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Gentzen Style Proof Systems

Hilbert style systems are easy to define and admit different
proofs of Completeness Theorem

They are difficult to use by humans, not mentioning computer

Their emphasis is on logical axioms, keeping the rules of
inference, with obligatory Modus Ponens, at a minimum

Gentzen style proof systems reverse this situation by
emphasizing the importance of inference rules, reducing the
role of logical axioms to an absolute minimum



Gentzen Style Proof Systems

The Gentzen type systems may be less intuitive then the
Hilbert systems but they allow us to define effective
automatic procedures for proof search, what was impossible
in a case of the Hilbert systems

For this reason they are called automated proof systems

They serve as formal models of computing systems that
automate the reasoning process



Gentzen Style Proof Systems

The Gentzen formalizations, as they are also called, were
invented by Gerald Gentzen in 1934, hence the name

Gentzen proof systems for classical and intuitionistic
predicate logics introduced special expressions built of
formulas called sequents

This is why the Gentzen style systems using sequents as
basic expressions are often called Gentzen sequent
formalizations



Gentzen Style Proof Systems

We present in Slides Set 2 our own Gentzen sequent
systems GL and G and prove their completeness

We also present a propositional version of Gentzen original
system LK and discuss the original proof of Hauptsatz
Theorem

Hauptsatz Theorem is literally rendered as the Main
Theorem and is known as Cut-elimination Theorem

We prove the equivalency of the cut-free propositional LK
and the complete proof system G



Gentzen Style Proof Systems

A propositional version of Gentzen historical original
formalization for intuitionistic logic LI is presented and
discussed in Chapter 7

The original classical and intuitionistic predicate systems LK
and LI are discussed in Chapter 9



Gentzen Style Proof Systems

The other historically important automated proof systems
RS and QRS are due to Rasiowa and Sikorski (1960)

Their proof systems for classical propositional and predicate
logic use as basic expressions sequences of formulas, less
complicated then Gentzen sequents

Rasiowa and Sikorski proof systems are simpler and easier
to understand then the Gentzen sequent systems

This is one of the reasons the system RS is the first to be
presented here



Gentzen Style Proof Systems

Historical importance and lasting influence of Rasiowa and
Sikorski work lays in the fact that they were the first to use
the proof searching capacity of their proof systems to define
a constructive method of proving the completeness
theorem for both propositional and predicate classical logic

We introduce and explain in detail their constructive
method and use it prove the completeness of the RS
system and following systems RS1 and RS2



Gentzen Style Proof Systems

We also generalize the RS constructive method to the
Gentzen sequent systems and prove the completeness of
GL and G

The completeness proof for classical predicate system RSQ
is presented in Chapter 9



RS Proof System



RS Proof System

Components of RS

Language
L{¬,⇒,∪,∩}

Expressions

We adopt as the set of expressions E the set F ∗ of all finite
sequences of formulas

E = F ∗

Notation

Elements of E are finite sequences of formulas and we
denote them by

Γ,∆,Σ . . .

with indices if necessary.



RS Proof System

Semantic Link

The the intuitive meaning of a sequence Γ ∈ F ∗ is that the
truth assignment v makes it true if and only if it makes the
formula of the form of the disjunction of all formulas of Γ true

For any sequence Γ ∈ F ∗

Γ = A1,A2, ...,An

we denote
δΓ = A1 ∪ A2 ∪ ... ∪ An

We define as the next step a formal semantics for RS



Formal Semantics for RS

Formal Semantics

Let v : VAR −→ {T ,F} be a truth assignment and

v∗ its classical semantics extension to the set of formulas F

We formally extend v to the set F ∗ of all finite sequences of
F as follows

v∗(Γ) = v∗(δΓ) = v∗(A1) ∪ v∗(A2) ∪ ... ∪ v∗(An)



Formal Semantics for RS

Model

The sequence Γ is said to be satisfiable if there is a truth
assignment v : VAR −→ {T ,F} such that v∗(Γ) = T

We write it as
v |= Γ

and call v a model for Γ

Counter- Model

The sequence Γ is said to be falsifiable if there is a truth
assignment v, such that v∗(Γ) = F

Such a truth assignment v is called a counter-model for Γ



Formal Semantics for RS

Tautology

The sequence Γ is said to be a tautology if and only if
v∗(Γ) = T for all truth assignments v : VAR −→ {T ,F}

We write
|= Γ

to denote that Γ is a tautology



Example

Example

Let Γ be a sequence

a, (b ∩ a),¬b , (b ⇒ a)

The truth assignment v such that

v(a) = F and v(b) = T

falsifies Γ, i.e. is a counter-model for Γ as shows the
following computation

v∗(Γ) = v∗(δΓ) = v∗(a) ∪ v∗(b ∩ a) ∪ v∗(¬b) ∪ v∗(b ⇒ a) =
F ∪ (F ∩ T) ∪ F ∪ (T ⇒ F) = F ∪ F ∪ F ∪ F = F



Exercise

Exercise

1. Let Γ be a sequence

a, (¬b ∩ a),¬b , (a ∪ b)

and let v be a truth assignment for which v(a) = T

Prove that
v |= Γ

2. Let Γ be a sequence

a, (¬b ∩ a),¬b , (a ∪ b)

Prove that
|= Γ



Exercise

Solution

1. Γ is a sequence

a, (¬b ∩ a),¬b , (a ∪ b)

We evaluate

v∗(Γ) = v∗(δΓ) = v∗(a) ∪ v∗(¬b ∩ a) ∪ v∗(¬b) ∪ v∗(a ∪ b) =
T ∪ v∗(¬b ∩ a) ∪ v∗(¬b) ∪ v∗(a ∪ b) = T

We proved
v |= Γ



Exercise

Solution

2. Assume now that Γ is falsifiable i.e. that we have a
truth assignment v for which

v∗(Γ) = v∗(δΓ) = v∗(a)∪ v∗(¬b ∩a)∪ v∗(¬b)∪ v∗(a ∪b) = F

This is possible only when (in short-hand notation)

a ∪ (¬b ∩ a) ∪ ¬b ∪ a ∪ b = F

what is impossible as (¬b ∪ b) = T for all v

This contradiction proves that Γ is a tautology



Rules of inference

Rules of inference are of the form:

Γ1

Γ
or

Γ1 ; Γ2

Γ

where Γ1, Γ2 are called premisses and Γ is called the
conclusion of the rule

Each rule of inference introduces a new logical connective or
a negation of a logical connective

We name the rule that introduces the logical connective ◦
in the conclusion sequent Γ by (◦)

The notation (¬◦) means that the negation of the logical
connective ◦ is introduced in the conclusion sequence Γ



Rules of inference of RS

Rules of Inference

RS contains seven inference rules:

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

Before we define the rules of RS we need to introduce
some definitions.



Literals

Definition

Any propositional variable, or a negation of propositional
variable is called a literal

The set
LT = VAR ∪ {¬a : a ∈ VAR}

is called a set of all propositional literals

The variables are called positive literals

Negations of variables are called negative literals



Literals

We denote by
Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals i.e

Γ
′

, ∆
′

, Σ
′

∈ LT∗

We will denote by
Γ, ∆, Σ . . .

the elements of F ∗



Logical Axioms of RS

Logical Axioms

We adopt as an logical axiom of RS any sequence of
literals which contains a propositional variable and its
negation, i.e any sequence

Γ
′

1, a, Γ
′

2, ¬a, Γ
′

3

Γ
′

1, ¬a, Γ
′

2, a, Γ
′

3

where a ∈ VAR is any propositional variable

We denote by LA the set of all logical axioms of RS



Logical Axioms of RS

Semantic Link

Consider axiom
Γ
′

1, a, Γ
′

2, ¬a, Γ
′

3

Directly from the extension of the notion of tautology to RS we
have that for any truth assignment v : VAR −→ {T ,F}

v∗(Γ
′

1,¬a, Γ
′

2, a, Γ
′

3) = v∗(Γ
′

1) ∪ v∗(¬a) ∪ v∗(a) ∪ v∗(Γ
′

2, Γ
′

3) =

v∗(Γ
′

1) ∪ T ∪ v∗(Γ
′

2, Γ
′

3) = T

The same applies to the axiom

Γ
′

1, ¬a, Γ
′

2, a, Γ
′

3

We have thus proved the following.

Fact Logical axioms of RS are tautologies



Inference Rules of RS

Disjunction rules

(∪)
Γ
′

, A ,B , ∆

Γ′ , (A ∪ B), ∆
, (¬∪)

Γ
′

, ¬A , ∆ ; Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

Conjunction rules

(∩)
Γ
′

, A , ∆ ; Γ
′

, B , ∆

Γ′ , (A ∩ B), ∆
, (¬∩)

Γ
′

, ¬A , ¬B , ∆

Γ′ , ¬(A ∩ B), ∆



Inference Rules of RS

Implication rules

(⇒)
Γ
′

, ¬A ,B , ∆

Γ′ , (A ⇒ B), ∆
, (¬ ⇒)

Γ
′

, A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ⇒ B), ∆

Negation rule

(¬¬)
Γ
′

, A , ∆

Γ′ , ¬¬A , ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F



Proof System RS

Formally we define the system RS as follows

RS = (L{¬,⇒,∪,∩}, F
∗, LA , R)

where the set of inference rules is

R = {(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)}

and LA is the set of logical axioms



Formal Proofs

Definition

By a formal proof of a sequence Γ in the proof system RS
we understand any sequence

Γ1, Γ2, .... Γn

of sequences of formulas (elements of F ∗, such that

Γ1 ∈ LA and Γn = Γ

and for all 1 ≤ i ≤ n

Γi ∈ AL , or Γi is a conclusion of one of the inference rules
of RS with all its premisses placed in the sequence
Γ1Γ2, . . . , Γi−1



Formal Proofs

When he proof system under consideration is fixed, we will
write, as usual,

` Γ

instead of `RS Γ to denote that Γ has a formal proof in RS

As the proofs in RS are sequences (definition of the formal

proof) of sequences of formulas (definition of RS ) we will not

use ”,” to separate the steps of the proof, and write the

formal proof as
Γ1; Γ2; .... ; Γn



Formal Proofs

We write, however, the formal proofs in RS in a form of
trees rather then in a form of sequences

We write them in form of a tree, where

all leafs of the tree are axioms

nodes are sequences such that each sequence on the tree
tree follows from the ones immediately preceding it by one of
the rules

The root is a theorem

We picture, and write the tree proofs with the node on the
top, and leafs on the very bottom

We adopt hence the following definition



Proof Trees

Definition

By a proof tree in RS of Γ we understand a tree

TΓ

built out of Γ ∈ E satisfying the following conditions:

1. The topmost sequence, i.e the root of TΓ is the
sequence Γ

2. all leafs are axioms

2. the nodes are sequences such that each sequence on
the tree follows from the ones immediately preceding it by
one of the inference rules



Proof Trees

We picture, and write our proof trees with the root on the
top, and the leafs on the very bottom,

Additionally we write our proof trees indicating the name of
the inference rule used at each step of the proof

Example

Assume that a proof of a sequence Γ from axioms

was obtained by the subsequent use of the rules

(∩), (∪), (∪), (∩), (∪), and (¬¬), (⇒)

We represent it as the following tree



Proof Trees

The tree TΓ

Γ

| (⇒)

conclusion of (¬¬)

| (¬¬)

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

conclusion of (∩)

| (∪)

axiom

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

axiom axiom



Proof Trees

The Proof Trees represent a certain visualization for the
proofs

Any formal proof in any proof system can be represented in
a tree form and vice- versa

Any proof tree can be re-written in a linear form as a
previously defined formal proof

Example

The proof tree in RS of the de Morgan Law

A = (¬(a ∩ b)⇒ (¬a ∪ ¬b))

is the as follows



Proof Trees

The proof tree TA

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

¬¬(a ∩ b), (¬a ∪ ¬b)

| (¬¬)

(a ∩ b), (¬a ∪ ¬b)∧
(∩)

a, (¬a ∪ ¬b)

| (∪)

a,¬a,¬b

b , (¬a ∪ ¬b)

| (∪)

b ,¬a,¬b



Formal Proof

To obtain a formal proof (written in a vertical form) of A

we just write down the proof tree as a sequence, starting from

the leafs and going up (from left to right) to the root

a,¬a,¬b

b ,¬a,¬b

a, (¬a ∪ ¬b)

b , (¬a ∪ ¬b

(a ∩ b), (¬a ∪ ¬b)

¬¬(a ∩ b), (¬a ∪ ¬b)

(¬(a ∩ b)⇒ (¬a ∪ ¬b))



Example

Example

A search for the proof in RS of other de Morgan Law

A = (¬(a ∪ b)⇒ (¬a ∩ ¬b))

consists of building a certain tree and proceeds as follows.



Example

The tree TA

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

| (¬¬)

(a ∪ b), (¬a ∩ ¬b)

| (∪)

a, b , (¬a ∩ ¬b)∧
(∩)

a, b ,¬a a, b ,¬b



Example

We construct its formal proof, as before, written in a vertical

manner as follows

a, b ,¬b

a, b ,¬a

a, b , (¬a ∩ ¬b)

(a ∪ b), (¬a ∩ ¬b)

¬¬(a ∪ b), (¬a ∩ ¬b)

(¬(a ∪ b)⇒ (¬a ∩ ¬b))



Decomposition Trees

The goal in inventing proof systems like RS is to facilitates
automatic proof search

The method of suchproof search is to generate what is called
the decomposition trees

A decomposition tree TA for the formula

A = (((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

is built as follows



Decomposition Trees

TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c



RS Decomposition Rules
and

Decomposition Trees



Decomposition Trees

The process of searching for a proof of a formula A ∈ F
in RS consists of building a certain tree TA , called a
decomposition tree

Building a decomposition tree what really is a proof search
tree consists in the first step of transforming the RS rules
into corresponding decomposition rules



Decomposition Rules

RS Decomposition Rules

Disjunction

(∪)
Γ
′

, (A ∪ B), ∆

Γ′ , A ,B , ∆
, (¬∪)

Γ
′

, ¬(A ∪ B), ∆

Γ′ , ¬A , ∆ ; Γ′ , ¬B , ∆

Conjunction

(∩)
Γ
′

, (A ∩ B), ∆

Γ′ ,A ,∆ ; Γ′ , B ,∆
, (¬∩)

Γ
′

, ¬(A ∩ B), ∆

Γ′ , ¬A ,¬B , ∆



Decomposition Rules

Implication

(⇒)
Γ
′

, (A ⇒ B), ∆

Γ′ , ¬A ,B , ∆
, (¬ ⇒)

Γ
′

, ¬(A ⇒ B), ∆

Γ′ ,A ,∆ ; Γ′ , ¬B , ∆

Negation

(¬¬)
Γ
′

, ¬¬A , ∆

Γ′ , A , ∆

where Γ
′

∈ F ′
∗, ∆ ∈ F ∗, A ,B ∈ F



Tree Rules

We write the Decomposition Rules in a visual tree form as
follows

Tree Rules

(∪) rule

Γ
′

, (A ∪ B), ∆

| (∪)

Γ
′

, A ,B , ∆



Tree Rules

(¬∪) rule

Γ
′

, ¬(A ∪ B), ∆∧
(¬∪)

Γ
′

, ¬A , ∆ Γ
′

, ¬B , ∆

(∩) rule

Γ
′

, (A ∩ B), ∆∧
(∩)

Γ
′

, A , ∆ Γ
′

, B , ∆



Tree Rules

(¬∪) rule

Γ
′

, ¬(A ∩ B), ∆

| (¬∩)

Γ
′

, ¬A ,¬B , ∆

(⇒) rule

Γ
′

, (A ⇒ B), ∆

| (⇒)

Γ
′

, ¬A ,B , ∆



Tree Rules

(¬ ⇒) rule

Γ
′

, ¬(A ⇒ B), ∆∧
(¬ ⇒)

Γ
′

, A , ∆ Γ
′

, ¬B , ∆

(¬¬) rule

Γ
′

, ¬¬A , ∆

| (¬¬)

Γ
′

, A , ∆



Definitions and Observations

Observe that we use the same names for the inference and
decomposition rules

We do so because once the we have built the decomposition
tree with all leaves being axioms, it constitutes a proof of
A in RS with branches labeled by the proper inference
rules

Now we still need to introduce few standard and useful
definitions and observations.



Definitions and Observations

Definition

A sequence Γ
′

built only out of literals, i.e. Γ ∈ F ′∗ is called
an indecomposable sequence

Definition

A formula A that is not a literal, i.e. A ∈ F − LT is called a
decomposable formula

Definition

A sequence Γ that contains a decomposable formula is
called a decomposable sequence



Definitions and Observations

Observation 1

For any decomposable sequence, i.e. for any Γ < LT∗

there is exactly one decomposition rule that can be applied
to it

This rule is determined by the first decomposable
formula in Γ and by the main connective of that formula



Definitions and Observations

Observation 2

If the main connective of the first decomposable formula is
∪,∩, ⇒,

then the decomposition rule determined by it is
(∪), (∩), (⇒), respectively

Observation 3

If the main connective of the first decomposable formula A
is negation ¬

then the decomposition rule is determined by the second
connective of the formula A

The corresponding decomposition rules are
(¬∪), (¬∩), (¬¬), (¬ ⇒)



Decomposition Lemma

Because of the importance of the Observation 1 we re-write
it in a form of the following

Decomposition Lemma

For any sequence Γ ∈ F ∗,

Γ ∈ LT∗ or Γ is in the domain of exactly one of RS
Decomposition Rules

This rule is determined by the first decomposable formula

in Γ and by the main connective of that formula



Decomposition Tree Definition

Definition: Decomposition Tree TA

For each A ∈ F , a decomposition tree TA is a tree build as
follows

Step 1.

The formula A is the root of TA

For any other node Γ of the tree we follow the steps below

Step 2.

If Γ is indecomposable then Γ becomes a leaf of the tree



Decomposition Tree Definition

Step 3.

If Γ is decomposable, then we traverse Γ from left to
right and identify the first decomposable formula B

By the Decomposition Lemma, there is exactly one

decomposition rule determined by the main connective of B

We put its premiss as a node below, or its left and

right premisses as the left and right nodes below,

respectively

Step 4.

We repeat Step 2 and Step 3 until we obtain only leaves



Decomposition Theorem

We now prove the following Decomposition Tree Theorem.

This Theorem provides a crucial step in the proof of the
Completeness Theorem for RS

Decomposition Tree Theorem

For any sequence Γ ∈ F ∗ the following conditions hold

1. TΓ is finite and unique

2. TΓ is a proof of Γ in RS if and only if all its leafs are
axioms

3. 0RS Γ if and only if TΓ has a non- axiom leaf



Theorem

Proof

The tree TΓ is unique by the Decomposition Lemma

It is finite because there is a finite number of logical
connectives in Γ and all decomposition rules diminish the
number of connectives

If the tree TΓ has a non- axiom leaf it is not a proof by
definition

By 1. it also means that the proof does not exist



Example

Example

Let’s construct, as an example a decomposition tree TA of
the following formula A

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

The formula A forms a one element decomposable
sequence

The first decomposition rule used is determined by its main
connective

We put a box around it, to make it more visible

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))



Example

The first and only decomposition rule to be applied is (∪)

The first segment of the decomposition tree TA is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b)⇒ ¬a), (¬a ⇒ ¬c)



Example

Now we decompose the sequence

((a ∪ b)⇒ ¬a), (¬a ⇒ ¬c)

It is a decomposable sequence with the first, decomposable

formula
((a ∪ b)⇒ ¬a)

The next step of the construction of our decomposition tree is
determined by its main connective⇒ and we put the box
around it

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)



Example

The decomposition tree becomes now

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬(a ∪ b),¬a, (¬a ⇒ ¬c)



Example

The next sequence to decompose is

¬(a ∪ b),¬a, (¬a ⇒ ¬c)

with the first decomposable formula

¬(a ∪ b)

Its main connective is ¬, so to find the appropriate rule we
have to examine next connective, which is ∪

The decomposition rule determine by this stage of
decomposition is (¬∪)



Example

Next stage of the construction of the decomposition tree TA
is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a ⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c) ¬b ,¬a, (¬a ⇒ ¬c)



Example

Finally, the complete TA is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a ⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c)

| (⇒)

¬a,¬a, ¬¬ a,¬c

| (¬¬)

¬a,¬a, a,¬c

¬b ,¬a, (¬a ⇒ ¬c)

| (⇒)

¬b ,¬a, ¬¬ a,¬c

| (¬¬)

¬b ,¬a, a,¬c



Example

All leaves of TA are axioms

The tree TA is a proof of A in RS, i.e.

`RS ((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))



Example

Example Given a formula A and its decomposition tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c



Example

There is a leaf ¬a, b ,¬a, c of the tree TA that is

not an axiom

By the Decomposition Tree Theorem

0RS ((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

It means that the proof in RS of the formula

((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) does not exists



Completeness Theorem

Our main goal is to prove the Completeness Theorem for RS

We prove first the following Completeness Theorem for
formulas A ∈ F

Completeness Theorem 1 For any formula A ∈ F

`RS A if and only if |= A

and then we generalize it to the following

Completeness Theorem 2 For any Γ ∈ F ∗,

`RS Γ if and only if |= Γ

Do do so we need to introduce a new notion of a Strong
Soundness and prove that the RS is strongly sound



Part 2: Strong Soundness
and

Constructive Completeness



Strong Soundness

Definition

Given a proof system

S = (L, E, LA , R)

Definition

A rule r ∈ R such that the conjunction of all its premisses
is logically equivalent to its conclusion is called
strongly sound

Definition

A proof system S is called strongly sound if and only if S
is sound and all its rules r ∈ R are strongly sound



Strong Soundness of RS

Theorem
The proof system RS is strongly sound
Proof
We prove as an example the strong soundness of two of
inference rules: (∪) and (¬∪)

Proof for all other rules follows the same patterns and is left
as an exercise
By definition of strong soundness we have to show that
If P1, P2 are premisses of a given rule and C is its
conclusion, then for all v,

v∗(P1) = v∗(C)

in case of one premiss rule and

v∗(P1) ∩ v∗(P2) = v∗(C)

in case of the two premisses rule.



Strong Soundness of RS

Consider the rule (∪)

(∪)
Γ
′

, A ,B , ∆

Γ′ , (A ∪ B), ∆

We evaluate:

v∗(Γ
′

,A ,B ,∆) = v∗(δ{Γ′ ,A ,B ,∆}) = v∗(Γ
′

)∪v∗(A)∪v∗(B)∪v∗(∆)

= v∗(Γ
′

) ∪ v∗(A ∪ B) ∪ v∗(∆) = v∗(δ{Γ′ ,(A∪B),∆})

= v∗(Γ
′

, (A ∪ B),∆)



Strong Soundness of RS

Consider the rule (¬∪)

(¬∪)
Γ
′

, ¬A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

We evaluate:

v∗(P1) ∩ v∗(P2) = v∗(Γ
′

,¬A ,∆)∩v∗(Γ
′

,¬B ,∆)

= (v∗(Γ
′

) ∪ v∗(¬A) ∪ v∗(∆))∩(v∗(Γ
′

) ∪ v∗(¬B) ∪ v∗(∆))

= (v∗(Γ
′

,∆) ∪ v∗(¬A))∩(v∗(Γ
′

,∆) ∪ v∗(¬B))

=distrib (v∗(Γ
′

,∆) ∪ (v∗(¬A) ∩ v∗(¬B))

= v∗(Γ
′

) ∪ v∗(∆) ∪ v∗(¬A ∩ ¬B) =deMorgan v∗(δ{Γ′ ,¬(A∪B),∆}

= v∗(Γ
′

, ¬(A ∪ B), ∆) = v∗(C)



Soundness Theorem

Observe that the strong soundness notion implies
soundness (not only by name!). Obviously the LA of RS are
tautologies , hence we have also proved the following

Soundness Theorem for RS

For any Γ ∈ F ∗,

If `RS Γ, then |= Γ

In particular, for any A ∈ F ,

If `RS A , then |= A



Strong Soundness

We proved that all the rules of inference of RS of are
strongly sound, i.e. C ≡ P and C ≡ P1 ∩ P2

Strong soundness of the rules hence means that if at least
one of premisses of a rule is false, so is its conclusion

Given a formula A, such that its TA has a branch ending with a
non-axiom leaf

By strong soundness, any v that make this non-axiom leaf
false also falsifies all sequences on that branch, and hence
falsifies the the formula A

This means that any v that falsifies a non-axiom leaf is a
counter-model for A



Counter Model Theorem

We have proved the following

Counter Model Theorem

Let A ∈ F be such that its decomposition tree TA contains
a non- axiom leaf LA

Any truth assignment v that falsifies LA is a counter
model for A

Any truth assignment that falsifies a non- axiom leaf is
called a counter-model for A determined by the
decomposition tree TA



Counter Model Example

Consider a tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c



Counter Model Example

The tree TA has a non-axiom leaf

LA : ¬a, b ,¬a, c

We want to define a truth assignment v : VAR −→ {T ,F}
falsifies this leaf LA

Observe that v must be such that

v∗(¬a, b ,¬a, c) = v∗(¬a) ∪ v∗(b) ∪ v∗(¬a) ∪ v∗(c) =

¬v(a) ∪ v(b) ∪ ¬v(a) ∪ v(c) = F

It means that all components of the disjunction must be put
to F



Counter Model Example

We hence get that v must be such that

v(a) = T , v(b) = F , v(c) = F

By the Counter Model Theorem, the v determined by the
non-axiom leaf also falsifies the formula A

IT proves that v is a counter model for A and

6|= (((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))



Counter Model

The Counter Model Theorem says that F determined by the
non-axiom leaf ”climbs” the tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) = F

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c) = F∧
(∩)

(a ⇒ b), (a ⇒ c) = F

| (⇒)

¬a, b , (a ⇒ c) = F

| (⇒)

¬a, b ,¬a, c = F

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

axiom



Counter Model

Observe that the same counter model construction
applies to any other non-axiom leaf, if exists

The other non-axiom leaf defines another F that also ”climbs
the tree” picture, and hence defines another counter- model
for A

By Decomposition Tree Theorem all possible restricted
counter-models for A are those determined by all non-
axioms leaves of the TA

In our case the formula TA has only one non-axiom leaf,
and hence only one restricted counter model



RS Completeness Theorem

RS Completeness Theorem

For any A ∈ F ,

If |= A , then `RS A

We prove instead the opposite implication

RS Completeness Theorem

If 0RS A then 6|= A



Proof of Completeness Theorem

Proof of Completeness Theorem
Assume that A is any formula is such that

0RS A

By the Decomposition Tree Theorem the TA contains a
non-axiom leaf

The non-axiom leaf LA defines a truth assignment v which
falsifies it as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

Hence by Counter Model Theorem we have that v also
falsifies A , i.e.

6|= A



PART3:
Proof Systems RS1 and RS2



RS1 Proof System

Poof System RS1

Language of RS1 is the same as the language of RS i.e.

L = L{¬,⇒,∪,∩}

Expressions
E = F ∗

is the set of expressions of RS1

Notation

Elements of E are finite sequences of formulas and we
denote them by

Γ,∆,Σ . . .

with indices if necessary.



Rules of inference of RS1

Rules of inference

RS1 contains seven inference rules, denoted by the same
symbols as the rules of RS

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

The inference rules of RS1 are quite similar to the rules of RS

Observe them carefully to see where lies the difference

Reminder

Any propositional variable, or a negation of a propositional
variable is called a literal

The set
LT = VAR ∪ {¬a : a ∈ VAR}

is called a set of all propositional literals



Literals Notation

We denote, as before, by

Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals i.e

Γ
′

, ∆
′

, Σ
′

∈ LT∗

We will denote by
Γ, ∆, Σ . . .

the elements of F ∗



Logical Axioms

Logical Axioms

We adopt all logical axioms of RS as the axioms of RS1,
i.e.

Γ
′

1, a, Γ
′

2, ¬a, Γ
′

3

Γ
′

1, ¬a, Γ
′

2, a, Γ
′

3

where a ∈ VAR is any propositional variable



Inference Rules of RS1

Disjunction rules

(∪)
Γ, A ,B , ∆

′

Γ, (A ∪ B), ∆′ (¬∪)
Γ, ¬A , ∆

′

; Γ, ¬B , ∆
′

Γ, ¬(A ∪ B), ∆′

Conjunction rules

(∩)
Γ, A , ∆

′

; Γ, B , ∆
′

Γ, (A ∩ B), ∆′ (¬∩)
Γ, ¬A , ¬B , ∆

′

Γ, ¬(A ∩ B), ∆′



Inference Rules of RS1

Implication rules

(⇒)
Γ, ¬A ,B , ∆

′

Γ, (A ⇒ B), ∆′ (¬ ⇒)
Γ, A , ∆

′

: Γ, ¬B , ∆
′

Γ, ¬(A ⇒ B), ∆′

Negation rule

(¬¬)
Γ, A , ∆

′

Γ, ¬¬A , ∆′

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F



Proof System RS1

Formally we define the system RS1 as follows

RS1 = (L{¬,⇒,∪,∩}, E, LA , R)

where

R = {(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)}

for the inference rules is defined above and LA is the set of
all logical axioms is the same as for RS



System RS1

Exercises

E1. Construct a proof in RS1 of a formula

A = (¬(a ∩ b)⇒ (¬a ∪ ¬b))

E2. Prove that RS1 is strongly sound

E3. Define in your own words, for any formula A , the
decomposition tree TA in RS1

E4. Prove Completeness Theorem for RS1



Exercises Solutions

E1. The decomposition tree TA is a proof of A in RS1 as all
leaves are axioms

TA

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

(¬¬(a ∩ b), (¬a ∪ ¬b)

| (∪)

¬¬(a ∩ b),¬a,¬b

| (¬¬)

(a ∩ b),¬a,¬b∧
(∩)

a,¬a,¬b b ,¬a,¬b



Exercises Solutions

E2. Prove that RS1 is strongly sound

Observe that the system RS1 is obtained from RS by
changing the sequence Γ

′

into Γ and the sequence ∆ into
∆
′

in all of the rules of inference of RS

These changes do not influence the essence of proof of
strong soundness of the rules of RS

One has just to replace the sequence Γ
′

by Γ and ∆ by ∆
′

in the the proof of strong soundness of each rule of RS to
obtain the corresponding proof of strong soundness of
corresponding rule of RS1



Strong Soundness of RS1

We do it, for example for the rule (∪) as follows

(∪)
Γ, A ,B , ∆

′

Γ, (A ∪ B), ∆′

We evaluate:

v∗(Γ,A ,B ,∆
′

) = v∗(δ{Γ,A ,B ,∆′ }) = v∗(Γ)∪v∗(A)∪v∗(B)∪v∗(∆
′

)

= v∗(Γ) ∪ v∗(A ∪ B) ∪ v∗(∆
′

) = v∗(δ{Γ,(A∪B),∆
′
})

= v∗(Γ, (A ∪ B),∆
′

)



Decomposition Trees in RS1

E3. Define in your own words, for any formula A , the
decomposition tree TA in RS1

The definition of the decomposition tree TA is in its essence
similar to the one for RS except for the changes which reflect
the differences in the corresponding rules of inference



Decomposition Trees in RS1

Definition

To construct the decomposition tree TA we follow the steps
below

Step 1

Decompose formula A using a rule defined by its main
connective

Step 2

Traverse resulting sequence Γ on the new node of the tree
from right to left and find the first decomposable formula

Step 3

Repeat Step 1 and Step 2 until there is no more
decomposable formulas

End of the decomposition tree construction



Completeness Theorem for RS1

E4. Prove the following Completeness Theorem

For any A ∈ F ,

If |= A , then `RS1 A

We prove instead the opposite implication

Completeness Theorem

If 0RS1 A then 6|= A



Completeness Theorem for RS1

Observe that directly from the definition of the the
decomposition tree TA we have that the following holds

Fact 1: The decomposition tree TA is a proof if and only if
all leaves are axioms

Fact 2: The proof does not exist otherwise, i.e.

0RS1 A if and only if there is a non- axiom leaf on TA

Fact 2 holds because the tree TA is unique



Proof of Completeness Theorem for RS1

Observe that we need Facts 1, 2 in order to prove the
Completeness Theorem by construction of a counter-model
generated by a the a non- axiom leaf
Proof
Assume that A is any formula such that

0RS1 A

By Fact 2 the decomposition tree TA contains a non-axiom
leaf LA

We use the non-axiom leaf LA and define a truth
assignment v which falsifies A as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

This proves that
6|= A



System RS2 Definition

RS2 Definition

System RS2 is a proof system obtained from RS by changing
the sequences Γ

′

into Γ in all of the rules of inference of RS

The logical axioms LA remind the same

Observe that now the decomposition tree may not be unique

Exercise 1

Construct two decomposition trees in RS2 of the formula

(¬(¬a ⇒ (a ∩ ¬b))⇒ (¬a ∩ (¬a ∪ ¬b)))



RS2 Exercises

T1A

(¬(¬a => (a ∩ ¬b)) => (¬a ∩ (¬a ∪ ¬b)))

| (⇒)

¬¬(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (⇒)

¬¬a, (a ∩ ¬b), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

a, (a ∩ ¬b), (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a, a, (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a, a.¬a, (¬a ∪ ¬b)

| (∪)

a, a.¬a,¬a,¬b

axiom

a, a, (¬a ∪ ¬b)

| (∪)

a, a,¬a,¬b

axiom

a,¬b , (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a,¬b ,¬a

axiom a,¬b , (¬a ∪ ¬b)

| (∪)

a,¬b ,¬a,¬b

axiom



RS2 Exercises

T2A

(¬(¬a => (a ∩ ¬b)) => (¬a ∩ (¬a ∪ ¬b)))

| (⇒)

¬¬(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))∧
(∩)

(¬a => (a ∩ ¬b)),¬a

| (⇒)

(¬¬a, (a ∩ ¬b)),¬a

| (¬¬)

a, (a ∩ ¬b),¬a∧
(∩)

a, a,¬a

axiom

a,¬b ,¬a

axiom

(¬a => (a ∩ ¬b)), (¬a ∪ ¬b)

| (∪)

(¬a => (a ∩ ¬b)),¬a,¬b

| (⇒)

(¬¬a, (a ∩ ¬b),¬a,¬b

| (¬¬)

a, (a ∩ ¬b),¬a,¬b∧
(∩)

a, a,¬a,¬b

axiom

a,¬b ,¬a,¬b

axiom



System RS2

Exercise 2

Explain why the system RS2 is strongly sound. You can use
the soundness of the system RS

Solution

The only difference between RS and RS2 is that in RS2
each inference rule has at the beginning a sequence of any
formulas, not only of literals, as in RS

So there are many ways to apply rules as the decomposition
rules while constructing the decomposition tree

But it does not affect strong soundness, since for all rules of
RS2 premisses and conclusions are still logically equivalent
as they were in RS



RS2 Exercises

Consider, for example, RS2 rule

(∪)
Γ,A ,B ,∆

Γ, (A ∪ B),∆

We evaluate

v∗(Γ,A ,B ,∆) = v∗(Γ) ∪ v∗(A) ∪ v∗(B) ∪ v∗(∆) =

v∗(Γ) ∪ v∗(A ∪ B) ∪ v∗(∆) = v∗(Γ, (A ∪ B),∆)

Similarly, as in RS, we show all other rules of RS2 to be
strongly sound, thus RS2 is also strongly sound



RS2 Exercises

Exercise 3

Define shortly, in your own words, for any formula A , its
decomposition tree TA in RS2

Justify why your definition is correct

Show that in RS2 the decomposition tree for some formula A
may not be unique



RS2 Exercises

Solution

Given a formula A

The decomposition tree TA can be defined as follows

It has A as a root

For each node,

if there is a rule of RS2 which conclusion has the same form
as node sequence, i.e. there is a decomposition rule to be
applied,

then the node has children that are premises of the rule



RS2 Exercises

If the node consists only of literals (i.e. no decomposition
rules to be applied),

then it does not have any children

The last statement defines a termination condition for the tree

This definition correctly defines a decomposition tree as it
identifies and uses appropriate the decomposition rules



RS2 Exercises

Since in RS2 all rules of inference have a sequence Γ
instead of Γ′ as it was defined for in RS , the choice of the
decomposition rule for a node may be not unique

Forexample consider a node

(a => b), (b ∪ a)

Γ in the RS2 rules is a sequence of formulas, not literals, so
for this node we can choose as a decomposition rule either
rule (=>) or rule (∪)

This leads to a non-unique tree



RS2 Exercises

Exercise 4

Prove the Completeness Theorem for RS2

Solution

We need to prove the completeness part only, as the
soundness has been already proved, i.e. we have to prove the
implication: for any formula A ,

if 0RS2 A then 6|= A

Assume 0RS2 A ,

Then every decomposition tree of A has at least one
non-axiom leaf

Otherwise, there would exist a tree with all axiom leaves and
it would be a proof for A



RS2 Exercises

Let TA be a set of all decomposition trees of A

We choose an arbitrary TA ∈ TA with at least one non-axiom
leaf LA

The non-axiom leaf LA defines a truth assignment v which
falsifies A , as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

The value for a sequence that corresponds to the leaf in is F

Since, because of the strong soundness F ”climbs” the tree,
we found a counter-model for A, i.e.

6|= A



RS2 Exercises

Exercise 5 Write a procedure TREEA such that for any
formula A of RS2 it produces its unique decomposition tree

Procedure TREEA (Formula A, Tree T)
{

B = ChoseLeftMostFormula(A) // Choose the left most
formula that is not a literal

c = MainConnective(B) // Find the main connective of B
R = FindRule(c)// Find the rule which conclusion that

has this connective
P = Premises(R)// Get the premises for this rule
AddToTree(A ,P)// add premises as children of A to the

tree
For all p in P // go through all premises

TREEA (p,T) // build subtrees for each premiss
}



RS2 Exercises

Exercise 6

Prove completeness of your Procedure TREEA

Procedure TREEA provides a unique tree, since it always
chooses the most left indecomposable formula for a choice of
a decomposition rule and there is only one such rule

This procedure is equivalent to RS system, since with
thedecomposition rules of RS the most left decomposable
formula is always chosen

RS system is complete, thus this Procedure is complete


