cse541
 LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 7b

Chapter 7
 Introduction to Intuitionistic and Modal Logics

PART 5: Introduction to Modal Logics
Algebraic Semantics for modal S4 and S5

Introduction to Modal Logics

The non-classical logics can be divided in two groups: those that rival classical logic and those which extend it

The Lukasiewicz, Kleene, and intuitionistic logics are in the first group
The modal logics are in the second group

The rival logics do not differ from classical logic in terms of the language employed

The rival logics differ in that certain theorems or tautologies of classical logic are rendered false, or not provable in them

Introduction to Modal Logics

The most notorious example of the rival difference of logics based on the same language is the law of excluded middle

$$
(A \cup \neg A)
$$

This is provable in, and is a tautology of classical logic

But is not provable in, and is not tautology of the intuitionistic logic

It also is not a tautology under any of the extensional logics semantics we have discussed

Introduction to Modal Logics

Logics which extend classical logic sanction all the theorems of classical logic but, generally, supplement it in two ways

Firstly, the languages of these non-classical logics are extensions of those of classical logic

Secondly, the theorems of these non-classical logics supplement those of classical logic

Introduction to Modal Logics

Modal logics are enriched by the addition of two new connectives that represent the meaning of expressions "it is necessary that" and "it is possible that"

We use the notation:
I for "it is necessary that" and
C for "it is possible that"

Other notations commonly used are:
∇, N, L for "it is necessary that" and
\diamond, P, M for " it is possible that"

Introduction to Modal Logics

The symbols N, L, P, M or alike, are often used in computer science

The symbols ∇ and \diamond were first to be used in modal logic literature

The symbols I, C come from algebraic and topological interpretation of modal logics

I corresponds to the topological interior of the set and C to its closure

Introduction to Modal Logics

The idea of a modal logic was first formulated by an American philosopher, C.I. Lewis in 1918

Lewis has proposed yet another interpretation of lasting consequences, of the logical implication

He created a notion of a modal truth, which lead to the notion of modal logic

He did it in an attempt to avoid, what some felt, the paradoxes of semantics for classical implication which accepts as true that a false sentence implies any sentence

Introduction to Modal Logics

Lewis' notions appeal to epistemic considerations and the whole area of modal logics bristles with philosophical difficulties and hence the numbers of modal logics have been created

Unlike the classical connectives, the modal connectives do not admit of truth-functional interpretation, i.e. do not accept the extensional semantics

This was the reason for which modal logics were first developed as proof systems, with intuitive notion of semantics expressed by the set of adopted axioms

Introduction to Modal Logics

The first definition of modal semantics, and hence the proofs of the completeness theorems came some 20 years later

It took yet another 25 years for discovery and development of the second and more general approach to the modal semantics

These are the two established ways of interpret modal connectives, i.e. to define the modal semantics

Introduction to Modal Logics

The historically, the first modal semantics is due to Mc Kinsey and Tarski $(1944,1946)$
It is a topological semantics that provides a powerful mathematical interpretation of some of modal logics, namely modal S4 and S5

It connects the modal notion of necessity with the topological notion of the interior of a set, and the modal notion of possibility with the notion of the closure of a set

Our choice of symbols I and C for necessity and possibility connectives comes from this interpretation

The topological interpretation mathematically powerful as it is, is less universal in providing models for other modal logics

Introduction to Modal Logics

The most recent and the most general semantics is due to Kripke (1964). It uses the notion of possible worlds.

Roughly, we say that the formula $C A$ is true if A is true in some possible world, called actual world

The formula $I A$ is true if A is true in every possible world

We present here a short version of the topological semantics in a form of algebraic models

We leave the Kripke semantics for the reader to explore from other, multiple sources

Introduction to Modal Logics

As we have already mentioned, modal logics were first developed, as was the intuitionistic logic, in a form of proof systems only

First Hilbert style modal proof system was published by Lewis and Langford in 1932

They presented a formalization for two modal logics, which they called S1 and S2

They also outlined three other proof systems, called S3, S4, and S5

Introduction to Modal Logics

Since then hundreds of modal logics have been created There are some standard books in the subject

These are, between the others:
Hughes and Cresswell (1969) for philosophical motivation for various modal logics and intuitionistic logic,

Bowen (1979) for a detailed and uniform study of Kripke models for modal logics,

Segeberg (1971) for excellent modal logics classification, Fitting (1983), for extended and uniform studies of automated proof methods for classes of modal logics

Hilbert Style Modal Proof Systems

Hilbert Style Modal Proof Systems

We present now Hilbert style formalization forS4 and S5 logics due to Mc Kinsey and Tarski (1948) and Rasiowa and Sikorski (1964)

We also discuss the relationship between S4 and S5, and between the intuitionistic logic and S4 modal logic, as first observed by Gödel

The formalizations stress the connection between S4, S5 and topological spaces which constitute models for them

Modal Language

Modal Language

We add two extra one argument connectives I and C to the propositional language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$, i.e. we adopt

$$
\mathcal{L}=\mathcal{L}_{\{\mathrm{U}, \cap, \Rightarrow, \neg, \mathrm{I}, \mathrm{C}\}}
$$

as the modal language. We read a formulas $I A, C A$ as necessary A and possible A, respectively

The language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg, \mathrm{I}, \mathrm{C}\}}$ is common to all modal logics

Modal logics differ on a choice of axioms and rules of inference, when studied as proof systems and on a choice of respective semantics

McKinsey, Tarski Proof Systems

As modal logics extend the classical logic, any modal logic contains two groups of axioms: classical and modal
McKinsey, Tarski (1948)
AG1 classical axioms
We adopt as classical axioms any complete set of axioms under classical semantics

AG2 modal axioms
M1 $\quad(I A \Rightarrow A)$
M2 $\quad(\mathrm{I}(A \Rightarrow B) \Rightarrow(\mathrm{I} A \Rightarrow \mathrm{I} B))$
M3 $\quad(I A \Rightarrow \| A)$
M4 (CA \Rightarrow ICA)

Modal S4 and S5

Rules of inference

$$
(M P) \frac{A ;(A \Rightarrow B)}{B} \text {, and (I) } \frac{A}{I A}
$$

The modal rule (I) was introduced by Gödel and is referred to as a necessitation rule

We define modal proof systems S4 and S5 as follows

$$
\begin{aligned}
& S 4=(\mathcal{L}, \mathcal{F}, \text { classical axioms, } M 1-M 3,(M P),(I)) \\
& S 5=(\mathcal{L}, \mathcal{F}, \text { classical axioms, } M 1-M 4,(M P),(I))
\end{aligned}
$$

Modal S4 and S5

Observe that the axioms of S5 extend the axioms of S4 and both system share the same inference rules, hence we have immediately the following

Fact For any formula $A \in \mathcal{F}$,

$$
\text { if } \vdash_{s 4} A \text {, then } \vdash_{s 5} A
$$

Rasiowa, Sikorski Proof Systems

It is often the case, as it is for S4 and S5, that modal connectives are definable by each other
We define them as follows

$$
\mathrm{I} A=\neg \mathrm{C} \neg A, \quad \text { and } \quad \mathrm{C} A=\neg \neg \neg A
$$

Language

We hence assume now that the language \mathcal{L} of Rasiowa, Sikorski modal proof systems contains only one modal connective
We choose it to be I and adopt the following language

$$
\mathcal{L}=\mathcal{L}_{\{\cap, U, \Rightarrow, \neg, I\}}
$$

There are, as before, two groups of axioms: classical and modal

Rasiowa, Sikorski Proof Systems

Rasiowa, Sikorski (1964)
AG1 classical axioms
We adopt as classical axioms any complete set of axioms under classical semantics

AG2 modal axioms
R1 $\quad((I A \cap \mathbf{I} B) \Rightarrow \mathbf{I}(A \cap B))$
R2 $\quad(I A \Rightarrow A)$
R3 $(I A \Rightarrow I I A)$
R4 $\quad \mathrm{I}(A \cup \neg A)$
R5 $\quad(\neg \neg \neg A \Rightarrow \| \neg \neg \neg A)$

Modal RS4 and RS5

Rules of inference

We adopt the Modus Ponens and an additional rule (RI)

$$
(M P) \frac{A ;(A \Rightarrow B)}{B} \quad \text { and } \quad(R \mathrm{I}) \frac{(A \Rightarrow B)}{(\mathrm{I} A \Rightarrow \mathrm{I} B)}
$$

We define modal proof systems RS4 and RS5 as follows $R S 4=(\mathcal{L}, \mathcal{F}$, classical axioms, R1-R4, (MP), (RI)) $R S 5=(\mathcal{L}, \mathcal{F}$, classical axioms, $R 1-R 5,(M P),(R \mathbf{I}))$

Modal RS4 and RS5

Observe that the axioms of RS5 extend the axioms of RS4 and both systems share the same inference rules, hence we have immediately the following

Fact For any formula $A \in \mathcal{F}$,

$$
\text { if } \vdash_{R S 4} A \text {, then } \vdash_{R S 5} A
$$

Algebraic Semantics for S4 and S5

Algebraic Semantics for S4 and S5

The McKinsey, Tarski proof systems S4, S5 and Rasiowa, Sikorski proof systems RS4, RS5 are complete with the respect to both topological semantics, and Kripke semantics

We shortly discuss the topological semantics, and algebraic completeness theorems

We leave the Kripke semantics for the reader to explore from other, multiple sources

Algebraic Semantics for S4 and S5

The topological semantics was initiated by McKinsey and Tarski in 1946, 1948 and consequently developed into a field of Algebraic Logic

The algebraic approach to logic is presented in detail in now classic algebraic logic books:
"Mathematics of Metamathematics", Rasiowa, Sikorski (1964),
"An Algebraic Approach to Non-Classical Logics", Rasiowa (1974)

We want to point out that the first idea of a connection between modal propositional logic and topology is due to Tang Tsao -Chen, (1938) and Dugunji (1940)

Algebraic Semantics for S4 and S5

Here are some basic definitions

Boolean Algebra

An abstract algebra $\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg)$ is said to be a Boolean algebra if it is a distributive lattice and every element $a \in B$ has a complement $\neg a \in B$

Topological Boolean algebra

By a topological Boolean algebra we mean an abstract algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg, I)
$$

where $(B, 1,0, \Rightarrow, \cap, \cup, \neg)$ is a Boolean algebra and, moreover, the following conditions hold for any $a, b \in B$

$$
I(a \cap b)=l a \cap I b, \quad l a \cap a=l a, \quad \| a=l a, \quad \text { and } \|=1
$$

Algebraic Semantics for S4 and S5

The element la is called a interior of a
The element \neg / \neg a is called a closure of a and will be denoted by Ca
Thus the operations I and C are such that

$$
C a=\neg l \neg a \quad \text { and } \quad l a=\neg C \neg a
$$

In this case we write the topological Boolean algebra as

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg, I, C)
$$

It is easy to prove that in in any topological Boolean algebra the following conditions hold for any $a, b \in B$
$C(a \cup b)=C a \cup C b, \quad C a \cup a=C a, \quad C C a=C a$ and $C 0=0$

Algebraic Semantics for S4 and S5

Example

Let X be a topological space with an interior operation I
Then the family $\mathcal{P}(X)$ of all subsets of X is a topological Boolean algebra with $1=X$, with
the operation \Rightarrow defined by the formula

$$
Y \Rightarrow Z=(X-Y) \cup Z \text { for all subsets } Y, Z \text { of } X
$$

and with set-theoretical operations of union, intersection, complementation, and the interior operation I

Every sub algebra of this algebra is a topological Boolean algebra, called a topological field of sets or, more precisely, a topological field of subsets of X

Algebraic Semantics for S4 and S5

Given a topological Boolean algebra

$$
(B, 1,0, \Rightarrow, \cap, \cup, \neg)
$$

The element $a \in B$ is said to be open (closed)
if $a=l a \quad(a=C a)$
Clopen Topological Boolean Algebra
A topological Boolean algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup \neg, I, C)
$$

such that every open element is closed and every closed element is open, i.e. such that for any $a \in B$

$$
C l a=I a \quad \text { and } \quad I C a=C a
$$

is called a clopen topological Boolean algebra

S4, S5 Tautology

We loosely say that a formula A is a modal $S 4$ tautology if and only if
any topological Boolean algebra is a model for A

We say that A is a modal $S 5$ tautology
if and only if
any clopen topological Boolean algebra is a model for A
We put it formally as follows

Modal Algebraic Model

Modal Algebraic Model

For any formula A of a modal language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg, \mathrm{I}, \mathrm{C}\}}$ and for any topological Boolean algebra

$$
\mathcal{B}=(B, 1,0, \Rightarrow, \cap, \cup, \neg, I, C)
$$

the algebra \mathcal{B} is a model for the formula A and denote it by

$$
\mathcal{B} \models A
$$

if and only if $v^{*}(A)=1$ holds for all variables assignments $v: V A R \longrightarrow B$

S4, S5 Tautology

Definition of S4 Tautology

A formula A is a modal $S 4$ tautology and is denoted by

$$
\models_{S 4} \quad A
$$

if and only if for all topological Boolean algebras \mathcal{B} we have that

$$
\mathcal{B} \models A
$$

Definition of S5 Tautology
A formula A is a modal $S 5$ tautology and is denoted by
$\models_{S 5}$ A
if and only if for all clopen topological Boolean algebras \mathcal{B} we have that

$$
\mathcal{B} \models A
$$

S4, S5 Completeness Theorem

We write $\vdash_{s 4} A$ and $\vdash_{s 5} A$ do denote provability any proof system for modal S4, S5 logics and in particular the proof systems defined here

Completeness Theorem

For any formula A of the modal language $\mathcal{L}_{\{\mathrm{U}, \cap, \Rightarrow, \neg, \mathrm{I}, \mathrm{C}\}}$

$$
\begin{array}{lll}
\vdash_{S 4} A & \text { if and only if } & \models S 4 A \\
\vdash_{S 5} A & \text { if and only if } & \models S 5 A
\end{array}
$$

The completeness for $S 4, S 4$ follows directly from the following general Algebraic Completeness Theorems

S4 Algebraic Completeness Theorem

S4 Algebraic Completeness Theorem

For any formula A of the modal language $\mathcal{L}_{\{U, \cap, \Rightarrow, \neg, I, C\}}$ the following conditions are equivalent
(i) $\vdash_{s 4} A$
(ii) $\models{ }_{S 4} A$
(iii) A is valid in every topological field of sets $\mathcal{B}(X)$
(iv) A is valid in every topological Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A
(iv) $v^{*}(A)=X$ for every variable assignment v in the topological field of sets $\mathcal{B}(X)$ of all subsets of a dense-in -itself metric space $X \neq \emptyset$ (in particular of an n-dimensional Euclidean space X)

S4 Algebraic Completeness Theorem

S5 Algebraic Completeness Theorem

For any formula A of the modal language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg, I, C\}}$ the following conditions are equivalent
(i) $\vdash_{S 5} A$
(ii) $\models{ }_{S 5} A$
(iii) A is valid in every clopen topological field of sets $\mathcal{B}(X)$
(iv) A is valid in every clopen topological Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A

S4 and S5 Decidability

The equivalence of conditions (i) and (iv) of the Algebraic Completeness Theorems proves the semantical decidability of modal S4 and S5

S4, S5 Decidability

Any complete S4, S5 proof system is semantically decidable, i.e. the following holds

$$
\vdash \vdash_{4} A \text { if and only if } \mathcal{B} \models A
$$

for every topological Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A Similarly, we also have

$$
\vdash_{s 5} A \text { if and only if } \mathcal{B} \models A
$$

for every clopen topological Boolean algebra \mathcal{B} with at most $2^{2^{r}}$ elements, where r is the number of all sub formulas of A

S4 and S5 Syntactic Decidability

S4, S5 Syntactic Decidability (Wasilewska 1967,1971)

Rasiowa stated in 1950 an an open problem of providing a cut-free RS type formalization for modal propositional S4 calculus

Wasilewska solved this open problem in 1967 and presented the result at the ASL Summer School and Colloquium in Mathematical Logic, Manchester, August 1969

It appeared in print as A Formalization of the Modal Propositional S4-Calculus, Studia Logica, North Holland, XXVII (1971)

S4 and S5 Syntactic Decidability

The paper also contained an algebraic proof of completeness theorem followed by Gentzen cut-elimination theorem, the Hauptzatz

The resulting implementation written in LISP-ALGOL was the first modal logic theorem prover created
It was done with collaboration with B. Waligorski and the authors didn't think it to be worth a separate publication Its existence was only mentioned in the published paper

The S5 Syntactic Decidability follows from the one for S4 and the following Embedding Theorems

Modal S4 and Modal S5

The relationship between S4 and S5 was first established by Ohnishi and Matsumoto in 1957-59 and is as follows .

Embedding 1

For any formula $A \in \mathcal{F}$,

$$
\begin{array}{ll}
\models_{S 4} A & \text { if and only if } \\
\models_{S 5} \text { IC } A \\
\vdash_{S 4} A & \text { if and only if }
\end{array} \vdash_{S 5} \text { ICA }
$$

Embedding 2

For any formula $A \in \mathcal{F}$
$\models_{S 5} A$ if and only if $\models{ }_{S 4}$ ICIA
$\vdash_{s 5} A$ if and only if $\vdash_{s 4}$ ICIA

On S4 derivable disjunction

In a classical logic it is possible for the disjunction $(A \cup B)$ to be a tautology when neither A nor B is a tautology
This does not hold for the intuitionistic logic. We have a following theorem similar to the intuitionistic case to the for modal S4

Theorem McKinsey, Tarski (1948)

A disjunction $(I A \cup I B)$ is $S 4$ provable if and only if either A or $B S 4$ provable, i.e.

$$
\vdash_{S 4}(I A \cup I B) \text { if and only if } \quad \vdash_{s 4} A \text { or } \vdash_{s 4} B
$$

S4 and Intuitionistic Logic, S5 and Classical Logic

S4 and Intuitionistic Logic

As we have said in the introduction, Gödel was the first to consider the connection between the intuitionistic logic and a logic which was named later S4

Gödel's proof was purely syntactic in its nature, as the semantics for neither intuitionistic logic nor modal logicS4 had not been invented yet

The algebraic proof of this fact, was first published by McKinsey and Tarski in 1948

S4 and Intuitionistic Logic

We define here the Gödel-Tarski mapping establishing the S4 and intuitionistic logic connection

We refer the reader to Rasiowa, Sikorski book "Mathematics of Metamathematics" (i965) for the algebraic proofs of its properties and respective theorems

S4 and Intuitionistic Logic

Let \mathcal{L} be a propositional language of modal logic i.e the language

$$
\mathcal{L}=\mathcal{L}_{\{\cap, U, \Rightarrow, \neg, l\}}
$$

Let \mathcal{L}_{0} be a language obtained from \mathcal{L} by elimination of the connective I and by the replacement the classical negation connective \neg by the intuitionistic negation, which we will denote here by a symbol ~
Such obtained language

$$
\mathcal{L}_{0}=\mathcal{L}_{\{\cap, \cup, \Rightarrow, \sim\}}
$$

is a propositional language of the intuitionistic logic

S4 and Intuitionistic Logic

In order to establish the connection between the languages

$$
\mathcal{L} \text { and } \mathcal{L}_{0}
$$

and hence between modal and intuitionistic logic, we consider a mapping f which to every formula $A \in \mathcal{F}_{0}$ of \mathcal{L}_{0} assigns a formula $f(A) \in \mathcal{F}$ of \mathcal{L}

We define the mapping f as follows

Gödel - Tarski Mapping

Definition of Gödel-Tarski mapping

A function

$$
f: \mathcal{F}_{0} \rightarrow \mathcal{F}
$$

such that

$$
\begin{gathered}
f(a)=\mathbf{I} a \quad \text { for any } \quad a \in \operatorname{VAR} \\
f((A \Rightarrow B))=\mathbf{I}(f(A) \Rightarrow f(B)) \\
f((A \cup B))=(f(A) \cup f(B)) \\
f((A \cap B))=(f(A) \cap f(B)) \\
f(\sim A)=I \neg f(A)
\end{gathered}
$$

where A, B are any formulas in \mathcal{L}_{0} is called a Gödel-Tarski mapping

Example

Example

Let A be a formula

$$
((\sim A \cap \sim B) \Rightarrow \sim(A \cup B))
$$

and f be the Gödel-Tarski mapping. We evaluate $f(A)$ as follows

$$
\begin{gathered}
f((\sim A \cap \sim B) \Rightarrow \sim(A \cup B))= \\
\mathbf{I}(f(\sim A \cap \sim B) \Rightarrow f(\sim(A \cup B))= \\
\mathbf{I}((f(\sim A) \cap f(\sim B)) \Rightarrow f(\sim(A \cup B))= \\
\mathbf{I}((I \neg f A \cap I \neg f B) \Rightarrow \mathbf{I} \neg f(A \cup B))= \\
\mathbf{I}((I \neg A \cap I \neg B) \Rightarrow I \neg(f A \cup f B))= \\
\mathbf{I}((I \neg A \cap I \neg B) \Rightarrow I \neg(A \cup B))
\end{gathered}
$$

S4 and Intuitionistic Logic

The following theorem established relationship between intuitionistic and modal S4 logics

Theorem

Let f be the Gödel-Tarski mapping
For any formula A of intuitionistic language \mathcal{L}_{0},

$$
\vdash_{1} A \text { if and only if } \quad \vdash_{s 4} f(A)
$$

where I, S4 denote any proof systems for intuitionistic and and S4 logic, respectively

Classical Logic and Modal S5

In order to establish the connection between the modal S5 and classical logics we consider the following G'odel-Tarski mapping between the modal language $\mathcal{L}_{\{\mathrm{n}, \mathrm{\cup}, \neg, \neg, \mathrm{l}\}}$ and its classical sub-language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

With every classical formula A we associate a modal formula $g(A)$ defined by induction on the length of A as follows:

$$
\begin{gathered}
g(a)=\mathrm{I} a, \quad g((A \Rightarrow B))=\mathrm{I}(g(A) \Rightarrow g(B),) \\
g((A \cup B))=(g(A) \cup g(B)), \quad g((A \cap B))=(g(A) \cap g(B)), \\
g(\neg A)=\mathrm{I} \neg g(A)
\end{gathered}
$$

Classical Logic and Modal S5

The following theorem establishes relationship between classical and S5 logics

Theorem

Let g be the Gödel-Tarski mapping between

$$
\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \quad \text { and } \quad \mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg, l\}}
$$

For any formula A of $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$,

$$
\vdash_{H} A \text { if and only if } \quad \vdash_{S 5} g(A)
$$

where $H, S 5$ denote any proof systems for classical and and S5 modal logic, respectively

