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Hilbert Proof Systems

Completeness of Classical Propositional Logic

Completeness Theorem

Proof Two: A Counter- Model Existence Method



Completeness Theorem Proof Two

Our goal is to prove the following

Completeness Theorem (Completeness Part)

For any formula A ∈ F of H2

if |= A then ` A

We do so by proving its logically equivalent opposite

implication:
If 0 A , then 6|= A

Hence the Proof Two consists of using the information that

a formula A is not provable to show the existence of a

counter-model for A



Completeness Theorem Proof Two

The Proof Two is more general and much more complicated

then the Proof One

The main point of the proof is a general, non- constructive

method for proving existence of a counter-model for any

non-provable formula A

The generality of the method makes it possible to adopt it for

other cases of predicate and some non-classical logics

This is why we call the Proof Two a counter-model

existence method



Completeness Theorem Proof Two

The Proof Two construction of a counter-model for any

non-provable formula A is an abstract method that is not

constructive as was the method used in the Proof One

The Proof Two used the method can be generalized to the

case of predicate logic, and many of non-classical logics;

propositional and predicate

This is the reason we present it here



Proof Two Steps

We remind that 6|= A means that there is a truth assignment
v : VAR −→ {T ,F}, such that (as we are in classical
semantics) v∗(A) = F

We assume that A does not have a proof i.e. 0 A we use
this information in order to define a general method of
constructing v, such that v∗(A) = F

This is done in the following steps.



Proof Two Steps

Step 1

Definition of a special set of formulas ∆∗

We use the information 0 A to define a set of formulas ∆∗

such that ¬A ∈ ∆∗

Step 2

Definition of the counter - model

We define the variable truth assignment v : VAR −→ {T ,F}
as follows:

v(a) =

{
T if ∆∗ ` a
F if ∆∗ ` ¬a



Proof 2 Steps

Step 3

We prove that v is a counter-model for A

We first prove a following more general property of v

Property

The set ∆∗ and v defined in the Steps 1 and 2 are such
that for every formula B ∈ F

v∗(B) =

{
T if ∆∗ ` B
F if ∆∗ ` ¬B

We then use the Step 3 to prove that v∗(A) = F



Main Notions

The definition, construction and the properties of the set ∆∗

and hence the Step 1, are the most essential for the Proof
Two

The other steps have mainly technical character

The main notions involved in the proof are: consistent set,
complete set and a consistent complete extension of a set of
formulas

We are going prove some essential facts about them.



Consistent and Inconsistent Sets

There exist two definitions of consistency; semantical and
syntactical

Semantical definition uses the notion of a model and says:

A set is consistent if it has a model

Syntactical definition uses the notion of provability and
says:

A set is consistent if one can’t prove a contradiction from it



Consistent and Inconsistent Sets

In our proof of the Completeness Theorem we use the
following formal syntactical definition of consistency of a set
of formulas

Definition of a consistent set

We say that a set ∆ ⊆ F of formulas is consistent if and
only if
there is no a formula A ∈ F such that

∆ ` A and ∆ ` ¬A



Consistent and Inconsistent Sets

Definition of an inconsistent set

A set ∆ ⊆ F is inconsistent if and only if there is a
formula A ∈ F such that

∆ ` A and ∆ ` ¬A

The notion of consistency, as defined above, is characterized
by the following Consistency Lemma



Consistency Condition Lemma

Lemma Consistency Condition

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent

(i) ∆ is consistent

(ii) there is a formula A ∈ F such that ∆ 0 A



Proof of Consistency Lemma

Proof

To establish the equivalence of (i) and (ii) we prove the
corresponding opposite implications

We prove the following two cases

Case 1 not (ii) implies not (i)

Case 2 not (i) implies not (ii)



Proof of Consistency Lemma

Case 1

Assume that not (ii)

It means that for all formulas A ∈ F we have that

∆ ` A

In particular it is true for a certain A = B and for a certain
A = ¬B i.e.

∆ ` B and ∆ ` ¬B

and hence it proves that ∆ is inconsistent

i.e. not (i) holds



Proof of Consistency Lemma

Case 2

Assume that not (i), i.e that ∆ is inconsistent

Then there is a formula A such that ∆ ` A and ∆ ` ¬A

Let B be any formula

We proved ( Lemma formula 6.) that ` (¬A ⇒ (A ⇒ B))

By monotonicity

∆ ` (¬A ⇒ (A ⇒ B))

Applying Modus Ponens twice to ¬A first, and to A next
we get that ∆ ` B for any formula B

Thus not (ii) and it ends the proof of the Consistency
Condition Lemma



Inconsistency Condition Lemma

Inconsistent sets are hence characterized by the following
fact

Lemma Inconsistency Condition

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent:

(i) ∆ is inconsistent,

(i) for any formula A ∈ F ∆ ` A



Finite Consequence Lemma

We remind here property of the finiteness of the
consequence operation.

Lemma Finite Consequence

For every set ∆ of formulas and for every formula A ∈ F

∆ ` A if and only if there is a finite set ∆0 ⊆ ∆ such
that ∆0 ` A

Proof

If ∆0 ` A for a certain ∆0 ⊆ ∆,
hence by the monotonicity of the consequence, also ∆ ` A



Finite Consequence Lemma

Assume now that ∆ ` A and let

A1,A2, ...,An

be a formal proof of A from ∆

Let
∆0 = {A1,A2, ...,An} ∩∆

Obviously, ∆0 is finite and A1,A2, ...,An is a formal proof
of A from ∆0



Finite Inconsistency Theorem

The following theorem is a simple corollary of just proved
Finite Consequence Lemma

Theorem Finite Inconsistency

(1.) If a set ∆ is inconsistent, then it has a finite
inconsistent subset ∆0

(2.) If every finite subset of a set ∆ is consistent then the
set ∆ is also consistent



Finite Inconsistency Theorem

Proof
If ∆ is inconsistent, then for some formula A ,

∆ ` A and ∆ ` ¬A

By the Finite Consequence Lemma , there are finite subsets
∆1 and ∆2 of ∆ such that

∆1 ` A and ∆2 ` ¬A

The union ∆1 ∪∆2 is a finite subset of ∆ and by
monotonicity

∆1 ∪∆2 ` A and ∆1 ∪∆2 ` ¬A

Hence we proved that ∆1 ∪∆2 is a finite inconsistent
subset of ∆

The second implication (2.) is the opposite to the one just
proved and hence also holds



Consistency Lemma

The following Lemma links the notion of non-provability and
consistency

It will be used as an important step in our Proof Two of the
Completeness Theorem

Lemma

For any formula A ∈ F ,

if 0 A then the set {¬A } is consistent



Consistency Lemma

Proof We prove the opposite implication
If {¬A } is inconsistent, then ` A
Assume that {¬A } is inconsistent
By the Inconsistency Condition Lemma we have that
{¬A } ` B for any formula B, and hence in particular

{¬A } ` A

By Deduction Theorem we get

` (¬A ⇒ A)

We proved ( Lemma formula 9.) that

` ((¬A ⇒ A)⇒ A)

By Modus Ponens we get

` A

This ends the proof



Complete and Incomplete Sets

Another important notion, is that of a complete set of
formulas.

Complete sets, as defined here are sometimes called
maximal, but we use the first name for them.

They are defined as follows.

Definition Complete set

A set ∆ of formulas is called complete if for every formula
A ∈ F

∆ ` A or ∆ ` ¬A

Godel used this notion of complete sets in his
Incompleteness of Arithmetic Theorem

The complete sets are characterized by the following fact.



Complete and Incomplete Sets

Complete Set Condition Lemma

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent

(i) The set ∆ is complete

(ii) For every formula A ∈ F ,

if ∆ 0 A then then the set ∆ ∪ {A } is inconsistent

Proof

We consider two cases

Case 1 We show that (i) implies (ii) and

Case 2 we show that (ii) implies (i)



Complete Set Condition Lemma

Proof of Case 1

Assume (i) and not(ii) i.e.

assume that ∆ is complete and there is a formula A ∈ F
such that ∆ 0 A and the set ∆ ∪ {A } is consistent

We have to show that we get a contradiction

But if ∆ 0 A , then from the assumption that ∆ is complete
we get that

∆ ` ¬A

By the monotonicity of the consequence we have that

∆ ∪ {A } ` ¬A



Complete Set Condition Lemma

We proved (Lemma formula 4. ) ` (A ⇒ A)

By monotonicity ∆ ` (A ⇒ A) and by Deduction Theorem

∆ ∪ {A } ` A

We hence proved that that there is a formula A ∈ F such that

∆ ∪ {A } and ∆ ∪ {A } ` ¬A

i.e. that the set ∆ ∪ {A } is inconsistent

Contradiction



Complete Set Condition Lemma

Proof of Case 2

Assume (ii), i.e. that for every formula A ∈ F

if ∆ 0 A then the set ∆ ∪ {A } is inconsistent

Let A be any formula.

We want to show (i), i.e. to show that the following condition

C : ∆ ` A or ∆ ` ¬A

is satisfied.

Observe that if
∆ ` ¬A

then the condition C is obviously satisfied



Complete Set Condition Lemma

If, on the other hand,
∆ 0 ¬A

then we are going to show now that it must be, under the
assumption of (ii), that ∆ ` A i.e. that (i) holds

Assume that
∆ 0 ¬A

then by (ii) the set ∆ ∪ {¬A } is inconsistent



Complete Set Condition Lemma

The Inconsistency Condition Lemma says

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent:

(i) ∆ is inconsistent,

(i) for any formula A ∈ F , ∆ ` A

We just proved that the set ∆ ∪ {¬A } is inconsistent

So by the the above Lemma we get

∆ ∪ {¬A } ` A



Complete Set Condition Lemma

By the Deduction Theorem ∆ ∪ {¬A } ` A implies that

∆ ` (¬A ⇒ A)

Observe that by Lemma formula 4.

` ((¬A ⇒ A)⇒ A)

By monotonicity

∆ ` ((¬A ⇒ A)⇒ A)

Detaching, by MP the formula (¬A ⇒ A) we obtain that

∆ ` A

This ends the proof that (i) holds.



Incomplete Sets

Definition Incomplete Set

A set ∆ of formulas is called incomplete if it is not
complete i.e. when the following condition holds

There exists a formula A ∈ F such that

∆ 0 A and ∆ 0 ¬A



Incomplete Set Condition Lemma

We get as a direct consequence of the Complete Set
Condition Lemma the following characterization of
incomplete sets

Lemma Incomplete Set Condition

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent:

(i) ∆ is incomplete,

(ii) there is formula A ∈ F such that ∆ 0 A and the set
∆ ∪ {A } is consistent.



Main Lemma: Complete Consistent Extension

Now we are going to prove a Main Lemma that is essential
to the construction of the special set ∆∗ mentioned in the
Step 1 of the proof of the Completeness Theorem and
hence to the proof of the theorem itself

Let’s first introduce one more notion



Complete Consistent Extension

Definition Extension ∆∗ of the set ∆

A set ∆∗ of formulas is called an extension of a set ∆ of
formulas if the following condition holds

{A ∈ F : ∆ ` A } ⊆ {A ∈ F : ∆∗ ` A }

i.e.
Cn(∆) ⊆ Cn(∆∗)

In this case we say also that ∆ extends to the set of
formulas ∆∗



Main Lemma



Main Lemma

Main Lemma Complete Consistent Extension

Every consistent set ∆ of formulas can be extended to a
complete consistent set ∆∗ of formulas
i. e

For every consistent set ∆ there is a set ∆∗ that is
complete and consistent and is an extension of ∆ i.e.

Cn(∆) ⊆ Cn(∆∗)



Proof of the Main Lemma

Proof

Assume that the lemma does not hold, i.e. that there is a
consistent set ∆, such that all its consistent extensions
are not complete

In particular, as ∆ is an consistent extension of itself, we
have that ∆ is not complete

The proof consists of a construction of a particular set
∆∗ and proving that it forms a complete consistent
extension of ∆

This is contrary to the assumption that all its consistent
extensions are not complete



Construction of ∆∗

Construction of ∆∗

As we know, the set F of all formulas is enumerable; they
can hence be put in an infinite sequence

F A1,A2, . . . ,An, . . .

such that every formula of F occurs in that sequence
exactly once

We define, by mathematical induction, an infinite sequence

D {∆n}n∈N

of consistent subsets of formulas together with a sequence

B {Bn}n∈N

of formulas as follows



Construction of ∆∗

Initial Step

In this step we define the sets

∆1,∆2 and the formula B1

and prove that
∆1 and ∆2

are consistent, incomplete extensions of ∆

We take as the first set in D the set ∆, i.e. we define

∆1 = ∆



Construction of ∆∗

By assumption the set ∆, and hence also ∆1 is not
complete.

From the Incomplete Set Condition Lemma we get that
there is a formula B ∈ F such that

∆1 0 B and ∆1 ∪ {B} is consistent

Let B1 be the first formula with this property in the
sequence F of all formulas

We define
∆2 = ∆1 ∪ {B1}



Construction of ∆∗

Observe that the set ∆2 is consistent and

∆1 = ∆ ⊆ ∆2

By monotonicity ∆2 is a consistent extension of ∆

Hence, as we assumed that all consistent extensions of ∆
are not complete, we get that ∆2 cannot be complete, i.e.

∆2 is incomplete



Construction of ∆∗

Inductive Step

Suppose that we have defined a sequence

∆1, ∆2, . . . , ∆n

of incomplete, consistent extensions of ∆ and a
sequence

B1,B2, . . . , Bn−1

of formulas, for n ≥ 2



Construction of ∆∗

Since ∆n is incomplete, it follows from the Incomplete
Set Condition Lemma that

there is a formula B ∈ F such that

∆n 0 B and ∆n ∪ {B} is consistent



Construction of ∆∗

Let Bn be the first formula with this property in the
sequence F of all formulas.

We define
∆n+1 = ∆n ∪ {Bn}

By the definition
∆ ⊆ ∆n ⊆ ∆n+1

and the set ∆n+1 is a consistent extension of ∆

Hence by our assumption that all all consistent extensions o
f ∆ are incomplete we get that

∆n+1

is an incomplete consistent extension of ∆



Construction of ∆∗

By the principle of mathematical induction we have defined
an infinite sequence

D ∆ = ∆1 ⊆ ∆2 ⊆ ...,⊆ ∆n ⊆ ∆n+1 ⊆ ....

such that for all n ∈ N, ∆n is consistent, and each ∆n an
incomplete consistent extension of ∆

Moreover, we have also defined a sequence

B B1,B2, . . . ,Bn, . . .

of formulas, such that for all n ∈ N,

∆n 0 Bn and ∆n ∪ {Bn} is consistent

Observe that Bn ∈ ∆n+1 for all n ≥ 1



Definition of ∆∗

Now we are ready to define ∆∗

Definition of ∆∗

∆∗ =
⋃

n∈N
∆n

To complete the proof our theorem we have now to prove that

∆∗ is a complete consistent extension of ∆



∆∗ Consistent

Obviously directly from the definition ∆ ⊆ ∆∗ and hence
we have the following

Fact 1 ∆∗ is an extension of ∆

By Monotonicity of Consequence Cn(∆) ⊆ Cn(∆∗), hence
extension

As the next step we prove

Fact 2 The set ∆∗ is consistent



∆∗ Consistent

Proof that ∆∗ is consistent

Assume that ∆∗ is inconsistent

By the Finite Inconsistency Theorem there is a finite subset
∆0 of ∆∗ that is inconsistent, i.e.

∆0 ⊆
⋃

n∈N
∆n, ∆0 = {C1, ...,Cn}, ∆0 is inconsistent



Proof of ∆∗ Consistent

We have ∆0 = {C1, . . . ,Cn}

By the definition of ∆∗ for each formula Ci ∈ ∆0

Ci ∈ ∆ki

for certain ∆ki in the sequence

D ∆ = ∆1 ⊆ ∆2 ⊆ ...,⊆ ∆n ⊆ ∆n+1 ⊆ ....

Hence ∆0 ⊆ ∆m for m = max{k1, k2, ..kn}



Proof of ∆∗ Consistent

But we proved that all sets of the sequence D are
consistent

This contradicts the fact that ∆m is consistent

as it contains an inconsistent subset ∆0

This contradiction ends the proof that ∆∗ is consistent



Proof of ∆∗ Complete

Fact 3 The set ∆∗ is complete

Proof Assume that ∆∗ is not complete.

By the Incomplete Set Condition, there is a formula B ∈ F
such that

∆∗ 0 B, and the set ∆∗ ∪ {B} is consistent

By definition of the sequence D and the sequence B of
formulas we have that for every n ∈ N

∆n 0 Bn and the set ∆n ∪ {Bn} is consistent

Moreover Bn ∈ ∆n+1 for all n ≥ 1



Proof of ∆∗ Complete

Since the formula B is one of the formulas of the sequence
B so we get that B = Bj for certain j

By definition, Bj ∈ ∆j+1 and it proves that

B ∈ ∆∗ =
⋃

n∈N
∆n

But this means that ∆∗ ` B

This is a contradiction with the assumption ∆∗ 0 B and it
ends the proof of the Fact 3



Main Lemma

Facts 1- 3 prove that that ∆∗ is a complete consistent
extension of ∆

We hence completed the proof of the Main Lemma

Main Lemma

Every consistent set ∆ of formulas can be extended to a
complete consistent set ∆∗ of formulas



Proof Two of Completeness Theorem



Proof Two of Completeness Theorem

We proved already that H2 is sound, so we have to prove only
the Completeness part of the Completeness Theorem:

For any formula A ∈ F ,

If |= A , then ` A

We prove it by proving its logically equivalent opposite
implication form, i.e we prove now the following

Completeness Theorem

For any formula A ∈ F ,

If 0 A , then 6|= A



Proof Two of Completeness Theorem

Proof

Assume that A does not have a proof, we want to define a
counter-model for A

But if 0 A , then by the Inconsistency Lemma the set {¬A }
is consistent

By the Main Lemma there is a complete, consistent
extension of the set {¬A }

This means that there is a set ∆∗ such that {¬A } ⊆ ∆∗, i.e.

E ¬A ∈ ∆∗ and ∆∗ is complete and consistent



Proof Two of Completeness Theorem

Since ∆∗ is a consistent, complete set, it satisfies the
following form of

Consistency Condition

For any A ∈ F ,

∆∗ 0 A or ∆∗ 0 ¬A

∆∗ i s also complete i.e. satisfies

Completeness Condition

For any A ∈ F ,

∆∗ ` A or ∆∗ ` ¬A



Proof Two of Completeness Theorem

Directly from the Completeness and Consistency
Conditions we get the following

Separation Condition

For any A ∈ F , exactly one of the following conditions is
satisfied:

(1) ∆∗ ` A , or (2) ∆∗ ` ¬A

In particular case we have that for every propositional
variable a ∈ VAR exactly one of the following conditions is
satisfied:

(1) ∆∗ ` a, or (2) ∆∗ ` ¬a

This justifies the correctness of the following definition



Proof Two of Completeness Theorem

Definition

We define the variable truth assignment

v : VAR −→ {T ,F}

as follows:

v(a) =

{
T if ∆∗ ` a
F if ∆∗ ` ¬a.

We show, as a separate Lemma below, that such defined
variable assignment v has the following property



Property of v Lemma

Lemma Property of v

Let v be the variable assignment defined above and v∗ its
extension to the set F of all formulas B ∈ F , the following is
true

v∗(B) =

{
T if ∆∗ ` B
F if ∆∗ ` ¬B



Proof 2 of Completeness Theorem

Given the Property of v Lemma (still to be proved)

we now prove that the v is in fact, a counter model for any
formula A, such that 0 A

Let A be such that 0 A

By the Property E we have that ¬A ∈ ∆∗

So obviously
∆∗ ` ¬A

Hence by the Property of v Lemma

v∗(A) = F

what proves that v is a counter-model for A and it
ends the proof of the Completeness Theorem



Proof of Property of v Lemma

Proof of the Property of v Lemma

The proof is conducted by the induction on the degree of the
formula A

Initial step A is a propositional variable so the Lemma
holds by definition of v

Inductive Step

If A is not a propositional variable, then A is of the form
¬C or (C ⇒ D), for certain formulas C ,D

By the inductive assumption the Lemma holds for the
formulas C and D



Proof of Property of v Lemma

Case A = ¬C

By the Separation Condition for ∆∗ we consider two
possibilities

1. ∆∗ ` A

2. ∆∗ ` ¬A

Consider case 1. i.e. we assume that ∆∗ ` A

It means that
∆∗ ` ¬C

Then from the fact that ∆∗ is consistent it must be that

∆∗ 0 C



Proof of Property of v Lemma

By the inductive assumption we have that v∗(C) = F and
accordingly v∗(A) = v∗(¬C) = ¬v∗(C) = ¬F = T

Consider case 2. i.e. we assume that ∆∗ ` ¬A

Then from the fact that ∆∗ is consistent it must be that
∆∗ 0 A and

∆∗ 0 ¬C

If so, then ∆∗ ` C, as the set ∆∗ is complete

By the inductive assumption, v∗(C) = T , and accordingly

v∗(A) = v∗(¬C) = ¬v∗(C) = ¬T = F

Thus A satisfies the Property of v Lemma



Proof of Property of v Lemma

Case A = (C ⇒ D)

As in the previous case, we assume that the Lemma holds for
the formulas C ,D and we consider by the Separation
Condition for ∆∗ two possibilities:

1. ∆∗ ` A and 2. ∆∗ ` ¬A

Case 1. Assume ∆∗ ` A

It means that ∆∗ ` (C ⇒ D)

If at the same time ∆∗ 0 C, then v∗(C) = F , and
accordingly

v∗(A) = v∗(C ⇒ D) =

v∗(C)⇒ v∗(D) = F ⇒ v∗(D) = T



Proof of Property of v Lemma

If at the same time ∆∗ ` C, then since ∆∗ ` (C ⇒ D), we
infer, by Modus Ponens, that

∆∗ ` D

If so, then v∗(C) = v∗(D) = T

and accordingly

v∗(A) = v∗(C ⇒ D) =

v∗(C)⇒ v∗(D) = T ⇒ T = T

Thus if ∆∗ ` A , then v∗(A) = T



Proof of Property of v Lemma

Case 2. Assume now, as before, that ∆∗ ` ¬A ,

Then from the fact that ∆∗ is consistent it must be that
∆∗ 0 A , i.e.,

∆∗ 0 (C ⇒ D)

It follows from this that ∆∗ 0 D

For if ∆∗ ` D, then, as (D ⇒ (C ⇒ D)) is provable
formula 1. in S, by monotonicity also

∆∗ ` (D ⇒ (C ⇒ D))

Applying Modus Ponens we obtain

∆∗ ` (C ⇒ D)

which is contrary to the assumption, so it must be ∆∗ 0 D



Proof of Property of v Lemma

Also we must have
∆∗ ` C

for otherwise, as ∆∗ is complete we would have ∆∗ ` ¬C

This this is impossible since by Lemma formula 9.

` (¬C ⇒ (C ⇒ D))

By monotonicity

∆∗ ` (¬C ⇒ (C ⇒ D))

Applying Modus Ponens we would get

∆∗ ` (C ⇒ D)

which is contrary to the assumption ∆∗ 0 (C ⇒ D)



Proof Two of Completeness Theorem

This ends the proof of the Property of v Lemma and

the Proof Two of the Completeness Theorem is also
completed


