decidable but is not syntactically decidable

We present in chapter 6 some complete proof systems for
classical propositional logic that are syntactically decidable

