cse541
 LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 8

Chapter 8
 Classical Predicate Semantics and Proof Systems

PART 1: Formal Predicate Languages

Formal Predicate Languages

We define a predicate language \mathcal{L} following the pattern established by the propositional languages

The predicate language \mathcal{L} is more complicated in its structure and hence its alphabet \mathcal{A} is much richer The definition of its set \mathcal{F} of formulas is more complicated

In order to define the set \mathcal{F} of formulas we introduce an additional set T , called a set of terms

The terms play important role in the development of other notions of predicate logic

Predicate Languages

Predicate languages are also called first order languages
The same applies to the use of terms for propositional and predicate logics
Propositional and predicate logics are called zero order and first order logics, respectively
We will use both terms equally
We work with many different predicate languages, depending on what applications we have in mind
All of these languages have some common features, and we begin with a following general definition

Predicate Language

Definition

By a predicate language \mathcal{L} we understand a triple

$$
\mathcal{L}=(\mathcal{A}, \mathbf{T}, \mathcal{F})
$$

where
\mathcal{A} is a predicate alphabet
T is the set of terms
\mathcal{F} is a set of formulas

Predicate Languages Components

The first component of \mathcal{L} is defined as follows

1. Alphabet \mathcal{A} is the set

$$
\mathcal{A}=V A R \cup C O N \cup P A R \cup \mathbf{Q} \cup \mathbf{P} \cup \mathbf{F} \cup \mathbf{C}
$$

where
VAR is set of predicate variables
$C O N$ is a set of propositional connectives
PAR is a set of parenthesis
Q is a set of quantifiers
P is a set of predicate symbols
F i a set of functions symbols, and
C is a set of constant symbols
We assume that all of the sets defining the alphabet are disjoint

Alphabet Components

The component of the alphabet \mathcal{A} are defined as follows Variables
We assume that we always have a countably infinite set VAR of variables, i.e. we assume that

$$
\operatorname{card} V A R=\aleph_{0}
$$

We denote variables by x, y, z, \ldots, with indices, if necessary. we often express it by writing

$$
\operatorname{VAR}=\left\{x_{1}, x_{2}, \ldots .\right\}
$$

Alphabet Components

Propositional Connectives

We define the set of propositional connectives CON in the same way as in the propositional case
The set CON is a finite and non-empty and

$$
C O N=C_{1} \cup C_{2}
$$

where C_{1}, C_{2} are the sets of one and two arguments connectives, respectively

Parenthesis

As in the propositional case, we adopt the signs (and) for our parenthesis., i.e. we define a set PAR as

$$
P A R=\{(,)\}
$$

Alphabet Components

The set of propositional connectives CON defines a propositional part of the predicate language

What really differs one predicate language from the other is the choice of the following additional symbols

These are quantifiers symbols, predicate symbols, function symbols, and constant symbols

A particular predicate language is determined by specifying the following sets of symbols of the alphabet

Alphabet Components

Quantifiers

We adopt two quantifiers; universal quantifier denoted by \forall and existential quantifier denoted by \exists

We have the following set of quantifiers

$$
\mathbf{Q}=\{\forall, \exists\}
$$

Alphabet Components

In a case of the classical logic and the logics that extend it, it is possible to adopt only one quantifier and to define the other in terms of it and propositional connectives

Such definability of quantifiers is impossible in a case of some non-classical logics, for example for the intuitionistic logic

But even in the case of classical logic we often adopt the two quantifiers as they express better the intuitive understanding of formulas

Alphabet Components

Predicate symbols

Predicate symbols represent relations
Any predicate language contains a non empty, finite or countably infinite set

$$
\mathbf{P}
$$

of predicate symbols. We denote predicate symbols by

$$
P, Q, R, \ldots
$$

with indices, if necessary
Each predicate symbol $P \in \mathrm{P}$ has a positive integer \#P assigned to it
When $\# P=n$ we call P an n-ary (n - place) predicate symbol

Alphabet Components

Function symbols

Function symbols represent functions
Any predicate language contains a finite (may be empty) or countably infinite set

$$
F
$$

of function symbols. We denote functional symbols by

$$
f, g, h, \ldots
$$

with indices, if necessary
When $F=\emptyset$ we say that we deal with a language without functional symbols
Each function symbol $f \in \mathbf{F}$ has a positive integer $\# f$ assigned to it
if $\# f=n$ then f is called an n-ary (n - place) function symbol

Alphabet Components

Constant symbols

Any predicate language contains a finite (may be empty) or countably infinite set
C
of constant symbols
The elements of C are denoted by

$$
c, d, e, \ldots
$$

with indices, if necessary
When the set C is empty we say that we deal with a language without constant symbols

Sometimes the constant symbols are defined as 0-ary function symbols i.e. $\mathbf{C} \subseteq$ F
We single them out as a separate set for our convenience

Predicate Language

Given an alphabet

$$
\mathcal{A}=V A R \cup C O N \cup P A R \cup \mathbf{Q} \cup \mathbf{P} \cup \mathbf{F} \cup \mathbf{C}
$$

What distinguishes one predicate language

$$
\mathcal{L}=(\mathcal{A}, \mathbf{T}, \mathcal{F})
$$

from the other is the choice of the components CON and the sets $\mathrm{P}, \mathrm{F}, \mathrm{C}$ of its alphabet \mathcal{A}
We hence will write

$$
\mathcal{L}_{\operatorname{CON}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

to denote the predicate language \mathcal{L} determined by $\mathrm{P}, \mathrm{F}, \mathrm{C}$ and the set of propositional connectives CON

Predicate Language Notation

Once the set CON of propositional connectives is fixed, the predicate language

$$
\mathcal{L}_{\operatorname{CON}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

is determined by the sets P, F and C
We write

$$
\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

for the predicate language \mathcal{L} determined by P, F, C (with a fixed set of propositional connectives)
If there is no danger of confusion, we may abbreviate $\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ to just \mathcal{L}

Predicate Languages Notation

We sometimes allow the same symbol to be used as an n-place predicate symbol, and also as an m-place one
No confusion should arise because the different uses can be told apart easily

Example

If we write $P(x, y)$, the symbol P denotes 2-argument predicate symbol
If we write $P(x, y, z)$, the symbol P denotes 3-argument predicate symbol
Similarly for function symbols

Predicate Language

Having defined the basic element of syntax, the alphabet \mathcal{A}, we can now complete the formal definition of the predicate language

$$
\mathcal{L}=(\mathcal{A}, \mathbf{T}, \mathcal{F})
$$

by defining next two more complex components:
the set T of all terms and
the set \mathcal{F} of all well formed formulas of the language $\mathcal{L}=\mathcal{L}_{\operatorname{CON}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$

Set of Terms

Terms

The set \mathbf{T} of terms of the predicate language $\mathcal{L}(P, F, C)$ is the smallest set

$$
\mathbf{T} \subseteq \mathcal{A}^{*}
$$

meeting the conditions:

1. any variable is a term, i.e. $V A R \subseteq T$
2. any constant symbol is a term, i.e. $\mathbf{C} \subseteq \mathbf{T}$
3. if f is an n-place function symbol, i.e. $f \in \mathbf{F}$ and $\# f=n$ and $t_{1}, t_{2}, \ldots, t_{n} \in T$, then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbf{T}$

Terms Examples

Example 1

Let $f \in \mathbf{F}, \# f=1$, i.e. f is a 1-place function symbol Let x, y be variables, c, d be constants, i.e.

$$
x, y \in V A R \quad \text { and } \quad c, d \in \mathbf{C}
$$

Then the following expressions are terms:

$$
\begin{gathered}
x, \quad y, \quad f(x), \quad f(y), \quad f(c), \quad f(d), \ldots \\
f(f(x)), \quad f(f(y)), \quad f(f(c)), \quad f(f(d)), \ldots \\
f(f(f(x))), \quad f(f(f(y))), \quad f(f(f(c))), \quad f(f(f(d))), \ldots
\end{gathered}
$$

Terms Examples

Example 2

Let $\mathbf{F}=\emptyset, \mathbf{C}=\emptyset$
In this case terms consists of variables only, i.e.

$$
\mathbf{T}=V A R=\left\{x_{1}, x_{2}, \ldots .\right\}
$$

Directly from the Example 2 we get the following

Remark

For any predicate language $\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$, the set \mathbf{T} of its terms is always non-empty

Terms Examples

Example 3

Consider a case of $\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ where

$$
\mathbf{F}=\{f, g\} \quad \text { for } \quad \# f=1 \text { and } \# g=2
$$

Let $x, y \in V A R$ and $c, d \in \mathbf{C}$
Some of the terms are the following:

$$
\begin{gathered}
f(g(x, y)), \quad f(g(c, x)), \quad g(f(f(c)), g(x, y)), \\
g(c, g(x, f(c))), \quad g(f(g(x, y)), g(x, f(c))), \ldots
\end{gathered}
$$

Terms Notation

From time to time, the logicians are and so we may be also informal about the way we write terms

Example

If we denote a 2- place function symbol g by + , we may write

$$
x+y \text { instead of writing } \quad+(x, y)
$$

Because in this case we can think of $x+y$ as an unofficial way of designating the "real" term $g(x, y)$

Atomic Formulas

Atomic Formulas

Before we define formally the set \mathcal{F} of formulas, we need to define one more set, namely the set of atomic, or elementary formulas

Atomic formulas are the simplest formulas

They building blocks for other formulas the way the propositional variables were in the case of propositional languages

Atomic Formulas

Definition

An atomic formula of a predicate language $\mathcal{L}(P, F, C)$ is any element of \mathcal{A}^{*} of the form

$$
R\left(t_{1}, t_{2}, \ldots, t_{n}\right)
$$

where $R \in \mathbf{P}, \quad \# R=n$ and $t_{1}, t_{2}, \ldots, t_{n} \in \mathbf{T}$
I.e. R is n-ary predicate (relational) symbol and $t_{1}, t_{2}, \ldots, t_{n}$ are any terms
The set of all atomic formulas is denoted by $A \mathcal{F}$ and is defined as

$$
A \mathcal{F}=\left\{R\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathcal{A}^{*}: \quad R \in \mathbf{P}, t_{1}, t_{2}, \ldots, t_{n} \in \mathbf{T}, n \geq 1\right\}
$$

Atomic Formulas Examples

Example

Consider a language

$$
\mathcal{L}=\mathcal{L}(\{P\}, \emptyset, \emptyset) \quad \text { for } \quad \# P=1
$$

\mathcal{L} is a predicate language without neither functional, nor constant symbols, and with only one, 1-place predicate symbol P

The set $A \mathcal{F}$ of atomic formulas contains all formulas of the form $P(x)$, for x any variable, i.e.

$$
A \mathcal{F}=\{P(x): x \in V A R\}
$$

Atomic Formulas Examples

Example

Let now consider a predicate language

$$
\mathcal{L}=\mathcal{L}(\{R\},\{f, g\}, \quad\{c, d\})
$$

for $\# f=1, \# g=2, \# R=2$
The language \mathcal{L} has two functional symbols: 1-place symbol f and 2 -place symbol g, one 2-place predicate symbol R, and two constants: c, d
Some of the atomic formulas in this case are the following.

$$
\begin{gathered}
R(c, d), \quad R(x, f(c)), \quad R((g(x, y)), f(g(c, x))), \\
R(y, g(c, g(x, f(d)))) \ldots .
\end{gathered}
$$

Set of Formulas Definition

Set \mathcal{F} of Formulas

Given a predicate language

$$
\mathcal{L}=\mathcal{L}_{\text {CON }}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

where CON is non-empty, finite set of propositional connectives such that $C O N=C_{1} \cup C_{2}$ for C_{1} a finite set (possibly empty) of unary connectives, C_{2} a finite set (possibly empty) of binary connectives of the language \mathcal{L}

We define the set \mathcal{F} of all well formed formulas of the predicate language $\mathcal{L}=\mathcal{L}_{\text {CON }}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ as follows

Set of Formulas Definition

Definition

The set \mathcal{F} of all well formed formulas, of the language $\mathcal{L}=\mathcal{L}_{\text {CON }}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ is the smallest set meeting the following conditions

1. Any atomic formula of \mathcal{L} is a formula, i.e.

$$
A \mathcal{F} \subseteq \mathcal{F}
$$

2. If A is a formula of \mathcal{L}, ∇ is an one argument propositional connective, then ∇A is a formula of \mathcal{L}, i.e. the following recursive condition holds

$$
\text { if } A \in \mathcal{F}, \nabla \in C_{1} \text { then } \nabla A \in \mathcal{F}
$$

Set of Formulas Definition

3. If A, B are formulas of \mathcal{L} and \circ is a two argument propositional connective, then $(A \circ B)$ is a formula of \mathcal{L}, i.e. the following recursive condition holds

$$
\text { If } A \in \mathcal{F}, \nabla \in C_{2} \text {, then }(A \circ B) \in \mathcal{F}
$$

4. If A is a formula of \mathcal{L} and x is a variable, $\forall, \exists \in \mathbf{Q}$, then
$\forall x A, \exists x A$ are formulas of \mathcal{L}, i.e. the following recursive condition holds

$$
\text { If } A \in \mathcal{F}, x \in V A R, \quad \forall, \exists \in \mathbf{Q}, \quad \text { then } \forall x A, \exists x A \in \mathcal{F}
$$

Scope of Quantifiers

Scope of Quantifiers

Another important notion of the predicate language is the notion of scope of a quantifier

Definition

Given formulas

$$
\forall x A, \quad \exists x A
$$

The formula A is said to be in the scope of a quantifier \forall, \exists, respectively.

Scope of Quantifiers

Example

Let \mathcal{L} be a language of the previous Example with the set of connectives $\{\cap, \cup, \Rightarrow, \neg\}$, i.e.

$$
\mathcal{L}=\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}(\{f, g\},\{R\},\{c, d\})
$$

for $\# f=1, \quad \# g=2, \quad \# R=2$
Some of the formulas of \mathcal{L} are the following.

$$
\begin{gathered}
R(c, d), \quad \exists y R(y, f(c)), \quad \neg R(x, y), \\
(\exists x R(x, f(c)) \Rightarrow \neg R(x, y)), \quad(R(c, d) \cap \forall z R(z, f(c))), \\
\forall y R(y, g(c, g(x, f(c)))), \quad \forall y \neg \exists x R(x, y)
\end{gathered}
$$

Scope of Quantifiers

The formula $R(x, f(c))$ is in scope of the quantifier \exists in the formula

$$
\exists x R(x, f(c))
$$

The formula $\quad(\exists x R(x, f(c)) \Rightarrow \neg R(x, y)) \quad$ is not in scope of any quantifier

The formula $(\exists x R(x, f(c)) \Rightarrow \neg R(x, y))$ is in scope of quantifier \forall in the formula

$$
\forall y(\exists x R(x, f(c)) \Rightarrow \neg R(x, y))
$$

Scope of Quantifiers

Example

Let \mathcal{L} be a first order language of some modal logic defined as follow

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}}(\{R\},\{f, g\},\{c, d\},)
$$

where

$$
\# f=1, \quad \# g=2, \quad \# R=2
$$

Some of the formulas of \mathcal{L} are the following.

$$
\begin{gathered}
\diamond \neg R(c, f(d)), \quad \diamond \exists x \square R(x, f(c)), \quad \neg \diamond R(x, y), \\
\forall z(\exists x R(x, f(c)) \Rightarrow \neg R(x, y)), \\
(R(c, d) \cap \exists x R(x, f(c))), \quad \forall y \square R(y, g(c, g(x, f(c)))), \\
\square \forall y \neg \diamond \exists x R(x, y)
\end{gathered}
$$

Scope of Quantifiers

The formula $\square R(x, f(c))$ is in the scope of the quantifier \exists in $\diamond \exists x \square R(x, f(c))$

The formula $(\exists x R(x, f(c)) \Rightarrow \neg R(x, y))$ is not in a scope of any quantifier

The formula $(\exists x R(x, f(c)) \Rightarrow \neg R(x, y))$ is in the scope of the quantifier \forall in $\forall z(\exists x R(x, f(c)) \Rightarrow \neg R(x, y))$

Formula $\neg \diamond \exists x R(x, y)$ is in the scope of the quantifier \forall in $\square \forall y \neg \diamond \exists x R(x, y)$

Free and Bound Variables

Given a predicate language $\mathcal{L}=(\mathcal{A}, T, \mathcal{F})$
We want to distinguish between formulas like

$$
P(x, y), \quad \forall x P(x, y) \quad \text { and } \quad \forall x \exists y P(x, y)
$$

This is done by introducing the notion of free and bound variables as well as the notion of open and closed formulas (sentences)

Before we formulate proper definitions, here are some simple observations

Free and Bound Variables

1. Some formulas are without quantifiers

For example formulas

$$
R\left(c_{1}, c_{2}\right), \quad R(x, y), \quad(R(y, d) \Rightarrow R(a, z))
$$

Variables x, y in $R(x, y)$ are called free variables

The variables y in $R(y, d)$, and z in $R(a, z)$ are also free

A formula without quantifiers is called an open formula

Free and Bound Variables

2. Quantifiers bind variables within formulas

In the formula

$$
\forall y P(x, y)
$$

the variable x is free, the variable y is bounded by the the quantifier \forall

In the formula

$$
\forall z P(x, y)
$$

both x and y are free
In both formulas

$$
\forall z P(z, y), \quad \forall x P(x, y)
$$

only the variable y is free

Free and Bound Variables

3. The formula $\exists x \forall y R(x, y)$ does not contain any free variables, neither does the formula $R\left(c_{1}, c_{2}\right)$

A formula without any free variables is called called a closed formula or a sentence

The formula

$$
\forall x(P(x) \Rightarrow \exists y Q(x, y))
$$

is a closed formula (sentence), the formula

$$
(\forall x P(x) \Rightarrow \exists y Q(x, y))
$$

is not a sentence

Free and Bound Variables

Sometimes in order to distinguish more easily which variable is free and which is bound in the formula we might use the bold face type for the quantifier bound variables and write the formulas as follows

$$
\begin{gathered}
(\forall \mathbf{x} Q(\mathbf{x}, y), \quad \exists \mathbf{y} P(\mathbf{y}), \quad \forall \mathbf{y} R(\mathbf{y}, g(c, g(x, f(c)))), \\
(\forall \mathbf{x} P(\mathbf{x}) \Rightarrow \exists \mathbf{y} Q(x, \mathbf{y})), \quad(\forall \mathbf{x}(P(\mathbf{x}) \Rightarrow \exists \mathbf{y} Q(\mathbf{x}, \mathbf{y})))
\end{gathered}
$$

Observe that the formulas

$$
\exists \mathbf{y} P(\mathbf{y}),(\forall \mathbf{x}(P(\mathbf{x}) \Rightarrow \exists \mathbf{y} Q(\mathbf{x}, \mathbf{y})))
$$

are sentences

Free and Bound Variables Formal Definition

Definition

The set $F V(A)$ of free variables of a formula A is defined by the induction of the degree of the formula as follows

1. If A is an atomic formula, i.e. $A \in A \mathcal{F}$, then $F V(A)$ is just the set of variables appearing in A;
2. for any unary propositional connective, i.e. for any $\nabla \in C_{1}$

$$
F V(\nabla A)=F V(A)
$$

i.e. the free variables of ∇A are the free variables of A;
3. for any binary propositional connective, i.e, for any $\circ \in C_{2}$

$$
F V(A \circ B)=F V(A) \cup F V(B)
$$

i.e. the free variables of $(A \circ B)$ are the free variables of A together with the free variables of B;
4. $F V(\forall x A)=F V(\exists x A)=F V(A)-\{x\}$
i.e. the free variables of $\forall x A$ and $\exists x A$ are the free variables of A, except for x

Important Notation

It is common practice to use the notation

$$
A\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

to indicate that

$$
F V(A) \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

without implying that all of $x_{1}, x_{2}, \ldots, x_{n}$ are actually free in A

This is similar to the practice in algebra of writing $w\left(a_{0}, a_{1}, \ldots, a_{n}\right)=a_{0}+a_{1} x+\ldots . .+a_{n} x^{n}$ for a polynomial w without implying that all of the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ are nonzero

Replacements

Replacing x by t in $A x$
Given a formula $A(x)$ and a term t. We denote by

$$
A(x / t) \text { or simply by } A(t)
$$

the result of replacing all occurrences of the free variable x in A by the term t

When performing the replacement we always assume that none of the variables in t occur as bound variables in A

Replacement

Reminder

When replacing a variable x by a term $t \in \mathbf{T}$ in a formula $A(x)$, we denote the result as

$$
A(t)
$$

We do it under the assumption that none of the variables in t occur as bound variables in A

The assumption that none of the variables in t occur as bound variables in $A(t)$ is essential because otherwise by substituting t on the place of x we would distort the meaning of $A(t)$

Example

Example

Let $t=y$ and $A(x)$ is

$$
\exists y(x \neq y)
$$

i.e. the variable y in t is bound in A

The substitution of $t=y$ for the variable x produces a formula $A(t)$ of the form

$$
\exists y(y \neq y)
$$

which has a different meaning than

$$
\exists y(x \neq y)
$$

Example

Let now $t=z$ and the formula $A(x)$ is

$$
\exists y(x \neq y)
$$

i.e. the variable z in t is not bound in A

The substitution of $t=z$ for the variable x produces a formula $A(t)$ of the form

$$
\exists y(z \neq y)
$$

which express the same meaning as $A(x)$

Special Terms

Here an important notion we will depend on

Definition

Given $A \in \mathcal{F}$ and $t \in \mathbf{T}$
The term t is said to be free for a variable x in a formula A if and only if
no free occurrence of x lies within the scope of any quantifier bounding variables in t

Special Terms

Example

Given formulas

$$
\forall y P(f(x, y), y), \quad \forall y P(f(x, z), y)
$$

The term $t=f(x, y)$ is free for x in $\forall y P(f(x, y), y)$ and $t=f(x, y)$ is not free for y in $\forall y P(f(x, y), y)$ The term

$$
t=f(x, z)
$$

is free for x and z in

$$
\forall y P(f(x, z), y)
$$

Special Terms

Example

Let A be a formula

$$
(\exists x Q(f(x), g(x, z)) \cap P(h(x, y), y))
$$

The term $t_{1}=f(x)$ is not free for x in A

The term $t_{2}=g(x, z)$ is free for z only

Term $t_{3}=h(x, y)$ is free for y only because x occurs as a bound variable in A

Replacemant Definition

Replacement Definition

Given

$$
A(x), \quad A\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{F} \text { and } t, t_{1}, t_{2}, \ldots, t_{n} \in \mathbf{T}
$$

Then

$$
A(x / t), \quad A\left(x_{1} / t_{1}, x_{2} / t_{2}, \ldots, x_{n} / t_{n}\right)
$$

or, more simply just

$$
A(t), A\left(t_{1}, t_{2}, \ldots, t_{n}\right)
$$

denotes the result of replacing all occurrences of the free variables $x, x_{1}, x_{2}, \ldots, x_{n}$, by the terms $t, t, t_{1}, t_{2}, \ldots, t_{n}$, respectively, assuming that $t, t_{1}, t_{2}, \ldots, t_{n}$ are free for all theirs variables in A

Classical Restricted Domain Quantifiers

Restricted Domain Quantifiers

We often use logic symbols, while writing mathematical statements
For example, mathematicians in order to say
"all natural numbers are greater then zero and some integers are equal 1 "
often write it as

$$
x \geq 0, \forall_{x \in N} \text { and } \exists_{y \in Z}, y=1
$$

Some of them, who are more "logic oriented", would also write it as

$$
\forall_{x \in N} x \geq 0 \cap \exists_{y \in z} y=1
$$

or even as

$$
\left(\forall_{x \in N} x \geq 0 \cap \exists_{y \in Z} y=1\right)
$$

Restricted Domain Quantifiers

None of the above symbolic statements are formulas of the predicate language \mathcal{L}

These are mathematical statement written with mathematical and logic symbols

They are written with different degree of "logical precision", the last being, from a logician point of view the most precise

Restricted Domain Quantifiers

Observe that the quantifiers symbols

$$
\forall_{x \in N} \text { and } \exists_{y \in Z}
$$

used in all of the symbolic mathematical statements are not the one used in the predicate language \mathcal{L}

The quantifiers of this type are called quantifiers with restricted domain

Our goal now is to correctly "translate " mathematical and natural language statement into well formed formulas of the predicate language

$$
\mathcal{L}=\mathcal{L}_{\operatorname{CON}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

of the classical predicate logic

Restricted Domain Quantifiers

We say
" formulas of the predicate language \mathcal{L} of the classical predicate logic"
to express the fact that we define all notions for the classical semantics

One can extend these definitions to some non-classical logics, but we describe and will investigate only the classical case

Restricted Domain Quantifiers

We introduce the quantifiers with restricted domain by expressing them within the predicate language $\mathcal{L}_{\{\neg . \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ as follows

Given a classical predicate logic language

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow, \neg\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

The quantifiers

$$
\forall_{A(x)} \quad \text { and } \quad \exists \begin{aligned}
& A(x) \\
&
\end{aligned}
$$

are called quantifiers with restricted domain, or restricted quantifiers, where $A(x) \in \mathcal{F}$ is any formula with any free variable $x \in V A R$

Restricted Domain Quantifiers

Definition

A formula $\forall_{A(x)} B(x)$ is an abbreviation of a formula $\forall x(A(x) \Rightarrow B(x)) \in \mathcal{F}$
We write it symbolically as

$$
(*) \quad \forall_{A(x)} B(x)=\forall x(A(x) \Rightarrow B(x))
$$

A formula $\exists_{A(x)} B(x)$ is an abbreviation of a formula $\exists x(A(x) \cap B(x)) \in \mathcal{F}$
We write it symbolically as

$$
(* *) \quad \exists_{A(x)} B(x)=\exists x(A(x) \cap B(x))
$$

We call $(*)$ and $(* *)$ the transformations rules for restricted quantifiers

Exercise

Exercise

Given the following mathematical statement S written with logical symbols

$$
\left(\forall_{x \in N} x \geq 0 \cap \exists_{y \in Z} y=1\right)
$$

1. Translate the statement S into a proper logical formula A that uses restricted quantifiers
2. Translate the obtained restricted quantifiers formula A into a correct logical formula without restricted domain quantifiers, i.e. into a well formed formula of \mathcal{L}

Translation Steps

Given a mathematical statement S
We proceed to write this and other similar problems translation in a sequence of the following steps
Step 1
We identify basic statements in S i.e. mathematical
statements that involve only relations
They are to be translated into atomic formulas
We identify the relations in the basic statements and choose predicate symbols as their names
We identify all functions and constants (if any) in the basic statements and choose function symbols and constant symbols as their names

Translation Steps

Step 2

We write the basic statements as atomic formulas of \mathcal{L}

Step 3

We re-write the statement S as a logical formula with restricted quantifiers

Step 4

We apply the transformations rules $(*)$ and $(* *)$ for restricted quantifiers to the formula from Step 3

Such obtained formula A of \mathcal{L} is a representation, which we call a translation, of the given mathematical statement S

Exercise Solution

Solution

The mathematical statement S is

$$
\left(\forall_{x \in N} x \geq 0 \cap \exists_{y \in Z} y=1\right)
$$

Step 1 in this particular case is as follows
The basic statements in S are

$$
x \in N, \quad x \geq 0, \quad y \in Z, \quad y=1
$$

The relations are $\in N, \in Z, \geq, \quad=$
We use one argument predicate symbols N, Z for relations $\in N, \in Z$, respectively
We use two argument predicate symbol G for \geq
We use predicate symbol E for $=$
There are no functions
We have two constant symbols c_{1}, c_{2} for numbers 0 and 1 , respectively

Exercise Solution

Step 2

We write $N(x), Z(x)$ for $x \in N, x \in Z$, respectively
We write $G\left(x, c_{1}\right)$ for $x \geq 0$ and $E\left(y, c_{2}\right)$ for $y=1$
Atomic formulas are

$$
N(x), \quad Z(x), \quad G\left(x, c_{1}\right), \quad E\left(y, c_{2}\right)
$$

Step 3

The statement S becomes a restricted quantifiers formula

$$
\left(\forall_{N(x)} G\left(x, c_{1}\right) \cap \exists_{Z(y)} E\left(y, c_{2}\right)\right)
$$

Step 4

A formula $A \in \mathcal{F}$ that is a a translation of S is

$$
\left(\forall x\left(N(x) \Rightarrow G\left(x, c_{1}\right)\right) \cap \exists y\left(Z(y) \cap E\left(y, c_{2}\right)\right)\right)
$$

Exercise Short Solution

Here is a perfectly acceptable short solution

We presented first the long solution in order to explain in detail how one approaches the " translations " problems

This is why we identified the Steps 1-4 needed to be performed when one does the translation

We use the word translation a short cut for saying
"The formula A is a formal predicate language \mathcal{L} representation of the given mathematical statement S"

Exercise Short Solution

Short Solution

The basic statements in S are

$$
x \in N, \quad x \geq 0, \quad y \in Z, \quad y=1
$$

The corresponding atomic formulas of \mathcal{L} are

$$
N(x), \quad Z(x), \quad G\left(x, c_{1}\right), \quad E\left(y, c_{2}\right)
$$

The statement S becomes a restricted quantifiers formula

$$
\left(\forall_{N(x)} G\left(x, c_{1}\right) \cap \exists_{Z(y)} E\left(y, c_{2}\right)\right)
$$

A formula $A \in \mathcal{F}$ that is a a translation of S is

$$
\left(\forall x\left(N(x) \Rightarrow G\left(x, c_{1}\right)\right) \cap \exists y\left(Z(y) \cap E\left(y, c_{2}\right)\right)\right)
$$

