cse541 LOGIC for COMPUTER SCIENCE

Professor Anita Wasilewska

LECTURE 5a

Chapter 5 HILBERT PROOF SYSTEMS: Completeness of Classical Propositional Logic

Lecture 5a

PART 1: Introduction

PART 2: Proof of the Main Lemma

PART 3: Proof 1: Constructive Proof of Completeness

Theorem

PART 1: Introduction

There are many proof systems that describe classical propositional logic, i.e. that are **complete proof systems** with the respect to the classical semantics.

We present here a Hilbert proof system for the classical propositional logic and discuss two ways of proving the **Completeness Theorem** for it.

Any **proof** of the Completeness Theorem consists always of **two parts**.

First we have show that all formulas that have a proof are tautologies.

This implication is also called a **Soundness Theorem**, or **Soundness Part** of the **Completeness Theorem**

The second implication says: if a formula is a tautology then it has a proof.

This alone is sometimes called a **Completeness Theorem** (on assumption that the system is sound)

Traditionally it is called a completeness part of the Completeness Theorem

The **proof** of the soundness part is standard.

We concentrate here on the completeness part of the Completeness Theorem and present two proofs of it

The **first proof** is straightforward. It shows how one can use the assumption that a formula *A* is a tautology in order to **construct** its **formal proof**

It is hence called a proof - construction method.

The **second proof** shows how one can **prove** that a formula *A* is not a tautology **from** the fact that it does not have a proof

It is hence called a **counter-model construction method**.

All these **proofs** and considerations are relative to proof systems and their semantics

At this moment the semantics is classical and the proof system is H_2

Reminder: we write $\models A$ to denote that A is a classical tautology

Proof System H₂

Reminder: H_2 is the following proof system:

$$H_2 = \left(\ \pounds_{\{\Rightarrow,\neg\}}, \ \ \mathcal{F}, \quad \{A1,A2,A3\}, \ \ MP \ \right)$$

The axioms A1 - A3 are defined as follows.

A1
$$(A \Rightarrow (B \Rightarrow A))$$
,

A2
$$((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$$
,

A3
$$((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)))$$

$$(MP) \; \frac{A \; ; \; (A \Rightarrow B)}{B}$$

Proof System H₂

Obviously, the selected axioms A1, A2, A3 are **tautologies**, and the MP rule leads from tautologies to tautologies.

Hence our proof system H_2 is **sound** and the following theorem holds.

Soundness Theorem

For every formula $A \in \mathcal{F}$, If $\vdash_{H_2} A$, then $\models A$

System H₂ LEMMA

We have proved in Lecture 5 the following

Lemma

The following formulas a are provable in H_2

- 1. $(A \Rightarrow A)$
- $2. \quad (\neg \neg B \Rightarrow B)$
- 3. $(B \Rightarrow \neg \neg B)$
- **4.** $(\neg A \Rightarrow (A \Rightarrow B))$
- $5. \quad ((\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B))$
- **6.** $((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$
- 7. $(A \Rightarrow (\neg B \Rightarrow (\neg (A \Rightarrow B)))$
- **8.** $((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$
- 9. $((\neg A \Rightarrow A) \Rightarrow A)$

First Proof

The **first proof** of **Completeness Theorem** presented here is very **elegant** and **simple**, but is **applicable only** to the **classical propositional logic**

This proof is, as was the proof of Deduction Theorem, a fully constructive

The technique it uses, because of its specifics can't be used even in a case of classical predicate logic, not to mention variaty of non-classical logics

Second Proof

The **second proof** is much more complicated.

Its strength and importance lies in a fact that the methods it uses can be applied in an extended version to the **proof of completeness** for classical predicate logic and some non-classical propositional and predicate logics

The way **we define** a counter-model for any non-provable *A* is general and non-constructive

We call it a a counter-model existence method

PART 2: Proof of the MAIN LEMMA

Completeness Theorem

The proof of the **Completeness Theorem** presented here is similar in its structure to the proof of the **Deduction Theorem** and is due to Kalmar, 1935

It is a constructive proof

It shows how one can use the assumption that a formula A is a tautology in order to **construct** its formal proof.

We hence call it a **proof construction method**. It relies heavily on the Deduction Theorem

It is possible to prove the **Completeness Theorem** independently from the **Deduction Theorem** and we will present two of such a proofs in later chapters.

Introduction

We first present **one definition** and prove **one lemma**We write $\vdash A$ instead of $\vdash_S A$ as the system S is fixed.

Let A be a formula and $b_1, b_2, ..., b_n$ be all propositional variables that occur in A, i.e.

$$A = A(b_1, b_2, ..., b_n)$$

MAIN LEMMA: Definition 1

Definition 1

Let v be a truth assignment $v: VAR \longrightarrow \{T, F\}$ We define, for $A, b_1, b_2, ..., b_n$ and truth assignment v corresponding formulas A', $B_1, B_2, ..., B_n$ as follows:

$$A' = \begin{cases} A & \text{if} \quad v^*(A) = T \\ \neg A & \text{if} \quad v^*(A) = F \end{cases}$$

$$B_i = \begin{cases} b_i & \text{if } v(b_i) = T \\ \neg b_i & \text{if } v(b_i) = F \end{cases}$$

for i = 1, 2, ..., n

Example 1

```
Let A be a formula (a \Rightarrow \neg b)

Let v be such that v(a) = T, v(b) = F

In this case we have that b_1 = a, b_2 = b, and v^*(A) = v^*(a \Rightarrow \neg b) = v(a) \Rightarrow \neg v(b) = T \Rightarrow \neg F = T

The corresponding A', B_1, B_2 are:

A' = A as v^*(A) = T

B_1 = a as v(a) = T

B_2 = \neg b as v(b) = F
```

Example 2

Let
$$A$$
 be a formula $((\neg a \Rightarrow \neg b) \Rightarrow c)$
and let v be such that $v(a) = T$, $v(b) = F$, $v(c) = F$
Evaluate A' , B_1 , ... B_n as defined by the **definition 1**
In this case $n = 3$ and $b_1 = a$, $b_2 = b$, $b_3 = c$
and we evaluate $v^*(A) = v^*((\neg a \Rightarrow \neg b) \Rightarrow c) = ((\neg v(a) \Rightarrow \neg v(b)) \Rightarrow v(c)) = ((\neg T \Rightarrow \neg F) \Rightarrow F) = (T \Rightarrow F) = F$
The corresponding A' , B_1 , B_2 , B_2 are:
 $A' = \neg A = \neg((\neg a \Rightarrow \neg b) \Rightarrow c)$ as $v^*(A) = F$
 $B_1 = a$ as $v(a) = T$, $B_2 = \neg b$ as $v(b) = F$, and $B_3 = \neg c$ as $v(c) = F$

MAIN LEMMA

The lemma stated below describes a method of transforming a **semantic notion** of a **tautology** into a **syntactic notion** of provability

It **defines**, for any formula A and a truth assignment v a corresponding **deducibility relation**

Main Lemma

For any formula $A = A(b_1, b_2, ..., b_n)$ and any truth assignment v

If A', B_1 , B_2 , ..., B_n are corresponding formulas defined by **definition 1**, then

$$B_1, B_2, ..., B_n + A'$$

Examples

Example 3

Let A, v be as defined in the **Example 1**, i.e. A' = A, $B_1 = a$, $B_2 = \neg b$

Main Lemma asserts that

$$a, \neg b \vdash (a \Rightarrow \neg b)$$

Example 4

Let A, v be defined as in **Example 2**, then the **Lemma** asserts that

$$a, \neg b, \neg c + \neg((\neg a \Rightarrow \neg b) \Rightarrow c)$$

The proof is by induction on the degree of the formula A

Base Case n=0

In this case A is atomic and so consists of a single propositional variable, say a

If $\mathbf{v}^*(\mathbf{A}) = \mathbf{T}$ then we have by **definition 1**

$$A'=A=a, B_1=a$$

We obtain, by **definition of provability** from a set Γ of hypothesis for $\Gamma = \{a\}$ that

 $a \vdash a$

If
$$v^*(A) = F$$
 we have by **Definition 1** that

$$A' = \neg A = \neg a$$
 and $B_1 = \neg a$

We obtain, by **definition of provability** from a set Γ of hypothesis for $\Gamma = \{\neg a\}$ that

$$\neg a \vdash \neg a$$

This **proves** that **Lemma** holds for n=0

Inductive Step

Now **assume** that the **Main Lemma** holds for any formula with j < n connectives

Need to prove: the **Main Lemma** holds for **A** with *n* connectives

There are several sub-cases to deal with

Case: A is $\neg A_1$

By the inductive assumption we have the formulas

$$A_{1}^{'}, B_{1}, B_{2}, ..., B_{n}$$

corresponding to the A_1 and the propositional variables $b_1, b_2, ..., b_n$ in A_1 , such that

$$B_1, B_2, ..., B_n + A_1'$$

Observe that the formulas A and $\neg A_1$ have the same propositional variables

So the corresponding formulas B_1 , B_2 , ..., B_n are the same for both of them.

We are going to show that the inductive assumption allows us to prove that

$$B_1, B_2, ..., B_n + A'$$

There are two cases to consider.

Case:
$$v^*(A_1) = T$$

If $v^*(A_1) = T$ then by **definition 1** $A'_1 = A_1$ and by the inductive assumption

$$B_1, B_2, ..., B_n + A_1$$

In this case:
$$v^*(A) = v^*(\neg A_1) = \neg v^*(T) = F$$

So we have that $A' = \neg A = \neg \neg A_1$

By Lemma 3. we have that that $\vdash (A \Rightarrow \neg \neg A)$, so in particular

$$\vdash (A_1 \Rightarrow \neg \neg A_1)$$

we obtain by the monotonicity that also

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow \neg \neg A_1)$$

By **inductive assumption** $B_1, B_2, ..., B_n \vdash A_1$ and by MP we have

$$B_1, B_2, ..., B_n \vdash \neg \neg A_1$$

and as
$$A' = \neg A = \neg \neg A_1$$
 we get

$$B_1, B_2, ..., B_n \vdash \neg A$$
 and so $B_1, B_2, ..., B_n \vdash A'$

Case:
$$v^*(A_1) = F$$

If $v^*(A_1) = F$ then $A_1' = \neg A_1$ and $v^*(A) = T$ so $A' = A$

Therefore by the **inductive assumption** we have that

$$B_1, B_2, ..., B_n \vdash \neg A_1$$

that is as $A = \neg A_1$

$$B_1, B_2, ..., B_n + A'$$

Case: A is $(A_1 \Rightarrow A_2)$ If A is $(A_1 \Rightarrow A_2)$ then A_1 and A_2 have less than n connectives

 $A = A(b_1, ... b_n)$ so there are some **subsequences** $c_1, ..., c_k$ and $d_1, ... d_m$ for $k, m \le n$ of the sequence $b_1, ..., b_n$ such that

$$A_1 = A_1(c_1, ..., c_k)$$
 and $A_2 = A(d_1, ...d_m)$

 A_1 and A_2 have less than n connectives and so by the **inductive assumption** we have appropriate formulas $C_1, ..., C_k$ and $D_1, ...D_m$ such that

$$C_1, C_2, \ldots, C_k + A_1'$$
 and $D_1, D_2, \ldots, D_m + A_2'$

and $C_1, C_2, ..., C_k$, $D_1, D_2, ..., D_m$ are **subsequences** of formulas $B_1, B_2, ..., B_n$ corresponding to the propositional variables in A

By monotonicity we have the also

$$B_1, B_2, ..., B_n + A_1'$$
 and $B_1, B_2, ..., B_n + A_2'$

Now we have the following sub-cases to consider

Case:
$$v^*(A_1) = v^*(A_2) = T$$

If $v^*(A_1) = T$ then $A_1' = A_1$ and
if $v^*(A_2) = T$ then $A_2' = A_2$
We also have $v^*(A_1 \Rightarrow A_2) = T$ and so $A' = (A_1 \Rightarrow A_2)$
By the above and the **inductive assumption**

$$B_1, B_2, ..., B_n + A_2$$

and By Axiom 1 and by monotonicity we have

$$B_1, B_2, ..., B_n \vdash (A_2 \Rightarrow (A_1 \Rightarrow A_2))$$

By above and MP we have $B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2)$ that is

$$B_1, B_2, ..., B_n + A'$$

Case:
$$v^*(A_1) = T$$
, $v^*(A_2) = F$
If $v^*(A_1) = T$ then $A_1' = A_1$ and if $v^*(A_2) = F$ then $A_2' = \neg A_2$
Also we have in this case $v^*(A_1 \Rightarrow A_2) = F$ and so $A' = \neg (A_1 \Rightarrow A_2)$
By the **above**, the **inductive assumption** and **monotonicity** $B_1, B_2, ..., B_n \vdash \neg A_2$
By Lemma 7. we have $\vdash (A \Rightarrow (\neg B \Rightarrow \neg (A \Rightarrow B)))$. By **monotonicity** we have in our particular case $B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow (\neg A_2 \Rightarrow \neg (A_1 \Rightarrow A_2)))$
By above and MP **twice** we have $B_1, B_2, ..., B_n \vdash \neg (A_1 \Rightarrow A_2)$ that is $B_1, B_2, ..., B_n \vdash \neg (A_1 \Rightarrow A_2)$ that is

Case:
$$v^*(A_1) = F$$

Observe that if $v^*(A_1) = F$ then A_1' is $\neg A_1$ and, whatever value v gives A_2 , we have

$$v^*(A_1 \Rightarrow A_2) = T$$

So
$$A'$$
 is $(A_1 \Rightarrow A_2)$

Therefore

$$B_1, B_2, \ldots, B_n \vdash \neg A_1$$

We have that $\vdash (\neg A \Rightarrow (A \Rightarrow B))$ by Lemma 4. and so by monotonicity we have

$$B_1, B_2, ..., B_n + (\neg A_1 \Rightarrow (A_1 \Rightarrow A_2))$$

By Modus Ponens we get that

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2)$$

that is

$$B_1, B_2, ..., B_n + A'$$

We have covered **all cases** and, by **mathematical induction** on the degree of the formula A we got

$$B_1, B_2, ..., B_n + A'$$

The proof of the Main Lemma is complete

PART3

Proof 1: Constructive Proof of Completeness Theorem

Proof of Completeness Theorem

Now we use the **Main Lemma** to prove the **Completeness Theorem** i.e. to prove the following implication

For any formula $A \in \mathcal{F}$

if
$$\models A$$
 then $\vdash A$

Proof

Assume that $\models A$

Let $b_1, b_2, ..., b_n$ be all propositional variables that occur in the formula A, i.e.

$$A = A(b_1, b_2, ..., b_n)$$

By the **Main Lemma** we know that, for any truth assignment v, the corresponding formulas A', B_1 , B_2 , ..., B_n can be found such that

$$B_1, B_2, ..., B_n + A'$$

Proof

Note that in this case A' = A for any v since $\models A$ We have two cases.

1. If v is such that $v(b_n) = T$, then $B_n = b_n$ and

$$B_1, B_2, ..., b_n + A$$

2. If v is such that $v(b_n) = F$, then $B_n = \neg b_n$ and by the **Main Lemma**

$$B_1, B_2, ..., \neg b_n \vdash A$$

So, by the **Deduction Theorem** we have

$$B_1, B_2, ..., B_{n-1} \vdash (b_n \Rightarrow A)$$

and

$$B_1, B_2, ..., B_{n-1} \vdash (\neg b_n \Rightarrow A)$$

Proof of Completeness Theorem

By Lemma 8.

$$\vdash ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$$

for $A = b_n$, B = Aand by monotonicity we have that

$$B_1, B_2, ..., B_{n-1} \vdash ((b_n \Rightarrow A) \Rightarrow ((\neg b_n \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice we get that

$$B_1, B_2, ..., B_{n-1} \vdash A$$

Similarly, $v^*(B_{n-1})$ may be T or F Applying the **Main Lemma**, the **Deduction Theorem**, monotonicity, formula **8.** and Modus Ponens twice we can eliminate B_{n-1} just as we have eliminated B_n After n steps, we finally obtain proof of A in S, i.e. we have that

Constructiveness of the Proof

Observe that our proof of the Completeness Theorem is a constructive one.

Moreover, we have used in it only Main Lemma and Deduction Theorem which both have a **constructive proofs** We **can** hence reconstruct proofs in each case when we apply these theorems back to the original axioms of H_2 . The same applies to the **proofs** in H_2 of all formulas 1. - 9. It means that for any A, such that $\models A$, the set V_A of all V restricted to A provides us a method of a **construction** of the **formal proof** of A in A.

Example

The proof of **Completeness Theorem** defines a **method** of efficiently combining $v \in V_A$ while **constructing** the proof of A

Let's consider the following tautology A = A(a, b, c)

$$((\neg a \Rightarrow b) \Rightarrow (\neg(\neg a \Rightarrow b) \Rightarrow c)$$

We present on the next slides all steps of the **Proof 1** as applied to A

Given

$$A(a,b,c) = ((\neg a \Rightarrow b) \Rightarrow (\neg (\neg a \Rightarrow b) \Rightarrow c)$$

By the Main Lemma and the assumption that

$$\models A(a,b,c)$$

any $v \in V_A$ defines formulas B_a , B_b , B_c such that

$$B_a, B_b, B_c + A$$

The proof is based on a method of using all $v \in V_A$ (there is 8 of them) to **define** a process of elimination of all hypothesis B_a , B_b , B_c to **construct** the proof of A, i.e. to prove that

$$\vdash A$$

Step 1: elimination of B_c

Observe that by definition, B_c is c or $\neg c$ depending on the **choice** of $v \in V_A$

We **choose** two truth assignments $v_1 \neq v_2 \in V_A$ such that

$$v_1 | \{a, b\} = v_2 | \{a, b\} \text{ and } v_1(c) = T, v_2(c) = F$$

Case 1: $v_1(c) = T$

By by definition $B_c = c$

By our choice, the assumption that $\models A$ and the **Main**

Lemma applied to v_1

$$B_a, B_b, c \vdash A$$

By **Deduction Theorem** we have that

$$B_a, B_b \vdash (c \Rightarrow A)$$

Case 2:
$$v_2(c) = F$$

By definition $B_c = \neg c$

By our **choice**, assumption that $\models A$, and the **Main Lemma** applied to v_2

$$B_a, B_b, \neg c \vdash A$$

By the **Deduction Theorem** we have that

$$B_a, B_b \vdash (\neg c \Rightarrow A)$$

By Lemma 8. for A = c, B = A we have that

$$\vdash ((c \Rightarrow A) \Rightarrow ((\neg c \Rightarrow A) \Rightarrow A))$$

By monotonicity we have that

$$B_a, B_b \vdash ((c \Rightarrow A) \Rightarrow ((\neg c \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice to the above property and properties on the previous slide we get that

$$B_a, B_b \vdash A$$

We have **eliminated** B_c

Step 2: elimination of B_b from $B_a, B_b \vdash A$

We repeat the Step 1

As before we have 2 cases to consider: $B_b = b$ or $B_b = \neg b$ We **choose** two truth assignments $w_1 \neq w_2 \in V_A$ such that

$$w_1 | \{a\} = w_2 | \{a\} = v_1 | \{a\} = v_2 | \{a\} \text{ and } w_1(b) = T, w_2(b) = F$$

Case 1: $w_1(b) = T$ and by definition $B_b = b$ By our choice, assumption that $\models A$ and the **Main Lemma** applied to w_1

$$B_a, b \vdash A$$

By **Deduction Theorem** we have that

$$B_a \vdash (b \Rightarrow A)$$

Case 2: $w_2(b) = F$ and by definition $B_b = \neg b$

By choice, assumption that $\models A$ and the **Main Lemma** applied to

 W_2

$$B_a, \neg b \vdash A$$

By the **Deduction Theorem** we have that

$$B_a \vdash (\neg b \Rightarrow A)$$

By Lemma 8. for A = b, B = A we have that

$$\vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$$

By monotonicity

$$B_a \vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice to the above property and properties from the previous slide we get that

$$B_a \vdash A$$

We have **eliminated** B_b

Step 3: elimination] of B_a from $B_a \vdash A$

We repeat the Step 2

As before we have 2 cases to consider: $B_a = a$ or $B_a = \neg a$ We choose two truth assignments $g_1 \neq g_2 \in V_A$ such that

$$g_1(a) = T$$
 and $g_2(a) = F$

Case 1: $g_1(a) = T$, and by definition $B_a = a$ By the choice, assumption that $\models A$, and the **Main Lemma** applied to g_1

$$a \vdash A$$

By **Deduction Theorem** we have that

$$\vdash (a \Rightarrow A)$$

Case 2: $g_2(a) = F$ and by definition $B_a = \neg a$

By the choice, assumption that $\models A$, and the **Main Lemma** applied to g_2

$$\neg a \vdash A$$

By the **Deduction Theorem** we have that

$$\vdash (\neg a \Rightarrow A)$$

By Lemma 8. for A = a, B = A we have that

$$\vdash ((a \Rightarrow A) \Rightarrow ((\neg a \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice to the above property and properties from previous slides we get that

⊢ *A*

We have **eliminated** B_a , B_b , B_c and constructed the **proof** of A in S

Exercises

Exercise 1

The **Lemma** listed formulas 1. - 9. that we said they were needed for **both** proofs of the **Completeness Theorem**.

List all the **formulas** from t**Lemma** that are are **needed** for the **Proof One** alone

Exercises

Exercise 2

The system H_2 was defined and the **Proof One** was carried out for the language $\mathcal{L}_{\{\Rightarrow,\neg\}}$

Extend the system H_2 and the **Proof One** to the language $\mathcal{L}_{\{\Rightarrow,\cup,\neg\}}$ by **adding** all new cases concerning the new connective \cup

List all new formulas needed to be **added** as new Axioms to H_2 to be able to follow the methods of the original **Proof One**

Exercise 3

Repeat the **Exercise 2** for he language

$$\mathcal{L}_{\{\Rightarrow,\ \cup,\ \cap\ \neg\}}$$

