cse541 LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 8a

Chapter 8 Classical Predicate Semantics and Proof Systems

PART 2: Classical Semantics

Classical Semantics

The notion of **predicate tautology** is much more **complicated** then that of the **propositional**

Predicate tautologies are also called **valid** formulas, or **laws of quantifiers** to **distinguish** them from the **propositional** case

The formulas of a predicate language \mathcal{L} have meaning only when an **interpretation** is given for all its symbols

Classical Semantics

We define an **interpretation** I by interpreting predicate and functional symbols as a concrete **relation** and function defined in a certain set $U \neq \emptyset$ Constants symbols are interpreted as **elements** of the set U

The set U is called the **universe** of the interpretation I.

These two items specify a **structure**

 $\mathbf{M} = (U, I)$ for the language $\mathcal{L}_{CON}(\mathbf{P}, \mathbf{F}, \mathbf{C})$

Classical Semantics

The **semantics** for a first order (predicate) language \mathcal{L} in general, and for the first order classical logic in particular, is **defined**, after Tarski (1936), in terms of the **structure M** = [U, I] an **assignment** s of \mathcal{L} a **satisfaction relation** $(M, s) \models A$ between structures, assignments and formulas of \mathcal{L}

The definition of the structure $\mathbf{M} = [U, I]$ and the assignment \mathbf{s} of \mathcal{L} is **common** for different predicate languages and for different semantics and we define them as follows.

Structure Definition

Definition

Given a predicate language

$$\mathcal{L} = \mathcal{L}_{CON}(\mathbf{P}, \mathbf{F}, \mathbf{C})$$

A **structure** for \mathcal{L} is a pair

$$\mathbf{M} = [U, I]$$

where U is a non empty set called a **universe**I is an assignment called an **interpretation** of the language $\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ in the universe U

The structure $\mathbf{M} = [U, I]$ components are defined as follows

Structure Definition

Structure M = [U, I] Components

1. I assigns to any predicate symbol $P \in \mathbf{P}$ a relation P_I defined in the universe U, i.e. for any $P \in \mathbf{P}$, if #P = n, then

$$P_1 \subseteq U^n$$

2. I assigns to any functional symbol $f \in \mathbf{F}$ a function f_I defined in the universe U, i.e. for any $f \in \mathbf{F}$, if #f = n, then

$$f_l: U^n \longrightarrow U$$

3. I assigns to any constant symbol $c \in \mathbb{C}$ an element c_i of the universe, i.e for any $c \in \mathbb{C}$,

$$c_l \in U$$

Structure Example

Example

Let \mathcal{L} be a language with one two-place predicate symbol, two functional symbols: one -place and one two-place, and two constants, i.e.

$$\mathcal{L} = \mathcal{L}(\lbrace R \rbrace, \lbrace f, g \rbrace, \lbrace c, d \rbrace,)$$

where #R = 2, #f = 1, #g = 2, and $c, d \in \mathbb{C}$

We define a **structure** M = [U, I] as follows

We take as the universe the set $U = \{1, 3, 5, 6\}$

The **predicate** R is interpreted as \leq what we write as

$$R_I$$
: \leq

Structure Example

We interpret f as a **function** $f_l: \{1,3,5,6\} \longrightarrow \{1,3,5,6\}$ such that

$$f_l(x) = 5$$
 for all $x \in \{1, 3, 5, 6\}$

We put $g_l: \{1,3,5,6\} \times \{1,3,5,6\} \longrightarrow \{1,3,5,6\}$ such that

$$g_l(x, y) = 1$$
 for all $x \in \{1, 3, 5, 6\}$

The constant c becomes $c_l = 3$, and $d_l = 6$ We write the structure **M** as

$$\mathbf{M} = [\{1, 3, 5, 6\} \le, f_l, g_l, c_l = 3, d_l = 6]$$

Assignment - Interpretation of Variables

Definition

Given a first order language

$$\mathcal{L} = \mathcal{L}(\mathsf{P},\mathsf{F},\mathsf{C})$$

with the set VAR of variables Let $\mathbf{M} = [U, I]$ be a structure for \mathcal{L} with the universe $U \neq \emptyset$ An **assignment of** \mathcal{L} in $\mathbf{M} = [U, I]$ is any function

$$s: VAR \longrightarrow U$$

The assignment s is also called an interpretation of variables VAR of \mathcal{L} in the structure $\mathbf{M} = [U, I]$

Assignment - Interpretation

Let $\mathbf{M} = [U, I]$ be a structure for \mathcal{L} and

$$s: VAR \longrightarrow U$$

be an **assignment** of variables $\overline{\mathsf{VAR}}$ of \mathcal{L} in the structure $\overline{\mathsf{M}}$

Let **T** be the set of all **terms** of \mathcal{L} By definition of terns

$$VAR \subseteq \mathbf{T}$$

We use the interpretation l of the structure $\mathbf{M} = [U, l]$ to **extend** the **assignment** s to the set the set \mathbf{T} of all **terms** of the language \mathcal{L}

Interpretation of Terms

Notation

We denote the **extension** of the assignment s o the set the set T by s_l rather then by s^* as we did before

 s_l associates with each term $t \in T$ an element $s_l(t) \in U$ of the universe of the structure M = [U, I]

We **define** the extension s_l of s by the induction of the length of the term $t \in T$ and call it an **interpretation of terms** of \mathcal{L} in a structure M = [U, I]

Interpretation of Terms

Definition

Given a language $\mathcal{L} = \mathcal{L}(P, F, C)$ and a structure M = [U, I]Let a function

$$s: VAR \longrightarrow U$$

be any assignment of variables VAR of \mathcal{L} in \mathbf{M} We **extend** \mathbf{s} to a function

$$s_l: \mathbf{T} \longrightarrow U$$

called an interpretation of terms of \mathcal{L} in M

Interpretation of Terms

We define the function s_l by induction on the complexity of terms as follows

1. For any $v x \in VAR$,

$$s_l(x) = s(x)$$

2. for any $c \in \mathbb{C}$,

$$s_l(c)=c_l;$$

3. for any $t_1, t_2, \ldots, t_n \in \mathbf{T}, n \geq 1, f \in \mathbf{F}$, such that #f = n

$$s_l(f(t_1, t_2, ..., t_n)) = f_l(s_l(t_1), s_l(t_2), ..., s_l(t_n))$$

Interpretation of Terms Example

Example

Consider a language

$$\mathcal{L} = \mathcal{L}(\{P, R\}, \{f, h\}, \emptyset)$$

for
$$\# P = \# R = 2$$
, $\# f = 1$, $\# h = 2$

Let $\mathbf{M} = [Z, I]$, where Z is the set on integers and the **interpretation** I for elements of \mathbf{F} and \mathbf{C} is as follows $f_I : Z \longrightarrow Z$ is given by formula f(m) = m+1 for all $m \in Z$ $h_I : Z \times Z \longrightarrow Z$ is given by formula f(m, n) = m+n for all $b, m, n \in Z$

Interpretation of Terms Example

Let s be any assignment $s: VAR \longrightarrow Z$ such that s(x) = -5, s(y) = 2 and $t_1, t_2 \in T$ Let $t_1 = h(y, f(x))$ and $t_2 = h(f(x), h(x, f(y)))$ We **evaluate**

$$s_l(t_1) = s_l(h(y, f(x))) = h_l(s_l(y), f_l(s_l(x))) = +(2, f_l(-5)) = 2 - 4 = -2$$

and

$$s_{l}(t_{2}) = s_{l}(h(f(x), h(x, f(y))) = +(f_{l}(-5), +(-5, 3)) = -4 + (-5 + 3) = -6$$

Observation

Given $t \in T$

Let $x_1, x_2, ..., x_n \in VAR$ be all variables appearing in t We write it as

$$t(x_1, x_2, \ldots, x_n)$$

Observation

For any term $t(x_1, x_2, ..., x_n) \in \mathbf{T}$, any structure $\mathbf{M} = [U, I]$ and any assignments s, s' of \mathcal{L} in \mathbf{M} , the following holds If s(x) = s'(x) for all $x \in \{x_1, x_2, ..., x_n\}$, i.e if the assignments s, s' agree on all variables appearing in t, then

$$s_l(t) = s'_l(t)$$

Notation

Thus for any $t \in T$, the function $s_l : T \longrightarrow U$ depends on only a **finite** number of values of s(x) for $x \in VAR$

Notation

Given a structure $\mathbf{M} = [U, I]$ and an assignment $s: VAR \longrightarrow U$ We write

$$s(x)^a$$

to denote any assignment

$$s': VAR \longrightarrow U$$

such that s, s' agree on all variables except on x and such that

$$s'(x) = a$$
 for certain $a \in U$

We introduce now a notion of a **satisfaction relation** $(\mathbf{M}, s) \models A$ that acts between structures, assignments and formulas of \mathcal{L}

It is the **satisfaction relation** that allows us to distinguish **one** semantics for a given \mathcal{L} from the **other**, and consequently **one** logic from the **other**

We define now only a classical satisfaction and the notion of classical predicate **tautology**

Definition

Given a predicate (first order) language $\mathcal{L} = \mathcal{L}(P, F, C)$ Let $\mathbf{M} = [U, I]$ be a structure for \mathcal{L} and $\mathbf{s} : VAR \longrightarrow U$ be any assignment of \mathcal{L} in \mathbf{M} Let $A \in \mathcal{F}$ be any formula of \mathcal{L} We define a **satisfaction relation**

$$(\mathbf{M},s) \models A$$

that reads: "the assignment s satisfies the formula A in M" by induction on the complexity of A as follows

- (i) A is atomic formula
- $(\mathbf{M}, \mathbf{s}) \models P(t_1, \dots, t_n)$ if and only if $(s_l(t_1), \dots, s_l(t_n)) \in P_l$
- (ii) A is not atomic formula and has one of connectives of \mathcal{L} as the main connective
- $(\mathbf{M}, s) \models \neg A$ if and only if $(\mathbf{M}, s) \not\models A$
- $(\mathbf{M}, s) \models (A \cap B)$ if and only if $(\mathbf{M}, s) \models A$ and $(\mathbf{M}, s) \models B$
- $(\mathbf{M}, s) \models (A \cup B)$ if and only if $(\mathbf{M}, s) \models A$ or $(\mathbf{M}, s) \models B$ or both
- $(\mathbf{M}, \mathbf{s}) \models (A \Rightarrow B)$ if and only if ether $(\mathbf{M}, \mathbf{s}) \not\models A$ or else
- $(\mathbf{M}, \mathbf{s}) \models B$ or both

(iii) A is not atomic formula and A begins with one of the quantifiers

 $(\mathbf{M}, s) \models \exists x A$ if and only if **there is** s' such that s, s' agree on all variables except on x, and

$$(\mathbf{M}, s') \models A$$

 $(\mathbf{M}, s) \models \forall x A$ if and only if **for all** s' such that s, s' **agree** on all variables except on x, and

$$(\mathbf{M}, s') \models A$$

Observe that that the **truth** or **falsity** of $(M, s) \models A$ depends only on the values of s(x) for variables x which are actually **free** in the formula A. This is why we often write the condition (iii) as follows

(iii)' A(x) (with a free variable x) is not atomic formula and A begins with one of the quantifiers

 $(\mathbf{M}, s) \models \exists x A(x)$ if and only if **there is** s' such that s(y) = s'(y) such that for all $y \in VAR - \{x\}$,

$$(\mathbf{M}, s') \models A(x)$$

 $(\mathbf{M}, s) \models \forall xA$ if and only if **for all** s' such that s(y) = s'(y) for all $y \in VAR - \{x\}$,

$$(\mathbf{M}, s') \models A(x)$$

Exercise

For the structures M_i , find assignments s_i , s'_i for $1 \le i \le 2$ such that

$$(\mathbf{M}_i, s_i) \models Q(x, c), \text{ and } (\mathbf{M}_i, s'_i) \not\models Q(x, c)$$

where $Q \in \mathbf{P}, c \in \mathbf{C}$

The structures M_i are defined as follows (the interpretation I for each of them is specified only for symbols in the **atomic** formula Q(x, c), and N denotes the set of natural numbers

$$\mathbf{M}_1 = [\{1\}, \ Q_l :=, \ c_l : 1] \ \text{ and } \ \mathbf{M}_2 = [\{1, 2\}, \ Q_l : \le, \ c_l : 1]$$

Solution

Given Q(x,c). Consider

$$\mathbf{M}_1 = [\{1\}, \ Q_I :=, \ c_I : 1]$$

Observe that all assignments

$$s: VAR \longrightarrow \{1\}$$

must be defined by a formula s(x) = 1 for all $x \in VAR$ We evaluate $s_l(x) = 1$, $s_l(c) = c_l = 1$ By definition

$$(\mathbf{M}_1, s) \models Q(x, c)$$
 if and only if $(s_l(x), s_l(c)) \in Q_l$

This means that $(1,1) \in =$ what is **true** as 1=1 We have proved

$$(\mathbf{M}_1, s) \models Q(x, c)$$
 for all assignments $s : VAR \longrightarrow \{1\}$

Given Q(x,c). Consider

$$\mathbf{M}_2 = [\{1, 2\}, \ Q_I : \leq, \ c_I : 1]$$

Let $s: VAR \longrightarrow \{1,2\}$ be any assignment, such that

$$s(x) = 1$$

We evaluate $s_l(x) = 1$, $s_l(c) = 1$ and **verify** whether $(s_l(x), s_l(c)) \in Q_l$ i.e. whether $(1, 1) \in S_l(c)$

This is **true** as $1 \le 1$

We have found s such that

$$(\mathbf{M}_2,s)\models Q(x,c)$$

In fact, have found uncountably many such assignments s

Given Q(x,c) and the structure

$$\mathbf{M}_2 = [\{1,2\}, \ Q_l : \leq, \ c_l : 1]$$

Let now s' we be any assignment

$$s': VAR \longrightarrow \{1,2\}$$
 such that $s'(x) = 2$

We evaluate $s'_{l}(x) = 1$, $s'_{l}(c) = 1$

We verify whether $s'_{l}(x)$, $s'_{l}(c)$) $\in Q_{l}$, i.e. whether $(2,1) \in S$

This is **not true** as 2 ≰ 1

We have **found** $s' \neq s$ such that

$$(\mathbf{M}_2,s')\not\models Q(x,c)$$

In fact, have found uncountably many such assignments s'

Model Definition

Definition

Given a predicate language \mathcal{L} , a formula $A \in \mathcal{F}$, and a structure $\mathbf{M} = [U, I]$ for \mathcal{L}

M is a **model** for the formula A if and only if $(M, s) \models A$ for all $s : VAR \longrightarrow U$

We denote it as

$$\mathbf{M} \models A$$

For any set $\Gamma \subseteq \mathcal{F}$ of formulas of \mathcal{L} ,

M is a **model** for Γ if and only if $\mathbf{M} \models A$ for all $A \in \Gamma$ We denote it as

$$M \models \Gamma$$

Counter Model Definition

Definition

Given a predicate language \mathcal{L} , a formula $A \in \mathcal{F}$, and a structure $\mathbf{M} = [U, I]$ for \mathcal{L}

M is a **counter model** for the formula **A** if and only if **there is** an assignment $s: VAR \longrightarrow U$, such that $(\mathbf{M}, s) \not\models A$ We denote it as

$$\mathbf{M} \not\models A$$

Counter Model Definition

Definition

```
For any set \Gamma \subseteq \mathcal{F} of formulas of \mathcal{L},

M is a counter model for \Gamma if and only if

there is A \in \Gamma, such that \mathbf{M} \not\models A

We denote it as
```

Sentence Model

Observe that if a formula A is a **sentence** then the **truth** or **falsity** of satement

$$(\mathbf{M},s) \models A$$

is completely independent of s

Hence if $(M, s) \models A$ for some s, it holds for all s and the following holds

Fact

For any formula A of \mathcal{L}

If A is a sentence, then if there is an s such that

$$(\mathbf{M},s)\models A$$

then M is a model fo A, i.e.

$$\mathbf{M} \models A$$

Formula Closure

We transform any formula A of \mathcal{L} into a certain sentence by **binding** all its free variables. The resulting sentence is called a **closure** of A and is defined as follows

Definition

Given A of £

By the **closure** of A we mean the formula obtained from A by prefixing in **universal** quantifiers all variables the arefree in A If A **does not** have free variables, i.e. is a **sentence**, the **closure** of A is defined to be A itself

Obviously, a closure of any formula is always a sentence

Formula Closure Example

Example

Let A, B be formulas

$$(P(x_1, x_2) \Rightarrow \neg \exists x_2 \ Q(x_1, x_2, x_3))$$

 $(\forall x_1 P(x_1, x_2) \Rightarrow \neg \exists x_2 \ Q(x_1, x_2, x_3))$

Their respective closures are

$$\forall x_1 \forall x_2 \forall x_3 \ ((P(x_1, x_2) \Rightarrow \neg \exists x_2 \ Q(x_1, x_2, x_3)))$$
$$\forall x_1 \forall x_2 \forall x_3 \ ((\forall x_1 P(x_1, x_2) \Rightarrow \neg \exists x_2 \ Q(x_1, x_2, x_3)))$$

Model, Counter Model Example

Example

Let $Q \in \mathbf{P}$, #Q = 2 and $c \in \mathbf{C}$

Consider formulas

$$Q(x,c)$$
, $\exists x Q(x,c)$, $\forall x Q(x,c)$

and the structures defined as follows.

$$\mathbf{M}_1 = [\{1\}, Q_l :=, c_l : 1] \text{ and } \mathbf{M}_2 = [\{1, 2\}, Q_l :\leq, c_l : 1]$$

Directly from definition and above Fact we get that:

1.
$$\mathbf{M}_1 \models Q(x,c), \quad \mathbf{M}_1 \models \forall x Q(x,c), \quad \mathbf{M}_1 \models \exists x Q(x,c)$$

2.
$$M_2 \not\models Q(x,c)$$
, $M_2 \not\models \forall x Q(x,c)$, $M_2 \models \exists x Q(x,c)$

Model, Counter Model Example

Example

Let $Q \in \mathbf{P}$, #Q = 2 and $c \in \mathbf{C}$

Consider formulas

$$Q(x,c)$$
, $\exists x Q(x,c)$, $\forall x Q(x,c)$

and the structures defined as follows.

$$M_3 = [N, Q_l : \geq, c_l : 0], \text{ and } M_4 = [N, Q_l : \geq, c_l : 1]$$

Directly from definition and above **Fact** we get that:

3.
$$M_3 \models Q(x,c)$$
, $M_3 \models \forall x Q(x,c)$, $M_3 \models \exists x Q(x,c)$

4.
$$M_4 \not\models Q(x,c)$$
, $M_4 \not\models \forall x Q(x,c)$, $M_4 \models \exists x Q(x,c)$

True, False in M

Definition

Given a structure $\mathbf{M} = [U, I]$ for \mathcal{L} and a formula \mathbf{A} of \mathcal{L} A is **true** in \mathbf{M} and is written as

$$\mathbf{M} \models A$$

if and only if **all** assignments s of \mathcal{L} in M satisfy A, i.e. when M is a **model** for A

A is false in M and written as

$$\mathbf{M} = |A|$$

if and only if there is no assignment s of \mathcal{L} in \mathbf{M} that satisfies A

True, False in M

Here are some **properties** of the notions:

1. " A is true in M" written symbolically as

$$\mathbf{M} \models A$$

2. "A is false in M" written symbolically as

$$\mathbf{M} = |A|$$

They are obvious under intuitive understanding of the notion of satisfaction

Their formal proofs are left as an exercise

True, False in M Properties

Properties

Given a structure $\mathbf{M} = [U, I]$ and any formulas formula A, B of \mathcal{L} . The following properties hold

P1. A is false in M if and only if $\neg A$ is true in M, i.e.

 $\mathbf{M} = |A|$ if and only if $\mathbf{M} \models \neg A$

P2. A is **true** in M if and only if $\neg A$ is **false** in M, i.e.

 $\mathbf{M} \models A$ if and only if $\mathbf{M} = |\neg A|$

P3. It is **not** the case that **both** $M \models A$ and $M \models \neg A$, i.e. there **is no** formula A, such that

$$\mathbf{M} \models A$$
 and $\mathbf{M} = |A|$

True, False in M Properties

Properties

P4. If
$$M \models A$$
 and $M \models (A \Rightarrow B)$, then $M \models B$

P5.
$$(A \Rightarrow B)$$
 is **false** in **M** if and only if $M \models A$ and $M \models \neg B$

$$\mathbf{M} = \mid (A \Rightarrow B)$$
 if and only if $\mathbf{M} \models A$ and $\mathbf{M} \models \neg B$

P6.
$$M \models A$$
 if and only if $M \models \forall xA$

P7. A formula A is **true** in M if and only if its closure is **true** in M

Valid, Tautology Definition

Definition

A formula A of \mathcal{L} is a **predicate** tautology (is **valid**) if and only if $\mathbf{M} \models A$ for **all** structures $\mathbf{M} = [U, I]$

We also say

A formula A of \mathcal{L} is a **predicate** tautology (is **valid**) if and only if A is **true** in **all** structures M for \mathcal{L}

We write

 $\models A$ or $\models_{p} A$

to denote that a formula A is predicate tautology (is valid)

Valid, Tautology Definition

We write

$$\models_{p} A$$

when there is a **need** to stress a distinction between **propositional** and **predicate** tautologies otherwise we write

$$\models A$$

Predicate tautologies are also called laws of quantifiers.

Following the notation \mathbf{T} we have established for the \mathbf{set} of all propositional tautologies we denote by \mathbf{T}_p the \mathbf{set} of all predicate tautologies

We put

$$\mathbf{T}_{p} = \{A \text{ of } \mathcal{L} : \models_{p} A\}$$

Not a Tautology, Counter Model

Definition

For any formula $\,{\sf A}\,$ of predicate language $\,{\cal L}\,$ $\,{\sf A}\,$ is not a predicate tautology and denote it by

if and only if there is a structure $\mathbf{M} = [U, I]$ for \mathcal{L} , such that

$$\mathbf{M} \not\models A$$

We call such structure M a counter-model for A

Counter Model

In order to **prove** that a formula A is not a tautology one has to find a **counter-model** for A

It means one has to define the components of a structure $\mathbf{M} = [U, I]$ for \mathcal{L} , i.e.

a non-empty set U, called **universe** and an interpretation I of \mathcal{L} in the universe U

Moreover, one has to define an assignment $s: VAR \longrightarrow U$ and **prove** that that

$$(\mathbf{M},s) \not\models A$$

Contradictions

We introduce now a notion of predicate **contradiction Definition**

For any formula A of \mathcal{L} ,

A is a **predicate contradiction** if and only if

A is false in all structures M

We denote it as = |A| and write symbolically

= | A if and only if M = | A, for **all** structures M

When there is a need to distinguish between propositional and predicate contradictions we also use symbol

$$=|_{\mathcal{D}} A$$

Contradictions

Following the notation C for the set of all propositional **contradictions** we denote by C_p the set of all predicate contradictions, i.e.

$$\mathbf{C}_p = \{A \text{ of } \mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C}) : =|_p A\}$$

Directly from the contradiction definition we have the following duality property charecteristic for classical logic

Fact

For any formula A of a predicate language \mathcal{L} ,

$$A \in \mathbf{T}_p$$
 if and only if $\neg A \in \mathbf{C}_p$

$$A \in \mathbf{C}_p$$
 if and only if $\neg A \in \mathbf{T}_p$

We **prove**, as an example the following **basic** predicate tautology

Fact

For any formula A(x) of \mathcal{L} ,

$$\models (\forall x \ A(x) \Rightarrow \exists x \ A(x))$$

Proof

Assume that $\not\models (\forall x \ A(x) \Rightarrow \exists x \ A(x))$ It means that there is a structure

$$\mathbf{M} = [U, I]$$
 and $s : VAR \longrightarrow U$, such that $(\mathbf{M}, s) \not\models (\forall x \ A(x) \Rightarrow \exists x \ A(x))$

Observe that $(\mathbf{M}, s) \not\models (\forall x \ A(x) \Rightarrow \exists x \ A(x))$ is equivalent to

$$(\mathbf{M}, s) \not\models \forall x \ A(x) \ \text{ and } \ (\mathbf{M}, s) \not\models \exists x \ A(x)$$

By definition, $(\mathbf{M}, s) \not\models \forall x \ A(x)$ means that $(\mathbf{M}, s') \models A(x)$ for **all** s' such that s, s' agree on all variables except on x

At the same time $(\mathbf{M}, s) \not\models \exists x \ A(x)$ means that it is **not true** that **there is** s' such that s, s' agree on all variables except on x, and $(\mathbf{M}, s') \models A(x)$. This **contradiction** proves

$$\models (\forall x \ A(x) \Rightarrow \exists x \ A(x))$$

Disapproving Predicate Tautologies

We show now, as an example of a **counter model** construction that the converse implication to

$$\models (\forall x \ A(x) \Rightarrow \exists x \ A(x))$$

is not a predicate tautology i.e. the following holds **Fact**

There is a formula A of \mathcal{L} , such that

$$\not\models (\exists x \ A(x) \Rightarrow \forall x \ A(x))$$

Proof

Observe that to prove the **Fact** we have to provide an example of an instance of a formula A(x) and construct a **counter model** M = [U, I] for it



Let A(x) be an **atomic** formula

$$P(x,c)$$
 for any $P \in \mathbf{P}$, $\#P = 2$

The needed instance is a formula

$$(\exists x \ P(x,c) \Rightarrow \forall x \ P(x,c))$$

We take as its counter model a structure

$$\mathbf{M} = [N, P_1 : <, c_1 : 3]$$

where N is set of natural numbers. We want to show

$$\mathbf{M} \not\models (\exists x \ P(x,c) \Rightarrow \forall x \ P(x,c))$$

It means we have to define an assignment s such that $s: VAR \longrightarrow N$ and

$$(\mathbf{M}, s) \not\models (\exists x P(x, c) \Rightarrow \forall x P(x, c))$$

Let s be any assignment $s: VAR \longrightarrow N$ We show now

$$(\mathbf{M},s) \models \exists x \ P(x,c)$$

Take any s' such that

$$s'(x) = 2$$
 and $s'(y) = s(y)$ for all $y \in VAR - \{x\}$

We have $(2,3) \in P_l$, as 2 < 3

Hence we proved that **there exists** s' that agrees with s on all variables except on x and

$$(\mathbf{M}, s') \models P(x, c)$$

But at the same time

$$(\mathbf{M}, s) \not\models \forall x P(x, c)$$

as for example for s' such that

$$s'(x) = 5$$
 and $s'(y) = s(y)$ for all $y \in VAR - \{x\}$

We have that $(2,3) \notin P_l$, as $5 \nleq 3$ This proves that the structure

$$\mathbf{M} = [N, P_l : <, c_l : 3]$$

is a **counter model** for $\forall x P(x, c)$ Hence we proved that

$$\not\models (\exists x \ A(x) \Rightarrow \forall x \ A(x))$$

Short Hand Solution of

$$\not\models (\exists x \ P(x,c) \Rightarrow \forall x \ P(x,c))$$

We take as its counter model a structure

$$\mathbf{M} = [N, P_1 : <, c_1 : 3]$$

where N is set of natural numbers
The formula

$$(\exists x \ P(x,c) \Rightarrow \forall x \ P(x,c))$$

becomes in $\mathbf{M} = (N, P_l : <, c_l : 3)$ a mathematical statement (written with logical symbols):

$$\exists n \ n < 3 \Rightarrow \forall n \ n < 3$$

It is an obviously **false** statement in the set N of natural numbers, as there is $n \in N$, such that n < 3, for example n = 2, and it is **not true** that all natural numbers are smaller then 3

