cse541
 LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 6a

> Chapter 6
> Automated Proof Systems
> Completeness of Classical Propositional Logic

PART 4: Gentzen Sequent Systems GL, G
Strong Soundness and Constructive Completeness

Gentzen Sequent Systems GL, G

The Gentzen style proof systems GL and G for the classical propositional logic presented here are inspired by the original (1934) Gentzen proof system LK

Their axioms are, and the rules of inference operate on expressions called by Gentzen sequents Hence the name Gentzen Sequent Systems

The Gentzen original system LK is presented and discussed in detail in the next Lecture 6b

Gentzen Sequent System GL

The system GL presented here is in its structure similar to the system RS and is the first to be considered

Both proof systems GL and G admit a constructive proof of the Completeness Theorem

The proof is very similar to the proof of the completeness of the system RS

Gentzen Sequent System GL

We define GL components are as follows

Language

We adopt a propositional language

$$
\mathcal{L}=\mathcal{L}_{\{\mathrm{u}, \cap, \Rightarrow, \neg\}}
$$

and we add to it a new symbol \longrightarrow called a Gentzen arrow It means we consider formally a new language

$$
\mathcal{L}_{1}=\mathcal{L} \cup\{\longrightarrow\}
$$

Gentzen Sequent System GL

Sequents

The sequents are expressions built out of finite sequences (empty included) of formulas of the language $\mathcal{L}_{\{\mathrm{U}, \cap, \Rightarrow, \neg\}}$ and the Gentzen arrow \longrightarrow as additional symbol

We denote, as in the RS type systems, the finite sequences (with indices if necessary) of of formulas of $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$ by Greek capital letters

$$
\ulcorner, \Delta, \Sigma, \ldots
$$

with indices if necessary
We define a sequent as follows

Sequent Definition

Definition

For any $\Gamma, \Delta \in \mathcal{F}^{*}$, the expression

$$
\ulcorner\longrightarrow \Delta
$$

is called a sequent
Γ is called the antecedent of the sequent
Δ is called the succedent of the sequent
Each formula in Γ and Δ is called a sequent formula.

Gentzen Sequent

Intuitively, we interpret semantically a sequent

$$
A_{1}, \ldots, A_{n} \longrightarrow B_{1}, \ldots, B_{m}
$$

where $n, m \geq 1$, as a formula

$$
\left(A_{1} \cap \ldots \cap A_{n}\right) \Rightarrow\left(B_{1} \cup \ldots \cup B_{m}\right)
$$

of the language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$

Gentzen Sequents

The sequent

$$
A_{1}, \ldots, A_{n} \longrightarrow
$$

where $m \geq 1$ means that $A_{1} \cap \ldots \cap A_{n}$ yields a contradiction

The sequent

$$
\longrightarrow B_{1}, \ldots, B_{m}
$$

where $m \geq 1$ means semantically $T \Rightarrow\left(B_{1} \cup \ldots \cup B_{m}\right)$
The empty sequent
means a contradiction

Gentzen Sequents

Given non empty sequences \ulcorner, Δ

We denote by σ_{Γ} any conjunction of all formulas of Γ

We denote by δ_{Δ} any disjunction of all formulas of Δ

The intuitive semantics of a non- empty sequent $\Gamma \longrightarrow \Delta$ is defined as

$$
\left\ulcorner\longrightarrow \Delta \equiv\left(\sigma_{\Gamma} \Rightarrow \delta_{\Delta}\right)\right.
$$

Formal Semantics

Formal semantics
Let $v: V A R \longrightarrow\{T, F\}$ be a truth assignment and v^{*} its extension to the set of formulas \mathcal{F} of $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$
We extend v^{*} to the set

$$
S Q=\left\{\Gamma \longrightarrow \Delta: \Gamma, \Delta \in \mathcal{F}^{*}\right\}
$$

of all sequents as follows
For any sequent $\Gamma \longrightarrow \Delta \in S Q$,

$$
v^{*}(\Gamma \longrightarrow \Delta)=v^{*}\left(\sigma_{\Gamma}\right) \Rightarrow v^{*}\left(\delta_{\Delta}\right)
$$

Formal Semantics

Special Cases

When $\Gamma=\emptyset$ or $\Delta=\emptyset$ we define

$$
v^{*}(\longrightarrow \Delta)=\left(T \Rightarrow v^{*}\left(\delta_{\Delta}\right)\right)
$$

and

$$
v^{*}(\Gamma \longrightarrow)=\left(v^{*}\left(\sigma_{\Gamma}\right) \Rightarrow F\right)
$$

Formal Semantics

Model

The sequent $\Gamma \longrightarrow \Delta$ is satisfiable if there is a truth assignment $v: V A R \longrightarrow\{T, F\}$ such that

$$
v^{*}(\Gamma \longrightarrow \Delta)=T
$$

Such a truth assignment v is called a model for $\Gamma \longrightarrow \Delta$ We write

$$
v \models \Gamma \longrightarrow \Delta
$$

Formal Semantics

Counter- model

The sequent $\Gamma \longrightarrow \Delta$ is falsifiable if there is a truth assignment v, such that $v^{*}(\Gamma \longrightarrow \Delta)=F$

In this case v is called a counter-model for $\Gamma \longrightarrow \Delta$ We write it as

$$
v \not \vDash \Gamma \longrightarrow \Delta
$$

Formal Semantics

Tautology

A sequent $\Gamma \longrightarrow \Delta$ is a tautology if
$v^{*}(\Gamma \longrightarrow \Delta)=T$ for all truth assignments $v: \operatorname{VAR} \longrightarrow\{T, F\}$
We write it

$$
\vDash\ulcorner\longrightarrow \Delta
$$

Example

Example

Let $\Gamma \longrightarrow \Delta$ be a sequent

$$
a,(b \cap a) \longrightarrow \neg b,(b \Rightarrow a)
$$

The truth assignment v for which

$$
v(a)=T \quad \text { and } \quad v(b)=T
$$

is a model for $\Gamma \longrightarrow \Delta$ as shows the following computation

$$
\begin{gathered}
v^{*}(a,(b \cap a) \longrightarrow \neg b,(b \Rightarrow a))= \\
v^{*}\left(\sigma_{\{a,(b \cap a)\}}\right) \Rightarrow v^{*}\left(\delta_{\{\neg b,(b \Rightarrow a)\}}\right) \\
=v(a) \cap(v(b) \cap v(a)) \Rightarrow \neg v(b) \cup(v(b) \Rightarrow v(a)) \\
=T \cap T \cap T \Rightarrow \neg T \cup(T \Rightarrow T)=T \Rightarrow(F \cup T)=T \Rightarrow T=T
\end{gathered}
$$

Example

Observe that the truth assignment v for which

$$
v(a)=T \quad \text { and } \quad v(b)=T
$$

is the only one for which

$$
v^{*}(\Gamma)=v^{*}(a,(b \cap a)=T
$$

and we proved that it is a model for

$$
a,(b \cap a) \longrightarrow \neg b,(b \Rightarrow a)
$$

It is hence impossible to find v which would falsify it, what proves that

$$
\vDash a,(b \cap a) \longrightarrow \neg b,(b \Rightarrow a)
$$

Indecomposable Sequents

Definition

Finite sequences formed out of positive literals i.e. out of propositional variables are called indecomposable
We denote them by

$$
\Gamma^{\prime}, \Delta^{\prime}, \ldots
$$

with indices, if necessary.

A sequent is indecomposable if it is formed out of indecomposable sequences, i.e. is of the form

for any $\Gamma^{\prime}, \Delta^{\prime} \in V A R^{*}$

Indecomposable Sequents

Remark

Remember that in the GL system the symbols

denote sequences of positive literals i.e. variables

They do not denote the sequences of literals as they did in the RS type systems

GL Components: Axioms

Logical Axioms LA

We adopt as an axiom any sequent of variables (positive literals) which contains a propositional variable that appears on both sides of the sequent arrow \longrightarrow,
i.e any sequent of the form

$$
\Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime} \longrightarrow \Delta_{1}^{\prime}, a, \Delta_{2}^{\prime}
$$

for any $a \in V A R$ and any sequences $\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime} \in V A R^{*}$

GL Components: Axioms

Semantic Link

Consider axiom

$$
\Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime} \longrightarrow \Delta_{1}^{\prime}, a, \Delta_{2}^{\prime}
$$

We evaluate, for any truth assignment $v: V A R \longrightarrow\{T, F\}$

$$
\begin{gathered}
v^{*}\left(\Gamma_{1}^{\prime}, a, \Gamma^{\prime}{ }_{2} \longrightarrow{\Delta^{\prime}}_{1}, a, \Delta^{\prime}{ }_{2}\right)= \\
\left(\sigma_{\Gamma_{1}^{\prime} \cap} \cap a \cap \sigma_{\Gamma^{\prime} 2}\right) \Rightarrow\left(\delta_{\Delta^{\prime},} \cup a \cup \delta_{\Delta^{\prime} 2}\right)=T
\end{gathered}
$$

We have thus proved the following.
Fact
Logical axioms of GL are tautologies

GL Components: Rules

Inference rules

Let $\Gamma^{\prime}, \Delta^{\prime} \in V A R^{*}$ and $\Gamma, \Delta \in \mathcal{F}^{*}$

Conjunction rules

$$
\begin{array}{r}
(\cap \rightarrow) \frac{\Gamma^{\prime}, A, B, \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime},(A \cap B), \Gamma \longrightarrow \Delta^{\prime}} \\
(\rightarrow \cap) \frac{\Gamma \rightarrow \Delta, A, \Delta^{\prime} ; \Gamma \longrightarrow \Delta, B, \Delta^{\prime}}{\Gamma \longrightarrow \Delta,(A \cap B) \Delta^{\prime}}
\end{array}
$$

GL Rules

Disjunction rules

$$
\begin{array}{r}
(\rightarrow \cup) \frac{\Gamma \longrightarrow \Delta, A, B, \Delta^{\prime}}{\Gamma \longrightarrow \Delta,(A \cup B), \Delta^{\prime}} \\
(\cup \rightarrow) \frac{\Gamma^{\prime}, A, \Gamma \rightarrow \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \rightarrow \Delta^{\prime}}{\Gamma^{\prime},(A \cup B), \Gamma \rightarrow \Delta^{\prime}}
\end{array}
$$

GL Rules

Implication rules

$$
\begin{array}{r}
(\rightarrow \Rightarrow) \frac{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, B, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta,(A \Rightarrow B), \Delta^{\prime}} \\
(\Rightarrow \rightarrow) \frac{\Gamma^{\prime}, \Gamma \rightarrow \Delta, A, \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \rightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime},(A \Rightarrow B), \Gamma \rightarrow \Delta, \Delta^{\prime}}
\end{array}
$$

GL Rules

Negation rules

$$
\begin{aligned}
& (\neg \rightarrow) \frac{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, A, \Delta^{\prime}}{\Gamma^{\prime}, \neg A, \Gamma \longrightarrow \Delta, \Delta^{\prime}} \\
& (\rightarrow \neg) \frac{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, \neg A, \Delta^{\prime}}
\end{aligned}
$$

Gentzen System GL Definition

Definition

$$
\mathbf{G L}=\left(\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}, S Q, L A, \mathcal{R}\right)
$$

where

$$
\begin{gathered}
S Q=\left\{\Gamma \longrightarrow \Delta: \Gamma, \Delta \in \mathcal{F}^{*}\right\} \\
\mathcal{R}=\{(\cap \longrightarrow),(\longrightarrow \cap),(\cup \longrightarrow),(\longrightarrow \cup),(\Rightarrow \longrightarrow),(\longrightarrow \Rightarrow)\} \\
\cup\{(\neg \longrightarrow),(\longrightarrow \neg)\}
\end{gathered}
$$

We write, as usual,

$$
\vdash \mathrm{GL} \Gamma \longrightarrow \Delta
$$

to denote that $\Gamma \longrightarrow \Delta$ has a formal proof in $\mathbf{G L}$
For any formula $A \in \mathcal{F}$
$\vdash_{\mathrm{GL}} A$ if ad only if $\longrightarrow A$

Proof Trees

We consider, as we did with RS the proof trees for GL, i.e. we define
A proof tree, or GL-proof of $\Gamma \longrightarrow \Delta$ is a tree

$$
\mathbf{T}_{\Gamma \rightarrow \Delta}
$$

of sequents satisfying the following conditions:

1. The topmost sequent, i.e the root of $\mathrm{T}_{\Gamma \rightarrow \Delta}$ is $\Gamma \longrightarrow \Delta$
2. All leafs are axioms
3. The nodes are sequents such that each sequent on the tree follows from the ones immediately preceding it by one of the rules.

Proof Trees

Remark

The proof search in GL as defined by the decomposition tree for a given formula A is not always unique

We show an example on the next slide

Example

A tree-proof in GL of the de Morgan Law

$$
\begin{gathered}
\longrightarrow(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b)) \\
\mid(\longrightarrow \Rightarrow) \\
\neg(a \cap b) \longrightarrow(\neg a \cup \neg b) \\
\mid(\longrightarrow \cup) \\
\neg(a \cap b) \longrightarrow \neg a, \neg b \\
\mid(\longrightarrow \neg) \\
b, \neg(a \cap b) \longrightarrow \neg a \\
\mid(\longrightarrow \neg) \\
b, a, \neg(a \cap b) \longrightarrow \\
\mid(\neg \longrightarrow) \\
b, a \longrightarrow(a \cap b) \\
\bigwedge(\longrightarrow \cap)
\end{gathered}
$$

$$
b, a \longrightarrow a \quad b, a \longrightarrow b
$$

Example

Here is another tree-proof in GL of the de Morgan Law

$$
\begin{gathered}
\longrightarrow(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b)) \\
\mid(\longrightarrow \Rightarrow) \\
\neg(a \cap b) \longrightarrow(\neg a \cup \neg b) \\
\mid(\longrightarrow \cup) \\
\neg(a \cap b) \longrightarrow \neg a, \neg b \\
\mid(\longrightarrow \neg) \\
b, \neg(a \cap b) \longrightarrow \neg a \\
\mid(\neg \longrightarrow) \\
b \longrightarrow \neg a,(a \cap b) \\
\bigwedge(\longrightarrow \cap)
\end{gathered}
$$

$$
\begin{array}{cc}
b \longrightarrow \neg a, a & b \longrightarrow \neg a, b \\
I(\longrightarrow \neg) & \mid(\longrightarrow \neg) \\
b, a \longrightarrow a & b, a \longrightarrow b
\end{array}
$$

Decomposition Trees

The process of searching for proofs of a formula A in GL consists, as in the RS type systems, of building certain trees, called decomposition trees

Their construction is similar to the one for RS type systems We take a root of a decomposition tree T_{A} of of a formula A a sequent $\longrightarrow A$
For each node, if there is a rule of GL which conclusion has the same form as node sequent, then the node has children that are premises of the rule
If the node consists only of a sequent built only out of variables then it does not have any children
This is a termination condition for the tree

Decomposition Trees

We prove that each formula A generates a finite set

$$
\mathcal{T}_{A}
$$

of decomposition trees such that the following holds

If there exist a tree $T_{A} \in \mathcal{T}_{A}$ whose all leaves are axioms, then tree T_{A} constitutes a proof of A in $G L$

If all trees in \mathcal{T}_{A} have at least one non-axiom leaf, the proof of A does not exist

Decomposition Trees

The first step in defining a notion of a decomposition tree consists of transforming the inference rules of GL, as we did in the case of the RS type systems, into corresponding decomposition rules

Decomposition Rules of GL

Decomposition rules

Let $\Gamma^{\prime}, \Delta^{\prime} \in V A R^{*}$ and $\Gamma, \Delta \in \mathcal{F}^{*}$

Conjunction rules

$$
\begin{array}{r}
(\cap \rightarrow) \frac{\Gamma^{\prime},(A \cap B), \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, A, B, \Gamma \longrightarrow \Delta^{\prime}} \\
(\rightarrow \cap) \frac{\Gamma \rightarrow \Delta,(A \cap B) \Delta^{\prime}}{\Gamma \longrightarrow \Delta, A, \Delta^{\prime} ; \Gamma \longrightarrow \Delta, B, \Delta^{\prime}}
\end{array}
$$

Decomposition Rules of GL

Disjunction rules

$$
\begin{array}{r}
(\rightarrow \cup) \frac{\Gamma \longrightarrow \Delta,(A \cup B), \Delta^{\prime}}{\Gamma \longrightarrow \Delta, A, B, \Delta^{\prime}} \\
(\cup \rightarrow) \frac{\Gamma^{\prime},(A \cup B), \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \longrightarrow \Delta^{\prime}}
\end{array}
$$

Decomposition Rules of GL

Implication rules

$$
\begin{array}{r}
(\rightarrow \Rightarrow) \frac{\Gamma^{\prime}, \Gamma \rightarrow \Delta,(A \Rightarrow B), \Delta^{\prime}}{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, B, \Delta^{\prime}} \\
(\Rightarrow \rightarrow) \frac{\Gamma^{\prime},(A \Rightarrow B), \Gamma \rightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, A, \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \longrightarrow \Delta, \Delta^{\prime}} \\
\end{array}
$$

Decomposition Rules of GL

Negation rules

$$
\begin{aligned}
& (\neg \rightarrow) \frac{\Gamma^{\prime}, \neg A, \Gamma \rightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, A, \Delta^{\prime}} \\
& (\rightarrow \neg) \frac{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, \neg A, \Delta^{\prime}}{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, \Delta^{\prime}}
\end{aligned}
$$

Decomposition Tree Definition

Definition

For each formula $A \in \mathcal{F}$, a decomposition tree T_{A} is a tree build as follows

Step 1. The sequent $\longrightarrow A$ is the root of T_{A}
For any node $\Gamma \longrightarrow \Delta$ of the tree we follow the steps below

Step 2. If $\Gamma \longrightarrow \Delta$ is indecomposable, then $\Gamma \longrightarrow \Delta$ becomes a leaf of the tree

Decomposition Tree Definition

Step 3. If $\Gamma \longrightarrow \Delta$ is decomposable
then we pick a decomposition rule that matches the sequent of the current node

To do so we proceed as follows

1. Given a node $\Gamma \longrightarrow \Delta$

We traverse 「 from left to right to find the first decomposable formula

Its main connective \circ identifies a possible decomposition rule $(\circ \longrightarrow)$
Then we check if this decomposition rule ($\circ \longrightarrow$) applies
If it does we put its conclusion(s) as leaf (leaves)

Decomposition Tree Definition

2. We traverse Δ from right to left to find the first decomposable formula
Its main connective \circ identifies a possible decomposition rule ($\longrightarrow \circ$)
Then we check if this decomposition rule applies
If it does we put its conclusion(s as leaf (leaves)
3. If 1. and 2. apply we choose one of the rules

Step 4. We repeat Step 2. and Step 3. until we obtain only leaves

Decomposition Tree Definition

Observe that a decomposable $\Gamma \longrightarrow \Delta$ is always in the domain of one of the decomposition rules $(\circ \longrightarrow),(\longrightarrow)$, or is in the domain of both of them

Hence the tree T_{A} may not be unique

All possible choices of 3 . give all possible decomposition trees

System GL Exercises

Exercise

Prove, by constructing a proper decomposition tree that

$$
\vdash \mathrm{GL}((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a))
$$

Solution

By definition, we have that

$$
\begin{gathered}
\vdash \mathrm{GL}((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \text { if and only if } \\
\quad \vdash_{\mathrm{GL}} \longrightarrow((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a))
\end{gathered}
$$

We construct a decomposition tree $\mathrm{T}_{\rightarrow A}$ as follows

System GL Exercises

$$
\begin{aligned}
& \mathbf{T}_{\rightarrow A} \\
& \rightarrow((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
& 1(\rightarrow \Rightarrow) \\
& (\neg a \Rightarrow b) \rightarrow(\neg b \Rightarrow a) \\
& \text { (} \rightarrow \Rightarrow \text {) } \\
& \neg b,(\neg a \Rightarrow b) \rightarrow a \\
& 1(\rightarrow \neg) \\
& (\neg a \Rightarrow b) \rightarrow b, a \\
& \bigwedge(\Rightarrow \rightarrow) \\
& 1(\rightarrow-) \\
& a \longrightarrow b, a \\
& \text { axiom }
\end{aligned}
$$

All leaves of the tree are axioms, hence we have found the proof of A in GL

System GL Exercises

Exercise

Prove, by constructing proper decomposition trees that

$$
\Vdash_{\mathbf{G L}}((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a))
$$

Solution

For some formulas A, their decomposition tree $T_{\rightarrow A}$ may not be unique
Hence we have to construct all possible decomposition trees to show that none of them is a proof, i.e. to show that each of them has a non axiom leaf.

We construct the decomposition trees for $\longrightarrow A$ as follows

System GL Exercises

$$
\begin{aligned}
& \mathrm{T}_{1 \rightarrow A} \\
& \rightarrow((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
& \text { I }(\rightarrow \Rightarrow) \text { (one choice) } \\
& (a \Rightarrow b) \longrightarrow(\neg b \Rightarrow a) \\
& \text { I }(\rightarrow \Rightarrow) \text { (first of two choices) } \\
& \neg b,(a \Rightarrow b) \longrightarrow a \\
& \text { I }(\neg \rightarrow) \text { (one choice) } \\
& (a \Rightarrow b) \longrightarrow b, a \\
& \bigwedge(\Rightarrow \longrightarrow) \text { (one choice) } \\
& \longrightarrow a, b, a \\
& \text { non - axiom } \\
& b \longrightarrow b, a \\
& \text { axiom }
\end{aligned}
$$

The tree contains a non- axiom leaf, hence it is not a proof We have one more tree to construct

System GL Exercises

$$
\begin{gathered}
\mathbf{T}_{2} \rightarrow A \\
\longrightarrow((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
\mid(\rightarrow \Rightarrow)(\text { one choice }) \\
(a \Rightarrow b) \longrightarrow(\neg b \Rightarrow a) \\
\bigwedge(\Rightarrow \rightarrow)(\text { second choice })
\end{gathered}
$$

All possible trees end with a non-axiom leaf. It proves that $\Vdash_{G L}((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a))$

System GL Exercises

Does the tree below constitute a proof in GL ? Justify your answer

$$
\begin{aligned}
& \mathrm{T}_{\rightarrow A} \\
& \rightarrow \neg \neg((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
& \text { I }(\rightarrow \neg) \\
& \neg((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \longrightarrow \\
& \text { I }(\neg \rightarrow) \\
& \rightarrow((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
& \text { I }(\rightarrow \Rightarrow) \\
& (\neg a \Rightarrow b) \longrightarrow(\neg b \Rightarrow a) \\
& \text { I }(\rightarrow \Rightarrow) \\
& (\neg a \Rightarrow b), \neg b \longrightarrow a \\
& \text { I }(\neg \rightarrow) \\
& (\neg a \Rightarrow b) \longrightarrow b, a \\
& \bigwedge(\Rightarrow \rightarrow) \\
& \longrightarrow \neg a, b, a \\
& \mid(\rightarrow \neg) \\
& a \longrightarrow b, a \\
& \text { axiom } \\
& b \longrightarrow b, a \\
& \text { axiom }
\end{aligned}
$$

System GL Exercises

Solution

The tree $\mathrm{T}_{\rightarrow A}$ is not a proof in GL because a rule corresponding to the decomposition step below does not exists in GL

$$
\begin{gathered}
(\neg a \Rightarrow b), \neg b \longrightarrow a \\
\mid(\neg \rightarrow) \\
(\neg a \Rightarrow b) \longrightarrow b, a
\end{gathered}
$$

It is a proof is some system GL1 that has all the rules of GL except its rule $(\neg \rightarrow)$

$$
(\neg \rightarrow) \frac{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, A, \Delta^{\prime}}{\Gamma^{\prime}, \neg A, \Gamma \longrightarrow \Delta, \Delta^{\prime}}
$$

This rule has to be replaced in by the rule:

$$
(\neg \rightarrow)_{1} \frac{\Gamma, \Gamma^{\prime} \longrightarrow \Delta, A, \Delta^{\prime}}{\Gamma, \neg A, \Gamma^{\prime} \longrightarrow \Delta, \Delta^{\prime}}
$$

Exercises

Exercise 1

Write all possible proofs of

$$
(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b))
$$

Exercise 2

Find a formula which has a unique decomposition tree

Exercise 3

Describe for which kind of formulas the decomposition tree is unique

GL Soundness and Completeness

GL Strong Soundness

The system GL admits a constructive proof of the
Completeness Theorem, similar to completeness proofs for
RS type proof systems

The completeness proof relays on the strong soundness property of the inference rules

We are going now prove the strong soundness property of the proof system GL

GL Strong Soundness

Proof of strong soundness property

We have already proved that logical axioms of GL are tautologies, so we have to prove now that its rules of i nference are strongly sound

Proofs of strong soundness of rules of inference of GL are more involved then the proofs for the RS type rules

We prove as an example the strong soundness of four of inference rules

GL Strong Soundness

By definition of strong soundness we have to show that that for all rules of inference of GL the following conditions hold

If P_{1}, P_{2} are premisses of a given rule and C is its conclusion, then for all truth assignments
$v: V A R \longrightarrow\{T, F\}$,
$v^{*}\left(P_{1}\right)=v^{*}(C)$ in case of one premiss rule, and
$v^{*}\left(P_{1}\right) \cap v^{*}\left(P_{2}\right)=v^{*}(C)$ in case of a two premisses rule

GL Strong Soundness

We prove as an example the strong soundness of the following rules

$$
(\cap \rightarrow), \quad(\rightarrow \cap), \quad(\cup \rightarrow), \quad(\rightarrow \neg)
$$

In order to prove it we need additional classical logical equivalencies listed below
You can find a list of most basic classical equivalences in Chapter 3

$$
\begin{gathered}
((A \Rightarrow B) \cap(A \Rightarrow C)) \equiv(A \Rightarrow(B \cap C)) \\
((A \Rightarrow C) \cap(B \Rightarrow C)) \equiv((A \cup B) \Rightarrow C) \\
((A \cap B) \Rightarrow C) \equiv(A \Rightarrow(\neg B \cup C))
\end{gathered}
$$

GL Strong Soundness

Strong soundness of $(\cap \rightarrow)$

$$
\begin{aligned}
& \quad(\cap \rightarrow) \frac{\Gamma^{\prime}, A, B, \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime},(A \cap B), \Gamma \longrightarrow \Delta^{\prime}} \\
& =v^{*}\left(\Gamma^{\prime}, A, B, \Gamma \longrightarrow \Delta^{\prime}\right) \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A) \cap v^{*}(B) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right) \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A \cap B) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right) \\
& =v^{*}\left(\Gamma^{\prime},(A \cap B), \Gamma \longrightarrow \Delta^{\prime}\right)
\end{aligned}
$$

GL Strong Soundness

Strong soundness of $(\rightarrow \cap)$

$$
\begin{aligned}
& \quad(\rightarrow \cap) \frac{\Gamma \rightarrow \Delta, A, \Delta^{\prime} ; \Gamma \longrightarrow \Delta, B, \Delta^{\prime}}{\Gamma \longrightarrow \Delta,(A \cap B), \Delta^{\prime}} \\
& v^{*}\left(\Gamma \longrightarrow \Delta, A, \Delta^{\prime}\right) \cap v^{*}\left(\Gamma \longrightarrow \Delta, B, \Delta^{\prime}\right) \\
& =\left(v^{*}(\Gamma) \Rightarrow v^{*}(\Delta) \cup v^{*}(A) \cup v^{*}\left(\Delta^{\prime}\right)\right) \cap\left(v^{*}(\Gamma) \Rightarrow\right. \\
& \left.v^{*}(\Delta) \cup v^{*}(B) \cup v^{*}\left(\Delta^{\prime}\right)\right) \\
& {[\text { we use : }((A \Rightarrow B) \cap(A \Rightarrow C)) \equiv(A \Rightarrow(B \cap C))]} \\
& =v^{*}(\Gamma) \Rightarrow \\
& \left(\left(v^{*}(\Delta) \cup v^{*}(A) \cup v^{*}\left(\Delta^{\prime}\right)\right) \cap\left(v^{*}(\Delta) \cup v^{*}(B) \cup v^{*}\left(\Delta^{\prime}\right)\right)\right) \\
& {[\text { we use commutativity and distributivity] }} \\
& =v^{*}(\Gamma) \Rightarrow\left(v^{*}(\Delta) \cup\left(v^{*}(A \cap B)\right) \cup v^{*}\left(\Delta^{\prime}\right)\right) \\
& =v^{*}\left(\Gamma \longrightarrow \Delta,(A \cap B), \Delta^{\prime}\right)
\end{aligned}
$$

GL Strong Soundness

Strong soundness of $(\cup \rightarrow)$

$$
(\cup \rightarrow) \frac{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime},(A \cup B), \Gamma \longrightarrow \Delta^{\prime}}
$$

$v^{*}\left(\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta^{\prime}\right) \cap v^{*}\left(\Gamma^{\prime}, B, \Gamma \longrightarrow \Delta^{\prime}\right)$
$=\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A) \cap v^{*}(\Gamma)\right) \Rightarrow$
$\left.\left.v^{*}\left(\Delta^{\prime}\right)\right) \cap\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(B) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right)\right)$
[we use: $((A \Rightarrow C) \cap(B \Rightarrow C)) \equiv((A \cup B) \Rightarrow C)$]
$=\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A) \cap v^{*}(\Gamma)\right) \cup\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(B) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right)$
$=\left(\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \cap v^{*}(A)\right) \cup\left(\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \cap v^{*}(B)\right) \Rightarrow$
$v^{*}\left(\Delta^{\prime}\right)$
[we use commutativity and distributivity]
$=\left(\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \cap\left(v^{*}(A \cup B)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right)\right.$
$=v^{*}\left(\Gamma^{\prime},(A \cup B), \Gamma \longrightarrow \Delta^{\prime}\right)$

GL Strong Soundness

Strong soundness of $(\rightarrow \neg)$

$$
\begin{aligned}
& \quad(\rightarrow \neg) \frac{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, \neg A, \Delta^{\prime}} \\
& v^{*}\left(\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, \Delta^{\prime}\right) \\
& =v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A) \cap v^{*}(\Gamma) \Rightarrow v^{*}(\Delta) \cup v^{*}\left(\Delta^{\prime}\right) \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \cap v^{*}(A) \Rightarrow v^{*}(\Delta) \cup v^{*}\left(\Delta^{\prime}\right) \\
& {[\text { we use: }((A \cap B) \Rightarrow C) \equiv(A \Rightarrow(\neg B \cup C))]} \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \Rightarrow \neg v^{*}(A) \cup v^{*}(\Delta) \cup v^{*}\left(\Delta^{\prime}\right) \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}(\Delta) \cup v^{*}(\neg A) \cup v^{*}\left(\Delta^{\prime}\right) \\
& =v^{*}\left(\Gamma^{\prime}, \Gamma \longrightarrow \Delta, \neg A, \Delta^{\prime}\right)
\end{aligned}
$$

GL Strong Soundness

The above shows the premises and conclusions are logically equivalent
Therefore the four rules are strongly sound
This ends the proof
Observe that the strong soundness implies soundness (not only by name) hence we have proved the following Soundness Theorem
For any sequent $\Gamma \longrightarrow \Delta \in S Q$,

$$
\text { if } \vdash \mathrm{GL}\ulcorner\longrightarrow \Delta \text { then }] \models \Gamma \longrightarrow \Delta
$$

In particular, for any $A \in \mathcal{F}$,

$$
\text { if } \vdash_{\mathrm{GL}} A \text { then } \models A
$$

GL Strong Soundness

The strong soundness of the rules of inference means that if at least one of premisses of a rule is false, the conclusion of the rule is also false

Hence given a sequent $\Gamma \longrightarrow \Delta \in S Q$, such that its decomposition tree $T_{\Gamma \rightarrow \Delta}$ has a branch ending with a non-axiom leaf
It means that any truth assignment v that makes this non-axiom leaf bf false also falsifies all sequents on that branch

Hence v falsifies the sequent $\Gamma \longrightarrow \Delta$

Counter Model

In particular, given a sequent

$$
\longrightarrow A
$$

and its decomposition tree

$$
\mathrm{T}_{\rightarrow A}
$$

any v, that falsifies its non-axiom leaf is a counter-model for the formula A

We call such v a counter model determined by the decomposition tree

Counter Model Theorem

We have hence proved the following

Counter Model Theorem

Given a sequent $\Gamma \longrightarrow \Delta$, such that its decomposition tree
$\mathrm{T}_{\Gamma \rightarrow \Delta}$ contains a non- axiom leaf L_{A}
Any truth assignment v that falsifies the non-axiom leaf L_{A} is a counter model for $\Gamma \longrightarrow \Delta$

In particular, given a formula $A \in \mathcal{F}$, and its decomposition tree T_{A} with a non-axiom leaf, this leaf let us define a counter-model for A determined by the decomposition tree T_{A}

Exercise

Exercise

We know that the system GL is strongly sound
Prove, by constructing a counter-model determined by a proper decomposition tree that

$$
\not \vDash((b \Rightarrow a) \Rightarrow(\neg b \Rightarrow a))
$$

We construct the decomposition tree for the formula
$A=((b \Rightarrow a) \Rightarrow(\neg b \Rightarrow a))$ as follows

Exercise

$$
\begin{aligned}
& \mathrm{T}_{\rightarrow A} \\
& \rightarrow((b \Rightarrow a) \Rightarrow(\neg b \Rightarrow a)) \\
& \mid(\rightarrow \Rightarrow) \\
& (b \Rightarrow a) \longrightarrow(\neg b \Rightarrow a) \\
& \text { I }(\rightarrow \Rightarrow) \\
& \neg b,(b \Rightarrow a) \longrightarrow a \\
& l(\neg \rightarrow) \\
& (b \Rightarrow a) \longrightarrow b, a \\
& \bigwedge(\Rightarrow \longrightarrow) \\
& \longrightarrow b, b, a \\
& a \longrightarrow b, a \\
& \text { non - axiom } \\
& \text { axiom }
\end{aligned}
$$

Exercise

The non-axiom leaf L_{A} we want to falsify is
$\longrightarrow b, b, a$
Let $v: V A R \longrightarrow\{T, F\}$ be a truth assignment
By definition of semantic for sequents we have that
$v^{*}(\longrightarrow b, b, a)=(T \Rightarrow v(b) \cup v(b) \cup v(a))$
Hence $v^{*}(\longrightarrow b, b, a)=F$ if and only if
$(T \Rightarrow v(b) \cup v(b) \cup v(a))=F$ if and only if
$v(b)=v(a)=F$
The counter model determined by the $T_{\rightarrow A}$ is any $v: V A R \longrightarrow\{T, F\}$ such that

$$
v(b)=v(a)=F
$$

Counter Model Theorem

The Counter Model Theorem, says that the logical value F determined by the evaluation a non-axiom leaf L_{A} "climbs" the decomposition tree. We picture it as follows

$$
\begin{gathered}
\mathrm{T}_{\rightarrow A} \\
\longrightarrow((b \Rightarrow a) \Rightarrow(\neg b \Rightarrow a)) \mathrm{F} \\
\mid(\rightarrow \Rightarrow) \\
(b \Rightarrow a) \xrightarrow{\longrightarrow}(\neg b \Rightarrow a) \mathrm{F} \\
\mid(\rightarrow \Rightarrow) \\
\neg b,(b \Rightarrow a) \longrightarrow a \mathrm{~F} \\
\mid(\neg \rightarrow) \\
(b \Rightarrow a) \longrightarrow b, a \mathrm{~F} \\
\bigwedge(\Rightarrow \longrightarrow) \\
\longrightarrow b, b, a \text { F } \\
\text { non-axiom }
\end{gathered}
$$

Counter Model Theorem

By Counter Model Theorem, any truth assignment

$$
v: V A R \longrightarrow\{T, F\}
$$

such that

$$
v(b)=v(a)=F
$$

falsifies the sequence $\longrightarrow A$
We evaluate

$$
v^{*}(\longrightarrow A)=T \Rightarrow v^{*}(A)=F \quad \text { if and only if } \quad v^{*}(A)=F
$$

This proves that v is a counter model for A and we proved that
$\notin A$

GL Completeness

Our goal now is to prove the Completeness Theorem for GL

Completeness Theorem
For any formula $A \in \mathcal{F}$,

$$
\vdash \mathrm{GL} A \quad \text { if and only if } \quad \models A
$$

Moreover

For any sequent $\Gamma \longrightarrow \Delta \in S Q$,

$$
\vdash_{\mathrm{GL}}\ulcorner\longrightarrow \Delta \quad \text { if and only if } \quad \models\ulcorner\longrightarrow \Delta
$$

GL Completeness

Proof

We have already proved the Soundness Theorem, so we only need to prove the implication:

$$
\text { if } \models A \text { then } \vdash_{\mathrm{GL}} A
$$

We prove instead of the logically equivalent opposite implication:

$$
\text { if } \nVdash \mathrm{GL} A \text { then } \not \models A
$$

GL Completeness

Assume $\Vdash_{\mathrm{GL}} A$, i.e. $\Vdash_{\mathrm{GL}} \longrightarrow A$
Let \mathcal{T}_{A} be a set of all decomposition trees of $\longrightarrow A$
As $\nvdash G L^{\longrightarrow} A$ each tree $T_{\rightarrow A}$ in the set \mathcal{T}_{A} has a
non-axiom leaf. We choose an arbitrary $\mathrm{T}_{\rightarrow A} \in \mathcal{T}_{A}$
Let $L_{A}=\Gamma^{\prime} \longrightarrow \Delta^{\prime}$ be a non-axiom leaf of $T_{\rightarrow A}$
We define a truth assignment $v: V A R \longrightarrow\{T, F\}$ which falsifies $L_{A}=\Gamma^{\prime} \longrightarrow \Delta^{\prime}$ as follows

$$
v(a)= \begin{cases}T & \text { if a appears in } \Gamma^{\prime} \\ F & \text { if a appears in } \Delta^{\prime} \\ \text { any value } & \text { if a does not appear in } \Gamma^{\prime} \rightarrow \Delta^{\prime}\end{cases}
$$

By Counter Model Theorem

Gentzen Proof System G

Gentzen Proof System G

Gentzen Proof system G

We obtain the proof system G from the system $G L$ by changing the indecomposable sequences $\Gamma^{\prime}, \Delta^{\prime}$ into any sequences $\Sigma, \Lambda \in \mathcal{F}^{*}$ in all of the rules of GL

The logical axioms LA remain the same as in GL, i.e.

Axioms of G are

$$
\Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime} \longrightarrow \Delta_{1}^{\prime}, a, \Delta_{2}^{\prime}
$$

where
$a \in \operatorname{VAR}$ and $\Gamma^{\prime}{ }_{1}, \Gamma^{\prime}{ }_{2}, \Delta^{\prime}{ }_{1}, \Delta^{\prime}{ }_{2} \in V A R^{*}$

Gentzen Proof System G

Rules of Inference

Conjunction

$$
\begin{gathered}
(\cap \rightarrow) \frac{\Sigma, A, B, \Gamma \rightarrow \Lambda}{\Sigma,(A \cap B), \Gamma \rightarrow \Lambda} \\
(\rightarrow \cap) \frac{\Gamma \rightarrow \Delta, A, \Lambda ; \Gamma \rightarrow \Delta, B, \Lambda}{\Gamma \longrightarrow \Delta,(A \cap B), \Lambda}
\end{gathered}
$$

Disjunction

$$
\begin{gathered}
(\rightarrow \cup) \frac{\Gamma \rightarrow \Delta, A, B, \Lambda}{\Gamma \rightarrow \Delta,(A \cup B), \Lambda} \\
(\cup \rightarrow) \frac{\Sigma, A, \Gamma \rightarrow \Lambda ; \Sigma, B, \Gamma \rightarrow \Lambda}{\Sigma,(A \cup B), \Gamma \longrightarrow \Lambda}
\end{gathered}
$$

Gentzen Proof System G

Implication

$$
\begin{gathered}
(\rightarrow \Rightarrow) \frac{\Sigma, A, \Gamma \longrightarrow \Delta, B, \Lambda}{\Sigma, \Gamma \longrightarrow \Delta,(A \Rightarrow B), \Lambda} \\
(\Rightarrow \rightarrow) \frac{\Sigma, \Gamma \longrightarrow \Delta, A, \Lambda ; \Sigma, B, \Gamma \longrightarrow \Delta, \Lambda}{\Sigma,(A \Rightarrow B), \Gamma \longrightarrow \Delta, \Lambda}
\end{gathered}
$$

Negation
$(\neg \rightarrow) \frac{\Sigma, \Gamma \longrightarrow \Delta, A, \Lambda}{\Sigma, \neg A, \Gamma \longrightarrow \Delta, \Lambda}, \quad(\rightarrow \neg) \frac{\Sigma, A, \Gamma \longrightarrow \Delta, \Lambda}{\Sigma, \Gamma \longrightarrow \Delta, \neg A, \Lambda}$
where
$\Gamma, \Delta, \Sigma . \Lambda \in \mathcal{F}^{*}$

System G Exercises

Exercises

Follow the example of the GL system and adopt all needed definitions and proofs to prove the completeness of the proof system G
Here are steps S1-S10 needed to carry a full proof of the Completeness Theorem

We leave completion of them as series of Exercises

Write careful and full solutions for each of $\mathbf{S 1}$ - $\mathbf{S 1 0}$ steps Base them on corresponding proofs for GL system

System G Exercises

Here the steps
S1 Explain why the system \mathbf{G} is strongly sound. You can use the strong soundness of the system GL

S2 Prove, as an example, a strong soundness of 4 rules of \mathbf{G}

S3 Prove the the strong soundness of G

S4 Define shortly, in your own words, for any formula $A \in \mathcal{F}$, its decomposition tree $\mathrm{T}_{\rightarrow A}$

System G Exercises

S5 Extend your definition of $T_{\rightarrow A}$ to a decomposition tree
$\mathrm{T}_{\Gamma \rightarrow \Delta}$ for any $\Gamma \rightarrow \Delta \in S Q$

S6 Prove that for any $\Gamma \rightarrow \Delta \in S Q$, all decomposition trees $\mathrm{T}_{\Gamma \rightarrow \Delta}$ are finite

S7 Give an example of formulas $A, B \in \mathcal{F}$ such that that the tree $\mathrm{T}_{\rightarrow A}$ is unique and the tree $\mathrm{T}_{\rightarrow B}$ is not unique

System G Exercises

S8 Prove the following Counter Model Theorem for G

Theorem

Given a sequent $\Gamma \longrightarrow \Delta$, such that its decomposition tree
$\mathrm{T}_{\Gamma \rightarrow \Delta}$ contains a non- axiom leaf L_{A}
Any truth assignment v that falsifies the non-axiom leaf L_{A} is a counter model for $\Gamma \longrightarrow \Delta$

In particular, given a formula $A \in \mathcal{F}$, and its decomposition tree T_{A} with a non-axiom leaf, this leaf let us define a counter-model for A determined by the decomposition tree $\mathrm{T}_{\text {A }}$

System G Exercises

S8 Prove the following Completeness Theorem for G

Theorem

1. For any formula $A \in \mathcal{F}$,

$$
\vdash_{G} A \text { if and only if } \models A
$$

2. For any sequent $\Gamma \longrightarrow \Delta \in S Q$,

$$
\vdash_{G} \Gamma \longrightarrow \Delta \quad \text { if and only if } \quad \models\ulcorner\longrightarrow \Delta
$$

