cse541 LOGIC for COMPUTER SCIENCE

Professor Anita Wasilewska

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

LECTURE 5b

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Chapter 5 Hilbert Proof Systems Completeness of Classical Propositional Logic

Completeness Theorem

Proof Two: A Counter- Model Existence Method

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Completeness Theorem Proof Two

Our goal is to prove the following **Completeness Theorem** (Completeness Part) For any formula $A \in \mathcal{F}$ of H_2

if $\models A$ then $\vdash A$

We do so by **proving** its logically equivalent **opposite** implication:

If $\nvdash A$, then $\nvdash A$

Hence the **Proof Two** consists of using the information that a formula A is not provable to show the **existence** of a **counter-model** for A

Completeness Theorem Proof Two

The **Proof Two** is more general and much more complicated then the **Proof One**

The **main point** of the proof is a general, non- constructive method for proving **existence** of a **counter-model** for any non-provable formula *A*

The **generality** of the method makes it possible to **adopt** it for other cases of predicate and some non-classical logics

・ロト・日本・モト・モト・ ヨー のくぐ

This is why we call the **Proof Two** a counter-model **existence** method

Completeness Theorem Proof Two

The **Proof Two** construction of a **counter-model** for any non-provable formula *A* is an abstract method that is not constructive as was the method used in the **Proof One**

The **Proof Two** used the method can be generalized to the case of predicate logic, and many of non-classical logics; propositional and predicate

This is the reason we present it here

Proof Two Steps

We remind that $\not\models A$ means that there is a truth assignment $v : VAR \longrightarrow \{T, F\}$, such that (as we are in classical semantics) $v^*(A) = F$

We assume that *A* **does not** have a proof i.e. \nvdash *A* we use this information in order to define a general method of constructing v, such that $v^*(A) = F$

This is done in the following steps.

Proof Two Steps

Step 1

Definition of a special set of formulas Δ^* We use the information $\nvdash A$ to define a set of formulas Δ^* such that $\neg A \in \Delta^*$

Step 2

Definition of the counter - model

We define the variable truth assignment $v : VAR \longrightarrow \{T, F\}$ as follows:

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof 2 Steps

Step 3

We prove that v is a counter-model for A

We first prove a following more general property of ${\bf v}$

Property

The set Δ^* and v defined in the Steps 1 and 2 are such that for every formula $B \in \mathcal{F}$

$$\mathbf{v}^*(B) = \begin{cases} T & \text{if } \Delta^* \vdash B \\ F & \text{if } \Delta^* \vdash \neg B \end{cases}$$

We then use the **Step 3** to prove that $v^*(A) = F$

Main Notions

The definition, construction and the properties of the set Δ^* and hence the **Step 1**, are the most essential for the Proof Two

The other steps have mainly technical character

The **main notions** involved in the proof are: consistent set, complete set and a consistent complete extension of a set of formulas

We are going **prove** some essential facts about them.

Consistent and Inconsistent Sets

There exist two definitions of consistency; semantical and syntactical

Semantical definition uses the notion of a model and says:

A set is consistent if it has a model

Syntactical definition uses the notion of provability and says:

A set is consistent if one can't prove a contradiction from it

Consistent and Inconsistent Sets

In our proof of the **Completeness Theorem** we use the following formal syntactical definition of consistency of a set of formulas

Definition of a consistent set

We say that a set $\Delta \subseteq \mathcal{F}$ of formulas is **consistent** if and only if **there is no** a formula $A \in \mathcal{F}$ such that

 $\Delta \vdash A$ and $\Delta \vdash \neg A$

Consistent and Inconsistent Sets

Definition of an inconsistent set

A set $\Delta \subseteq \mathcal{F}$ is **inconsistent** if and only if **there is** a formula $A \in \mathcal{F}$ such that

 $\Delta \vdash A$ and $\Delta \vdash \neg A$

The notion of consistency, as defined above, is characterized by the following **Consistency Lemma**

Consistency Condition Lemma

Lemma Consistency Condition

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(i) Δ is consistent

(ii) there is a formula $A \in \mathcal{F}$ such that $\Delta \nvDash A$

Proof of Consistency Lemma

Proof

To establish the equivalence of (i) and (ii) we prove the corresponding opposite implications

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We prove the following two cases

- Case 1 not (ii) implies not (i)
- Case 2 not (i) implies not (ii)

Proof of Consistency Lemma

Case 1

Assume that not (ii) It means that for all formulas $A \in \mathcal{F}$ we have that

$\Delta \vdash A$

In particular it is true for a certain A = B and for a certain $A = \neg B$ i.e.

$$\Delta \vdash B$$
 and $\Delta \vdash \neg B$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

and hence it proves that Δ is **inconsistent** i.e. not (i) holds

Proof of Consistency Lemma

Case 2

Assume that not (i), i.e that Δ is inconsistent Then there is a formula A such that $\Delta \vdash A$ and $\Delta \vdash \neg A$ Let B be any formula We proved (Lemma formula 6.) that $\vdash (\neg A \Rightarrow (A \Rightarrow B))$ By monotonicity

$$\Delta \vdash (\neg A \Rightarrow (A \Rightarrow B))$$

Applying Modus Ponens twice to $\neg A$ first, and to A next we get that $\Delta \vdash B$ for any formula B

Thus not (ii) and it ends the proof of the Consistency Condition Lemma

Inconsistency Condition Lemma

Inconsistent sets are hence characterized by the following fact

Lemma Inconsistency Condition

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:

- (i) Δ is inconsistent,
- (i) for any formula $A \in \mathcal{F} \Delta \vdash A$

Finite Consequence Lemma

We remind here property of the finiteness of the **consequence** operation.

Lemma Finite Consequence For every set Δ of formulas and for every formula $A \in \mathcal{F}$ $\Delta \vdash A$ if and only if there is a **finite** set $\Delta_0 \subseteq \Delta$ such that $\Delta_0 \vdash A$

Proof

If $\Delta_0 \vdash A$ for a certain $\Delta_0 \subseteq \Delta$, hence by the monotonicity of the consequence, also $\Delta \vdash A$

Finite Consequence Lemma

Assume now that $\Delta \vdash A$ and let

 $A_1, A_2, ..., A_n$

be a formal proof of A from Δ

Let

$$\Delta_0 = \{A_1, A_2, ..., A_n\} \cap \Delta$$

Obviously, Δ_0 is finite and $A_1, A_2, ..., A_n$ is a formal proof of **A** from Δ_0

Finite Inconsistency Theorem

The following theorem is a simple corollary of just proved Finite Consequence Lemma

Theorem Finite Inconsistency

(1.) If a set Δ is **inconsistent**, then it has a finite **inconsistent** subset Δ_0

(2.) If every finite subset of a set Δ is consistent then the set Δ is also consistent

Finite Inconsistency Theorem

Proof

If Δ is **inconsistent**, then for some formula A,

 $\Delta \vdash A$ and $\Delta \vdash \neg A$

By the Finite Consequence Lemma , there are finite subsets Δ_1 and Δ_2 of Δ such that

 $\Delta_1 \vdash A$ and $\Delta_2 \vdash \neg A$

The union $\Delta_1 \cup \Delta_2$ is a finite subset of Δ and by monotonicity

 $\Delta_1 \cup \Delta_2 \vdash A$ and $\Delta_1 \cup \Delta_2 \vdash \neg A$

Hence we proved that $\Delta_1 \cup \Delta_2$ is a finite inconsistent subset of Δ

The second implication (2.) is the opposite to the one just proved and hence also holds

Consistency Lemma

The following **Lemma** links the notion of non-provability and consistency

It will be used as an important step in our **Proof Two** of the **Completeness Theorem**

Lemma

For any formula $A \in \mathcal{F}$,

if $\nvdash A$ then the set $\{\neg A\}$ is **consistent**

Consistency Lemma

Proof We prove the opposite implication If $\{\neg A\}$ is **inconsistent**, then $\vdash A$ Assume that $\{\neg A\}$ is **inconsistent** By the **Inconsistency Condition Lemma** we have that $\{\neg A\} \vdash B$ for **any formula** B, and hence in particular

$\{\neg A\} \vdash A$

By Deduction Theorem we get

 $\vdash (\neg A \Rightarrow A)$

We proved (Lemma formula 9.) that

 $\vdash ((\neg A \Rightarrow A) \Rightarrow A)$

By Modus Ponens we get

⊢ A

- コン・1日・1日・1日・1日・1日・

This ends the proof

Complete and Incomplete Sets

Another important notion, is that of a **complete set** of formulas.

Complete sets, as defined here are sometimes called **maximal**, but we use the first name for them.

They are defined as follows.

Definition Complete set

A set Δ of formulas is called **complete** if for every formula $A \in \mathcal{F}$

$$\Delta \vdash A$$
 or $\Delta \vdash \neg A$

Godel used this notion of complete sets in his **Incompleteness of Arithmetic Theorem**

The complete sets are characterized by the following fact.

(日)

Complete and Incomplete Sets

Complete Set Condition Lemma

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent

(i) The set Δ is complete

(ii) For every formula $A \in \mathcal{F}$,

if $\Delta \nvDash A$ then then the set $\Delta \cup \{A\}$ is inconsistent

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof

We consider two cases

- Case 1 We show that (i) implies (ii) and
- Case 2 we show that (ii) implies (i)

Proof of Case 1

Assume (i) and not(ii) i.e.

assume that Δ is **complete** and there is a formula $A \in \mathcal{F}$

such that $\Delta \nvDash A$ and the set $\Delta \cup \{A\}$ is **consistent**

We have to show that we get a contradiction

But if $\Delta \not\models A$, then from the assumption that Δ is **complete** we get that

 $\Delta \vdash \neg A$

By the monotonicity of the consequence we have that

 $\Delta \cup \{A\} \vdash \neg A$

We proved (Lemma formula 4.) \vdash ($A \Rightarrow A$) By monotonicity $\Delta \vdash$ ($A \Rightarrow A$) and by Deduction Theorem

$\Delta \cup \{A\} \vdash A$

We hence proved that that there is a formula $A \in \mathcal{F}$ such that

 $\Delta \cup \{A\}$ and $\Delta \cup \{A\} \vdash \neg A$

i.e. that the set $\Delta \cup \{A\}$ is **inconsistent** Contradiction

Proof of Case 2

Assume (ii), i.e. that for every formula $A \in \mathcal{F}$ if $\Delta \not\models A$ then the set $\Delta \cup \{A\}$ is **inconsistent** Let *A* be any formula. We want to show (i), i.e. to show that the following condition

C: $\Delta \vdash A$ or $\Delta \vdash \neg A$

is satisfied.

Observe that if

 $\Delta \vdash \neg A$

then the condition C is obviously satisfied

If, on the other hand,

 $\Delta \nvDash \neg A$

then we are going to show now that it must be, under the assumption of (ii), that $\Delta \vdash A$ i.e. that (i) holds Assume that

∆⊬¬A

then by (ii) the set $\Delta \cup \{\neg A\}$ is inconsistent

The Inconsistency Condition Lemma says

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:

- (i) Δ is inconsistent,
- (i) for any formula $A \in \mathcal{F}$, $\Delta \vdash A$

We just proved that the set $\Delta \cup \{\neg A\}$ is **inconsistent** So by the the above Lemma we get

 $\Delta \cup \{\neg A\} \vdash A$

By the **Deduction Theorem** $\Delta \cup \{\neg A\} \vdash A$ implies that $\Delta \vdash (\neg A \Rightarrow A)$

Observe that by Lemma formula 4.

 $\vdash ((\neg A \Rightarrow A) \Rightarrow A)$

By monotonicity

$$\Delta \vdash ((\neg A \Rightarrow A) \Rightarrow A)$$

Detaching, by MP the formula $(\neg A \Rightarrow A)$ we obtain that

 $\Delta \vdash A$

- コン・1日・1日・1日・1日・1日・

This ends the proof that (i) holds.

Incomplete Sets

Definition Incomplete Set

A set Δ of formulas is called **incomplete** if it is **not complete** i.e. when the following condition holds

There exists a formula $A \in \mathcal{F}$ such that

 $\Delta \nvDash A$ and $\Delta \nvDash \neg A$

We get as a direct consequence of the Complete Set Condition Lemma the following characterization of incomplete sets

Lemma Incomplete Set Condition

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:

(i) Δ is incomplete,

(ii) there is formula $A \in \mathcal{F}$ such that $\Delta \nvDash A$ and the set $\Delta \cup \{A\}$ is consistent.

Main Lemma: Complete Consistent Extension

Now we are going to prove a **Main Lemma** that is essential to the construction of the special set Δ^* mentioned in the **Step 1** of the proof of the **Completeness Theorem** and hence to the **proof of the theorem** itself

Let's first introduce one more notion

Complete Consistent Extension

Definition Extension Δ^* of the set Δ

A set Δ^* of formulas is called an **extension** of a set Δ of formulas if the following **condition holds**

$$\{A \in \mathcal{F} : \Delta \vdash A\} \subseteq \{A \in \mathcal{F} : \Delta^* \vdash A\}$$

i.e.
$$Cn(\Delta) \subseteq Cn(\Delta^*)$$

In this case **we say** also that \triangle **extends** to the set of formulas \triangle^*

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Main Lemma

Main Lemma

Main Lemma Complete Consistent Extension

Every consistent set Δ of formulas can be extended to a complete consistent set Δ^* of formulas i. e

For every **consistent** set Δ there is a set Δ^* that is **complete** and **consistent** and is an **extension** of Δ i.e.

 $Cn(\Delta) \subseteq Cn(\Delta^*)$

Proof

Assume that the lemma does not hold, i.e. that there is a **consistent** set Δ , such that all its consistent extensions are **not complete**

In particular, as Δ is an consistent extension of itself, we have that Δ is **not complete**

The proof consists of a **construction** of a particular set Δ^* and **proving** that it forms a **complete** consistent extension of Δ

This is **contrary** to the assumption that all its consistent extensions are **not complete**

Construction of Δ^*

As we know, the set \mathcal{F} of all formulas is enumerable; they can hence be put in an infinite sequence

F $A_1, A_2, \ldots, A_n, \ldots$

such that every formula of \mathcal{F} occurs in that sequence exactly once

We define, by mathematical induction, an infinite sequence

 $\mathbf{D} \{\Delta_n\}_{n \in \mathbf{N}}$

of consistent subsets of formulas together with a sequence

B $\{B_n\}_{n\in\mathbb{N}}$

of formulas as follows

Initial Step

In this step we define the sets

 Δ_1, Δ_2 and the formula B_1

and prove that

 Δ_1 and Δ_2

are **consistent**, **incomplete** extensions of Δ We take as the first set in **D** the set Δ , i.e. we define

 $\Delta_1=\Delta$

By assumption the set Δ , and hence also Δ_1 is **not complete**.

From the Incomplete Set Condition Lemma we get that there is a formula $B \in \mathcal{F}$ such that

 $\Delta_1 \not\vdash B$ and $\Delta_1 \cup \{B\}$ is consistent

Let B_1 be the **first formula** with this property in the sequence **F** of all formulas

We define

 $\Delta_2 = \Delta_1 \cup \{B_1\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Observe that the set Δ_2 is consistent and

 $\Delta_1=\Delta\subseteq\Delta_2$

By monotonicity Δ_2 is a **consistent extension** of Δ Hence, as we assumed that all consistent extensions of Δ are **not complete**, we get that Δ_2 cannot be complete, i.e.

 Δ_2 is incomplete

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Inductive Step

Suppose that we have defined a sequence

 $\Delta_1, \Delta_2, \ldots, \Delta_n$

of **incomplete, consistent extensions** of Δ and a sequence

$$B_1, B_2, \ldots, B_{n-1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

of formulas, for $n \ge 2$

Since Δ_n is **incomplete**, it follows from the **Incomplete** Set Condition Lemma that

there is a formula $B \in \mathcal{F}$ such that

 $\Delta_n \nvDash B$ and $\Delta_n \cup \{B\}$ is consistent

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let B_n be the first formula with this property in the sequence **F** of all formulas.

We define

$$\Delta_{n+1} = \Delta_n \cup \{B_n\}$$

By the definition

 $\Delta \subseteq \Delta_n \subseteq \Delta_{n+1}$

and the set Δ_{n+1} is a **consistent** extension of Δ Hence by our assumption that all all consistent extensions o f Δ are **incomplete** we get that

Δ_{n+1}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

is an **incomplete** consistent extension of Δ

By the principle of mathematical induction we have defined an infinite sequence

D
$$\Delta = \Delta_1 \subseteq \Delta_2 \subseteq ..., \subseteq \Delta_n \subseteq \Delta_{n+1} \subseteq$$

such that for all $n \in N$, Δ_n is **consistent**, and each Δ_n an **incomplete consistent extension** of Δ

Moreover, we have also defined a sequence

 $\mathbf{B} \qquad B_1, B_2, \ldots, B_n, \ldots$

of formulas, such that for all $n \in N$,

 $\Delta_n \nvDash B_n$ and $\Delta_n \cup \{B_n\}$ is consistent

Observe that $B_n \in \Delta_{n+1}$ for all $n \ge 1$

Definition of Δ^*

Now we are ready to define Δ^*

Definition of Δ^*

$$\Delta^* = \bigcup_{n \in N} \Delta_n$$

To complete the proof our theorem we have now to prove that

▲□▶▲□▶▲□▶▲□▶ ■ のへで

 Δ^* is a complete consistent extension of Δ

Δ^* Consistent

Obviously directly from the definition $\Delta \subseteq \Delta^*$ and hence we have the following

Fact 1 Δ^* is an **extension** of Δ

By Monotonicity of Consequence $Cn(\Delta) \subseteq Cn(\Delta^*)$, hence extension

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

As the next step we prove

Fact 2 The set Δ^* is **consistent**

Δ^* Consistent

Proof that Δ^* is **consistent** Assume that Δ^* is **inconsistent**

By the Finite Inconsistency Theorem there is a finite subset Δ_0 of Δ^* that is **inconsistent**, i.e.

 $\Delta_0 \subseteq \bigcup_{n \in \mathbb{N}} \Delta_n, \quad \Delta_0 = \{C_1, ..., C_n\}, \quad \Delta_0 \text{ is inconsistent}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Proof of Δ^* Consistent

We have $\Delta_0 = \{C_1, \ldots, C_n\}$ By the definition of Δ^* for each formula $C_i \in \Delta_0$

 $C_i \in \Delta_{k_i}$

for certain Δ_{k_i} in the sequence

D $\Delta = \Delta_1 \subseteq \Delta_2 \subseteq ..., \subseteq \Delta_n \subseteq \Delta_{n+1} \subseteq$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hence $\Delta_0 \subseteq \Delta_m$ for $m = max\{k_1, k_2, .., k_n\}$

Proof of Δ^* Consistent

But we proved that all sets of the sequence **D** are **consistent**

This contradicts the fact that Δ_m is consistent as it contains an **inconsistent** subset Δ_0

This contradiction ends the proof that Δ^* is consistent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof of Δ^* Complete

Fact 3 The set Δ^* is complete

Proof Assume that Δ^* is **not complete**. By the Incomplete Set Condition, there is a formula $B \in \mathcal{F}$ such that

 $\Delta^* \not\models B$, and the set $\Delta^* \cup \{B\}$ is consistent

By definition of the sequence **D** and the sequence **B** of formulas we have that for every $n \in N$

 $\Delta_n \nvDash B_n$ and the set $\Delta_n \cup \{B_n\}$ is consistent

Moreover $B_n \in \Delta_{n+1}$ for all $n \ge 1$

Proof of Δ^* Complete

Since the formula *B* is one of the formulas of the sequence **B** so we get that $B = B_j$ for certain *j*

By definition, $B_i \in \Delta_{i+1}$ and it proves that

$$B \in \Delta^* = \bigcup_{n \in N} \Delta_n$$

But this means that $\Delta^* \vdash B$

This is a contradiction with the assumption $\Delta^* \not = B$ and it ends the proof of the Fact 3

Main Lemma

Facts 1-3 prove that that Δ^* is a complete consistent extension of Δ

We hence **completed** the proof of the Main Lemma

Main Lemma

Every consistent set Δ of formulas can be extended to a complete consistent set Δ^* of formulas

We proved already that H_2 is **sound**, so we have to prove only the Completeness part of the Completeness Theorem: For any formula $A \in \mathcal{F}$,

If $\models A$, then $\vdash A$

We prove it by **proving** its logically equivalent opposite implication form, i.e we prove now the following

Completeness Theorem

For any formula $A \in \mathcal{F}$,

If $\nvdash A$, then $\nvdash A$

Proof

Assume that *A* **does not** have a proof, we want to define a **counter-model** for *A*

But if $\nvdash A$, then by the Inconsistency Lemma the set $\{\neg A\}$ is consistent

By the **Main Lemma** there is a complete, consistent extension of the set $\{\neg A\}$

This means that there is a set Δ^* such that $\{\neg A\} \subseteq \Delta^*$, i.e.

E $\neg A \in \Delta^*$ and Δ^* is **complete** and **consistent**

Since Δ^* is a **consistent, complete** set, it satisfies the following form of

Consistency Condition

For any $A \in \mathcal{F}$,

 $\Delta^* \nvDash A$ or $\Delta^* \nvDash \neg A$

 Δ^* is also **complete** i.e. satisfies

Completeness Condition

For any $A \in \mathcal{F}$,

 $\Delta^* \vdash A \text{ or } \Delta^* \vdash \neg A$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Directly from the **Completeness** and **Consistency** Conditions we get the following

Separation Condition

For any $A \in \mathcal{F}$, **exactly one** of the following conditions is satisfied:

(1) $\Delta^* \vdash A$, or (2) $\Delta^* \vdash \neg A$

In particular case we have that for every propositional variable $a \in VAR$ exactly one of the following conditions is satisfied:

・ロト・ 御 ト・ ヨト・ ヨト・ ヨー のへぐ

(1) $\Delta^* \vdash a$, or (2) $\Delta^* \vdash \neg a$

This justifies the correctness of the following definition

Definition

We define the variable truth assignment

 $v: VAR \longrightarrow \{T, F\}$

as follows:

$$v(a) = \begin{cases} T & \text{if } \Delta^* \vdash a \\ F & \text{if } \Delta^* \vdash \neg a \end{cases}$$

We show, as a separate Lemma below, that such defined variable assignment v has the following property

Property of v Lemma

Lemma Property of v

Let v be the variable assignment defined above and v^* its extension to the set \mathcal{F} of all formulas $B \in \mathcal{F}$, the following is true

 $v^*(B) = \left\{ egin{array}{cccc} T & ext{if } \Delta^* & arepsilon & B \ F & ext{if } \Delta^* & arepsilon & \neg B \end{array}
ight.$

Given the Property of v Lemma (still to be proved) we now **prove** that the v is in fact, a **counter model** for any formula A, such that $\nvDash A$ Let A be such that $\nvDash A$ By the Property **E** we have that $\neg A \in \Delta^*$ So obviously $\Delta^* \vdash \neg A$

Hence by the Property of v Lemma

 $v^*(A) = F$

what **proves** that v is a **counter-model** for A and it **ends the proof** of the **Completeness Theorem**

Proof of the **Property of** *v* **Lemma**

The proof is conducted by the induction on the degree of the formula A

Initial step A is a propositional variable so the **Lemma** holds by definition of v

Inductive Step

If A is not a propositional variable, then A is of the form $\neg C$ or $(C \Rightarrow D)$, for certain formulas C, D

By the inductive assumption the Lemma holds for the formulas C and D

Case $A = \neg C$

By the **Separation Condition** for Δ^* we consider two possibilities

- **1.** Δ^{*} ⊢ A
- **2.** Δ^{*} ⊢ ¬A

Consider case **1.** i.e. we assume that $\Delta^* \vdash A$

It means that

 $\Delta^* \vdash \neg C$

Then from the fact that Δ^* is **consistent** it must be that

 $\Delta^* \nvDash C$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

By the inductive assumption we have that $v^*(C) = F$ and accordingly $v^*(A) = v^*(\neg C) = \neg v^*(C) = \neg F = T$ **Consider** case **2.** i.e. we assume that $\Delta^* \vdash \neg A$ Then from the fact that Δ^* is **consistent** it must be that $\Delta^* \nvDash A$ and

 $\Delta^* \nvDash \neg C$

If so, then $\Delta^* \vdash C$, as the set Δ^* is **complete** By the **inductive assumption**, $v^*(C) = T$, and accordingly

$$\mathbf{v}^*(\mathbf{A}) = \mathbf{v}^*(\neg \mathbf{C}) = \neg \mathbf{v}^*(\mathbf{C}) = \neg \mathbf{T} = \mathbf{F}$$

Thus A satisfies the Property of v Lemma

Case $A = (C \Rightarrow D)$

As in the previous case, we assume that the Lemma holds for the formulas C, D and we consider by the **Separation Condition** for Δ^* two possibilities:

1. $\Delta^* \vdash A$ and 2. $\Delta^* \vdash \neg A$ **Case 1.** Assume $\Delta^* \vdash A$ It means that $\Delta^* \vdash (C \Rightarrow D)$ If at the same time $\Delta^* \nvDash C$, then $v^*(C) = F$, and accordingly

$$v^*(A) = v^*(C \Rightarrow D) =$$

 $v^*(C) \Rightarrow v^*(D) = F \Rightarrow v^*(D) = T$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

If at the same time $\Delta^* \vdash C$, then since $\Delta^* \vdash (C \Rightarrow D)$, we infer, by Modus Ponens, that

 $\Delta^* \vdash D$

If so, then $v^*(C) = v^*(D) = T$ and accordingly

$$\mathbf{v}^*(\mathbf{A}) = \mathbf{v}^*(\mathbf{C} \Rightarrow \mathbf{D}) =$$

 $\mathbf{v}^*(\mathbf{C}) \Rightarrow \mathbf{v}^*(\mathbf{D}) = \mathbf{T} \Rightarrow \mathbf{T} = \mathbf{T}$
Thus if $\Delta^* \vdash \mathbf{A}$, then $\mathbf{v}^*(\mathbf{A}) = \mathbf{T}$

Case 2. Assume now, as before, that $\Delta^* \vdash \neg A$, Then from the fact that Δ^* is **consistent** it must be that $\Delta^* \nvDash A$, i.e.,

 $\Delta^* \nvDash (C \Rightarrow D)$

It follows from this that $\Delta^* \not= D$ For if $\Delta^* \vdash D$, then, as $(D \Rightarrow (C \Rightarrow D))$ is provable formula **1.** in *S*, by monotonicity also

 $\Delta^* \vdash (D \Rightarrow (C \Rightarrow D))$

Applying Modus Ponens we obtain

 $\Delta^* \vdash (C \Rightarrow D)$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

which is contrary to the assumption, so it must be $\Delta^* \not= D$

Also we must have

$\Delta^* \vdash C$

for otherwise, as Δ^* is **complete** we would have $\Delta^* \vdash \neg C$ This this is **impossible** since by **Lemma** formula **9**.

 $\vdash \ (\neg C \Rightarrow (C \Rightarrow D))$

By monotonicity

```
\Delta^* \vdash (\neg C \Rightarrow (C \Rightarrow D))
```

Applying Modus Ponens we would get

 $\Delta^* \vdash (C \Rightarrow D)$

which is **contrary** to the assumption $\Delta^* \nvDash (C \Rightarrow D)$

This ends the proof of the Property of *v* Lemma and the Proof Two of the Completeness Theorem is also completed

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○