cse541
 LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 8a

Chapter 8
 Classical Predicate Semantics and Proof Systems

PART 2: Classical Semantics

Classical Semantics

The notion of predicate tautology is much more complicated then that of the propositional

Predicate tautologies are also called valid formulas, or laws of quantifiers to distinguish them from the propositional case

The formulas of a predicate language \mathcal{L} have meaning only when an interpretation is given for all its symbols

Classical Semantics

We define an interpretation / by interpreting
predicate and functional symbols as a concrete relation and function defined in a certain set $U \neq \emptyset$

Constants symbols are interpreted as elements of the set U

The set U is called the universe of the interpretation I
These two items specify a structure

$$
\mathbf{M}=(U, I) \quad \text { for the language } \quad \mathcal{L}_{\operatorname{CON}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

Classical Semantics

The semantics for a first order (predicate) language \mathcal{L} in general, and for the first order classical logic in particular, is defined, after Tarski (1936), in terms of
the structure $\mathbf{M}=[U, I]$
an assignment s of \mathcal{L}
a satisfaction relation $(\mathbf{M}, s) \models A$ between structures, assignments and formulas of \mathcal{L}

The definition of the structure $\mathbf{M}=[U, I]$ and the assignment s of \mathcal{L} is common for different predicate languages and for different semantics and we define them as follows.

Structure Definition

Definition

Given a predicate language

$$
\mathcal{L}=\mathcal{L}_{\operatorname{CON}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

A structure for \mathcal{L} is a pair

$$
\mathbf{M}=[U, I]
$$

where U is a non empty set called a universe
I is an assignment called an interpretation of the language $\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ in the universe U

The structure $\mathbf{M}=[U, I]$ components are defined as follows

Structure Definition

Structure M = [U,I] Components

1. I assigns to any predicate symbol $P \in \mathbf{P}$ a relation P_{I} defined in the universe U, i.e. for any $P \in \mathbf{P}$, if $\# P=n$, then

$$
P_{l} \subseteq U^{n}
$$

2. I assigns to any functional symbol $f \in \mathbf{F}$ a function f_{l} defined in the universe U, i.e. for any $f \in \mathbf{F}$, if $\# f=n$, then

$$
f_{1}: U^{n} \longrightarrow U
$$

3. I assigns to any constant symbol $c \in \mathbf{C}$ an element c_{l} of the universe, i.e for any $c \in \mathbf{C}$,

$$
c_{l} \in U
$$

Structure Example

Example

Let \mathcal{L} be a language with one two-place predicate symbol, two functional symbols: one -place and one two-place, and two constants, i.e.

$$
\mathcal{L}=\mathcal{L}(\{R\},\{f, g\},\{c, d\},)
$$

where $\# R=2, \# f=1, \# g=2$, and $c, d \in \mathbf{C}$
We define a structure $\mathbf{M}=[\mathrm{U}, \mathrm{I}]$ as follows
We take as the universe the set $U=\{1,3,5,6\}$
The predicate R is interpreted as \leq what we write as
$R_{I}: \leq$

Structure Example

We interpret f as a function $f_{l}:\{1,3,5,6\} \longrightarrow\{1,3,5,6\}$ such that

$$
f_{l}(x)=5 \text { for all } \quad x \in\{1,3,5,6\}
$$

We put $g_{I}:\{1,3,5,6\} \times\{1,3,5,6\} \longrightarrow\{1,3,5,6\}$ such that

$$
g_{l}(x, y)=1 \quad \text { for all } \quad x \in\{1,3,5,6\}
$$

The constant c becomes $c_{l}=3$, and $d_{l}=6$
We write the structure M as

$$
\mathbf{M}=\left[\{1,3,5,6\} \leq, \quad f_{l}, \quad g_{l}, \quad c_{l}=3, \quad d_{l}=6\right]
$$

Assignment - Interpretation of Variables

Definition

Given a first order language

$$
\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

with the set VAR of variables
Let $\mathbf{M}=[U, I]$ be a structure for \mathcal{L} with the universe $U \neq \emptyset$
An assignment of \mathcal{L} in $M=[U, I]$ is any function

$$
s: V A R \longrightarrow U
$$

The assignment s is also called an interpretation of variables $V A R$ of \mathcal{L} in the structure $\mathbf{M}=[U, I]$

Assignment - Interpretation

Let $\mathbf{M}=[U, I]$ be a structure for \mathcal{L} and

$$
s: V A R \longrightarrow U
$$

be an assignment of variables VAR of \mathcal{L} in the structure \mathbf{M}

Let T be the set of all terms of \mathcal{L}
By definition of terns

$$
V A R \subseteq \mathbf{T}
$$

We use the interpretation I of the structure $\mathbf{M}=[U, I]$ to extend the assignment s to the set the set T of all terms of the language \mathcal{L}

Interpretation of Terms

Notation

We denote the extension of the assignment s o the set the set T by $s_{\text {/ }}$ rather then by s^{*} as we did before
s_{l} associates with each term $t \in \mathbf{T}$ an element $s_{l}(t) \in U$ of the universe of the structure $\mathbf{M}=[U, I]$

We define the extension $s_{\text {I }}$ of s by the induction of the length of the term $t \in \mathbf{T}$ and call it an interpretation of terms of \mathcal{L} in a structure $\mathbf{M}=[U, I]$

Interpretation of Terms

Definition

Given a language $\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ and a structure $\mathbf{M}=[U, I]$
Let a function

$$
s: V A R \longrightarrow U
$$

be any assignment of variables VAR of \mathcal{L} in M
We extend s to a function

$$
s_{l}: \mathbf{T} \longrightarrow U
$$

called an interpretation of terms of \mathcal{L} in \mathbf{M}

Interpretation of Terms

We define the function s_{l} by induction on the complexity of terms as follows

1. For any $v x \in V A R$,

$$
s_{l}(x)=s(x)
$$

2. for any $c \in \mathbf{C}$,

$$
s_{l}(c)=c_{l} ;
$$

3. for any $t_{1}, t_{2}, \ldots, t_{n} \in \mathbf{T}, n \geq 1, f \in \mathbf{F}$, such that $\# f=n$

$$
s_{l}\left(f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)=f_{l}\left(s_{l}\left(t_{1}\right), s_{l}\left(t_{2}\right), \ldots, s_{l}\left(t_{n}\right)\right)
$$

Interpretation of Terms Example

Example

Consider a language

$$
\mathcal{L}=\mathcal{L}(\{P, R\},\{f, h\}, \emptyset
$$

for $\# P=\# R=2, \quad \# f=1, \quad \# h=2$

Let $\mathbf{M}=[Z, I]$, where Z is the set on integers and the interpretation / for elements of \mathbf{F} and C is as follows $f_{l}: Z \longrightarrow Z$ is given by formula $f(m)=m+1$ for all $m \in Z$ $h_{1}: Z \times Z \longrightarrow Z$ is given by formula $f(m, n)=m+n$ for all b $m, n \in Z$

Interpretation of Terms Example

Let s be any assignment $s: V A R \longrightarrow Z$ such that
$s(x)=-5, \quad s(y)=2$ and $t_{1}, t_{2} \in \mathbf{T}$
Let $t_{1}=h(y, f(x)) \quad$ and $\quad t_{2}=h(f(x), h(x, f(y))$
We evaluate

$$
\begin{gathered}
s_{l}\left(t_{1}\right)=s_{l}\left(h(y, f(x))=h_{l}\left(s_{l}(y), f_{l}\left(s_{l}(x)\right)\right)=\right. \\
+\left(2, f_{l}(-5)\right)=2-4=-2
\end{gathered}
$$

and

$$
\begin{gathered}
s_{l}\left(t_{2}\right)=s_{l}(h(f(x), h(x, f(y)))= \\
+\left(f_{l}(-5),+(-5,3)\right)=-4+(-5+3)=-6
\end{gathered}
$$

Observation

Given $t \in \mathbf{T}$

Let $x_{1}, x_{2}, \ldots, x_{n} \in V A R$ be all variables appearing in t
We write it as

$$
t\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Observation

For any term $t\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{T}$, any structure $\mathbf{M}=[U, I]$ and any assignments s, s^{\prime} of \mathcal{L} in \mathbf{M}, the following holds If $s(x)=s^{\prime}(x)$ for all $x \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, i.e if the assignments s, s^{\prime} agree on all variables appearing in t, then

$$
s_{l}(t)=s^{\prime}(t)
$$

Notation

Thus for any $t \in \mathbf{T}$, the function $s_{l}: \mathbf{T} \longrightarrow U$ depends on only a finite number of values of $s(x)$ for $x \in V A R$

Notation

Given a structure $\mathbf{M}=[U, I]$ and an assignment
$s: V A R \longrightarrow U$ We write

$$
s\binom{a}{x}
$$

to denote any assignment

$$
s^{\prime}: V A R \longrightarrow U
$$

such that s, s^{\prime} agree on all variables except on x and such that

$$
s^{\prime}(x)=a \quad \text { for certain } a \in U
$$

Classical Satisfaction

We introduce now a notion of a satisfaction relation
$(\mathbf{M}, s) \models A$ that acts between structures, assignments and formulas of \mathcal{L}

It is the satisfaction relation that allows us to distinguish one semantics for a given \mathcal{L} from the other, and consequently one logic from the other

We define now only a classical satisfaction and the notion of classical predicate tautology

Classical Satisfaction

Definition

Given a predicate (first order) language $\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$
Let $\mathbf{M}=[U, I]$ be a structure for \mathcal{L} and
$s: V A R \longrightarrow U$ be any assignment of \mathcal{L} in \mathbf{M}
Let $A \in \mathcal{F}$ be any formula of \mathcal{L}
We define a satisfaction relation

$$
(\mathbf{M}, s) \models A
$$

that reads: " the assignment s satisfies the formula A in \mathbf{M} " by induction on the complexity of A as follows

Classical Satisfaction

(i) A is atomic formula
($\mathbf{M}, s) \models P\left(t_{1}, \ldots, t_{n}\right)$ if and only if $\left(s_{l}\left(t_{1}\right), \ldots, s_{l}\left(t_{n}\right)\right) \in P_{l}$
(ii) A is not atomic formula and has one of connectives of \mathcal{L} as the main connective
$(\mathrm{M}, \mathrm{s}) \models \neg A$ if and only if $(\mathrm{M}, s) \not \models A$
$(\mathbf{M}, s) \models(A \cap B)$ if and only if $(\mathbf{M}, s) \models A$ and $(\mathbf{M}, s) \models B$ $(\mathbf{M}, s) \models(A \cup B)$ if and only if $(\mathbf{M}, s) \models A$ or $(\mathbf{M}, s) \models B$ or both
$(\mathbf{M}, s) \vDash(A \Rightarrow B)$ if and only if ether $(M, s) \notin A$ or else
$(\mathbf{M}, s) \models B$ or both

Classical Satisfaction

(iii) A is not atomic formula and A begins with one of the quantifiers
$(\mathbf{M}, s) \models \exists x A$ if and only if there is s^{\prime} such that s, s^{\prime} agree on all variables except on x, and

$$
\left(\mathbf{M}, s^{\prime}\right) \models A
$$

$(\mathbf{M}, s) \models \forall x A \quad$ if and only if for all s^{\prime} such that s, s^{\prime} agree on all variables except on x, and

$$
\left(\mathbf{M}, s^{\prime}\right) \models A
$$

Classical Satisfaction

Observe that that the truth or falsity of $(\mathbf{M}, s) \models A$ depends only on the values of $s(x)$ for variables x which are actually free in the formula A. This is why we often write the condition (iii) as follows
(iii)' $A(x)$ (with a free variable x) is not atomic formula and A begins with one of the quantifiers
$(\mathbf{M}, s) \models \exists x A(x)$ if and only if there is s^{\prime} such that $s(y)=s^{\prime}(y)$ such that for all $y \in \operatorname{VAR}-\{x\}$,

$$
\left(\mathbf{M}, s^{\prime}\right) \models A(x)
$$

$(\mathbf{M}, s) \models \forall x A$ if and only if for all such that $s(y)=s^{\prime}(y)$ for all $y \in \operatorname{VAR}-\{x\}$,

$$
\left(\mathbf{M}, s^{\prime}\right) \models A(x)
$$

Satisfaction Relation Exercise

Exercise

For the structures \mathbf{M}_{i}, find assignments $s_{i}, s^{\prime}{ }_{i}$ for $1 \leq i \leq 2$ such that

$$
\left(\mathbf{M}_{i}, s_{i}\right) \models Q(x, c), \quad \text { and } \quad\left(\mathbf{M}_{i}, s^{\prime}{ }_{i}\right) \not \models Q(x, c)
$$

where $Q \in \mathbf{P}, c \in \mathbf{C}$
The structures \mathbf{M}_{i} are defined as follows (the interpretation I for each of them is specified only for symbols in the atomic formula $Q(x, c)$, and N denotes the set of natural numbers

$$
\mathbf{M}_{1}=\left[\{1\}, Q_{1}:=, c_{l}: 1\right] \text { and } \mathbf{M}_{2}=\left[\{1,2\}, Q_{1}: \leq, c_{l}: 1\right]
$$

Satisfaction Relation Exercise

Solution

Given $\mathrm{Q}(\mathrm{x}, \mathrm{c})$. Consider

$$
\mathbf{M}_{1}=\left[\{1\}, Q_{l}:=, c_{l}: 1\right]
$$

Observe that all assignments

$$
s: V A R \longrightarrow\{1\}
$$

must be defined by a formula $s(x)=1$ for all $x \in V A R$ We evaluate $s_{l}(x)=1, s_{l}(c)=c_{l}=1$
By definition

$$
\left(\mathbf{M}_{1}, s\right) \models Q(x, c) \quad \text { if and only if } \quad\left(s_{l}(x), s_{l}(c)\right) \in Q_{l}
$$

This means that $(1,1) \in=$ what is true as $1=1$
We have proved

$$
\left(\mathbf{M}_{1}, s\right) \models Q(x, c) \text { for all assignments } s: V A R \longrightarrow\{1\}
$$

Satisfaction Relation Exercise

Given $\mathrm{Q}(\mathrm{x}, \mathrm{c})$. Consider

$$
\mathbf{M}_{2}=\left[\{1,2\}, Q_{l}: \leq, c_{l}: 1\right]
$$

Let $s: V A R \longrightarrow\{1,2\}$ be any assignment, such that

$$
s(x)=1
$$

We evaluate $s_{l}(x)=1, s_{l}(c)=1$ and verify whether $\left(s_{l}(x), s_{l}(c)\right) \in Q_{l}$ i.e. whether $(1,1) \in \leq$
This is true as $1 \leq 1$
We have found s such that

$$
\left(\mathbf{M}_{2}, s\right) \models Q(x, c)
$$

In fact, have found uncountably many such assignments s

Satisfaction Relation Exercise

Given $\mathrm{Q}(\mathrm{x}, \mathrm{c})$ and the structure

$$
\mathbf{M}_{2}=\left[\{1,2\}, Q_{l}: \leq, c_{l}: 1\right]
$$

Let now s' we be any assignment

$$
s^{\prime}: V A R \longrightarrow\{1,2\} \text { such that } s^{\prime}(x)=2
$$

We evaluate $\quad s^{\prime}{ }_{\prime}(x)=1, \quad s^{\prime}{ }_{\prime}(c)=1$
We verify whether $\left.s^{\prime}{ }_{I}(x), s^{\prime}{ }_{\prime}(c)\right) \in Q_{\text {I }}$, i.e. whether $(2,1) \in \leq$
This is not true as $2 \not \approx 1$
We have found $s^{\prime} \neq s$ such that

$$
\left(\mathbf{M}_{2}, s^{\prime}\right) \not \models Q(x, c)
$$

In fact, have found uncountably many such assignments s'

Model Definition

Definition

Given a predicate language \mathcal{L}, a formula $A \in \mathcal{F}$, and a structure $\mathbf{M}=[U, I]$ for \mathcal{L}
M is a model for the formula A if and only if
$(\mathbf{M}, s) \models A$ for all $s: V A R \longrightarrow U$
We denote it as

$$
\mathbf{M} \models A
$$

For any set $\Gamma \subseteq \mathcal{F}$ of formulas of \mathcal{L},
\mathbf{M} is a model for Γ if and only if $\mathbf{M} \models A$ for all $A \in \Gamma$
We denote it as

$$
\mathbf{M} \models \Gamma
$$

Counter Model Definition

Definition

Given a predicate language \mathcal{L}, a formula $A \in \mathcal{F}$, and a structure $\mathbf{M}=[U, I]$ for \mathcal{L}
M is a counter model for the formula A if and only if there is an assignment $s: V A R \longrightarrow U$, such that $(\mathbf{M}, s) \nLeftarrow A$
We denote it as

$$
\mathbf{M} \not \vDash A
$$

Counter Model Definition

Definition

For any set $\Gamma \subseteq \mathcal{F}$ of formulas of \mathcal{L},
M is a counter model for Γ if and only if
there is $A \in \Gamma$, such that $\mathbf{M} \not \vDash A$
We denote it as

$$
\mathbf{M} \not \models \Gamma
$$

Sentence Model

Observe that if a formula A is a sentence then the truth or falsity of satement

$$
(\mathbf{M}, s) \models A
$$

is completely independent of s
Hence if $(\mathbf{M}, s) \models A$ for some s, it holds for all s and the following holds
Fact
For any formula A of \mathcal{L}
If A is a sentence, then if there is an s such that

$$
(\mathbf{M}, s) \models A
$$

then \mathbf{M} is a model fo A, i.e.

$$
\mathbf{M} \models A
$$

Formula Closure

We transform any formula A of \mathcal{L} into a certain sentence by binding all its free variables. The resulting sentence is called a closure of A and is defined as follows

Definition

Given A of \mathcal{L}
By the closure of A we mean the formula obtained from A by prefixing in universal quantifiers all variables the arefree in A If A does not have free variables, i.e. is a sentence, the closure of A is defined to be A itself

Obviously, a closure of any formula is always a sentence

Formula Closure Example

Example

Let A, B be formulas

$$
\begin{gathered}
\left(P\left(x_{1}, x_{2}\right) \Rightarrow \neg \exists x_{2} Q\left(x_{1}, x_{2}, x_{3}\right)\right) \\
\left(\forall x_{1} P\left(x_{1}, x_{2}\right) \Rightarrow \neg \exists x_{2} Q\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{gathered}
$$

Their respective closures are

$$
\begin{gathered}
\forall x_{1} \forall x_{2} \forall x_{3}\left(\left(P\left(x_{1}, x_{2}\right) \Rightarrow \neg \exists x_{2} Q\left(x_{1}, x_{2}, x_{3}\right)\right)\right) \\
\forall x_{1} \forall x_{2} \forall x_{3}\left(\left(\forall x_{1} P\left(x_{1}, x_{2}\right) \Rightarrow \neg \exists x_{2} Q\left(x_{1}, x_{2}, x_{3}\right)\right)\right)
\end{gathered}
$$

Model, Counter Model Example

Example

Let $Q \in \mathbf{P}, \# Q=2$ and $c \in \mathbf{C}$
Consider formulas

$$
Q(x, c), \quad \exists x Q(x, c), \quad \forall x Q(x, c)
$$

and the structures defined as follows.

$$
\mathbf{M}_{1}=\left[\{1\}, Q_{l}:=, c_{l}: 1\right] \quad \text { and } \quad \mathbf{M}_{2}=\left[\{1,2\}, Q_{l}: \leq, c_{l}: 1\right]
$$

Directly from definition and above Fact we get that:

1. $\mathbf{M}_{1} \vDash Q(x, c), \quad \mathbf{M}_{1} \vDash \forall x Q(x, c), \quad \mathbf{M}_{1} \vDash \exists x Q(x, c)$
2. $\mathbf{M}_{2} \not \models Q(x, c), \quad \mathbf{M}_{2} \not \models \forall x Q(x, c), \quad \mathbf{M}_{2} \vDash \exists x Q(x, c)$

Model, Counter Model Example

Example

Let $Q \in \mathbf{P}, \# Q=2$ and $c \in \mathbf{C}$
Consider formulas

$$
Q(x, c), \quad \exists x Q(x, c), \quad \forall x Q(x, c)
$$

and the structures defined as follows.

$$
M_{3}=\left[N, Q_{1}: \geq, c_{l}: 0\right], \quad \text { and } \quad M_{4}=\left[N, Q_{1}: \geq, c_{l}: 1\right]
$$

Directly from definition and above Fact we get that:
3. $\mathbf{M}_{3} \vDash Q(x, c), \quad \mathbf{M}_{3} \vDash \forall x Q(x, c), \quad \mathbf{M}_{3} \vDash \exists x Q(x, c)$
4. $\mathbf{M}_{4} \not \vDash Q(x, c), \quad \mathbf{M}_{4} \not \models \forall x Q(x, c), \quad \mathbf{M}_{4} \vDash \exists x Q(x, c)$

True, False in M

Definition

Given a structure $\mathbf{M}=[U, I]$ for \mathcal{L} and a formula A of \mathcal{L}
A is true in M and is written as

$$
\mathbf{M} \vDash A
$$

if and only if all assignments s of \mathcal{L} in M satisfy A, i.e. when \mathbf{M} is a model for A

A is false in \mathbf{M} and written as

$$
\mathbf{M}=\mid A
$$

if and only if there is no assignment s of \mathcal{L} in M that satisfies A

True, False in M

Here are some properties of the notions:

1. "A is true in M" written symbolically as

$$
\mathbf{M} \models A
$$

2. "A is false in M" written symbolically as

$$
\mathbf{M}=\mid A
$$

They are obvious under intuitive understanding of the notion of satisfaction
Their formal proofs are left as an exercise

True, False in M Properties

Properties

Given a structure $\mathbf{M}=[U, I]$ and any formulas formula A, B of \mathcal{L}. The following properties hold
\mathbf{P}. A is false in \mathbf{M} if and only if $\neg A$ is true in \mathbf{M}, i.e.

$$
\mathbf{M}=\mid A \text { if and only if } \mathbf{M} \models \neg A
$$

$\mathbf{P 2}$. A is true in \mathbf{M} if and only if $\neg A$ is false in \mathbf{M}, i.e.

$$
\mathbf{M} \models A \text { if and only if } \mathbf{M}=\mid \neg A
$$

P3. It is not the case that both $\mathbf{M} \models A \quad$ and $\quad \mathbf{M} \models \neg A$, i.e. there is no formula A, such that

$$
\mathbf{M} \models A \quad \text { and } \quad \mathbf{M}=\mid A
$$

True, False in M Properties

Properties

P4. If $\mathbf{M} \models A$ and $\mathbf{M} \models(A \Rightarrow B)$, then $\mathbf{M} \models B$

P5. $(A \Rightarrow B)$ is false in \mathbf{M} if and only if
$\mathbf{M} \models A \quad$ and $\quad \mathbf{M} \models \neg B$

$$
\mathbf{M}=\mid(A \Rightarrow B) \text { if and only if } \mathbf{M} \models A \text { and } \mathbf{M} \models \neg B
$$

P6. $\mathbf{M} \models A$ if and only if $\mathbf{M} \models \forall x A$

P7. A formula A is true in M if and only if its closure is true in M

Valid, Tautology Definition

Definition

A formula A of \mathcal{L} is a predicate tautology (is valid)
if and only if $\mathbf{M} \models A$ for all structures $\mathbf{M}=[U, I]$

We also say
A formula A of \mathcal{L} is a predicate tautology (is valid) if and only if A is true in all structures M for \mathcal{L}

We write

$$
\models A \quad \text { or } \quad \models_{p} A
$$

to denote that a formula A is predicate tautology (is valid)

Valid, Tautology Definition

We write

$$
\models_{p} A
$$

when there is a need to stress a distinction between propositional and predicate tautologies
otherwise we write

$$
\vDash A
$$

Predicate tautologies are also called laws of quantifiers.

Following the notation T we have established for the set of all propositional tautologies we denote by \mathbf{T}_{p} the set of all predicate tautologies
We put

$$
\mathbf{T}_{p}=\left\{A \text { of } \mathcal{L}: \models_{p} A\right\}
$$

Not a Tautology, Counter Model

Definition

For any formula A of predicate language \mathcal{L}
A is not a predicate tautology and denote it by

$$
\notin A
$$

if and only if there is a structure $\mathbf{M}=[U, I]$ for \mathcal{L}, such that

$$
\mathbf{M} \notin A
$$

We call such structure M a counter-model for A

Counter Model

In order to prove that a formula A is not a tautology one has to find a counter-model for A

It means one has to define the components of a structure $\mathbf{M}=[U, I]$ for \mathcal{L}, i.e.
a non-empty set U, called universe and an interpretation I of \mathcal{L} in the universe U

Moreover, one has to define an assignment $s: V A R \longrightarrow U$ and prove that that

$$
(\mathbf{M}, s) \not \models A
$$

Contradictions

We introduce now a notion of predicate contradiction Definition
For any formula A of \mathcal{L},
A is a predicate contradiction if and only if
A is false in all structures \mathbf{M}

We denote it as $=\mid A$ and write symbolically

$$
=A \text { if and only if } \mathbf{M}=\mid A \text {, for all structures } \mathbf{M}
$$

When there is a need to distinguish between propositional and predicate contradictions we also use symbol
$=\left.\right|_{p} A$

Contradictions

Following the notation \mathbf{C} for the set of all propositional contradictions we denote by C_{p} the set of all predicate contradictions, i.e.

$$
\mathbf{C}_{p}=\left\{A \text { of } \mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C}):=\left.\right|_{p} A\right\}
$$

Directly from the contradiction definition we have the following duality property charecteristic for classical logic

Fact

For any formula A of a predicate language \mathcal{L},

$$
\begin{array}{ll}
A \in \mathbf{T}_{p} & \text { if and only if } \neg A \in \mathbf{C}_{p} \\
A \in \mathbf{C}_{p} & \text { if and only if } \neg A \in \mathbf{T}_{p}
\end{array}
$$

Proving Predicate TAutologies

We prove, as an example the following basic predicate tautology

Fact
For any formula $A(x)$ of \mathcal{L},

$$
\models(\forall x A(x) \Rightarrow \exists x A(x))
$$

Proof
Assume that $\forall(\forall x A(x) \Rightarrow \exists x A(x))$
It means that there is a structure

$$
\begin{gathered}
\mathbf{M}=[U, I] \text { and } s: V A R \longrightarrow U \text {, such that } \\
(\mathbf{M}, s) \not \models(\forall x A(x) \Rightarrow \exists x A(x))
\end{gathered}
$$

Proving Predicate Tautologies

Observe that $(\mathbf{M}, s) \not \vDash(\forall x A(x) \Rightarrow \exists x A(x))$ is equivalent to

$$
(\mathbf{M}, s) \not \models \forall x A(x) \text { and }(\mathbf{M}, s) \not \models \exists x A(x)
$$

By definition, $(\mathbf{M}, s) \not \models \forall x A(x)$ means that $\left(\mathbf{M}, s^{\prime}\right) \models A(x)$ for all s^{\prime} such that s, s^{\prime} agree on all variables except on x

At the same time $(\mathbf{M}, s) \not \vDash \exists x A(x)$ means that it is not true that there is s^{\prime} such that s, s^{\prime} agree on all variables except on x, and $\left(\mathbf{M}, s^{\prime}\right) \models A(x)$. This contradiction proves

$$
\models(\forall x A(x) \Rightarrow \exists x A(x))
$$

Disapproving Predicate Tautologies

We show now, as an example of a counter model construction that the converse implication to

$$
\models(\forall x A(x) \Rightarrow \exists x A(x))
$$

is not a predicate tautology i.e. the following holds

Fact

There is a formula A of \mathcal{L}, such that

$$
\not \models(\exists x A(x) \Rightarrow \forall x A(x))
$$

Proof

Observe that to prove the Fact we have to provide an example of an instance of a formula $A(x)$ and construct a counter model $\mathbf{M}=[U, I]$ for it

Proving Predicate Tautologies

Let $A(x)$ be an atomic formula

$$
P(x, c) \quad \text { for any } \quad P \in \mathbf{P}, \quad \# P=2
$$

The needed instance is a formula

$$
(\exists x P(x, c) \Rightarrow \forall x P(x, c))
$$

We take as its counter model a structure

$$
\mathbf{M}=\left[\begin{array}{lll}
N, & P_{l}:<, & c_{l}: 3
\end{array}\right]
$$

where N is set of natural numbers. We want to show

$$
\mathbf{M} \not \vDash(\exists x P(x, c) \Rightarrow \forall x P(x, c))
$$

It means we have to define an assignment s such that $s: V A R \longrightarrow N$ and

$$
(\mathbf{M}, s) \not \vDash(\exists x P(x, c) \Rightarrow \forall x P(x, c))
$$

Proving Predicate Tautologies

Let s be any assignment $s: V A R \longrightarrow N$
We show now

$$
(\mathbf{M}, s) \models \exists x P(x, c)
$$

Take any s^{\prime} such that

$$
s^{\prime}(x)=2 \quad \text { and } \quad s^{\prime}(y)=s(y) \text { for all } y \in \operatorname{VAR}-\{x\}
$$

We have $(2,3) \in P_{l}$, as $2<3$
Hence we proved that there exists s^{\prime} that agrees with s on all variables except on x and

$$
\left(\mathbf{M}, s^{\prime}\right) \models P(x, c)
$$

Proving Predicate Tautologies

But at the same time

$$
(\mathbf{M}, s) \not \models \forall x P(x, c)
$$

as for example for s^{\prime} such that

$$
s^{\prime}(x)=5 \quad \text { and } \quad s^{\prime}(y)=s(y) \quad \text { for all } y \in V A R-\{x\}
$$

We have that $(2,3) \notin P_{l}$, as $5 \nless 3$
This proves that the structure

$$
\mathbf{M}=\left[N, P_{l}:<, c_{l}: 3\right]
$$

is a counter model for $\quad \forall x P(x, c)$
Hence we proved that

$$
\not \models(\exists x A(x) \Rightarrow \forall x A(x))
$$

Proving Predicate Tautologies

Short Hand Solution of

$$
\forall(\exists x P(x, c) \Rightarrow \forall x P(x, c))
$$

We take as its counter model a structure

$$
\mathbf{M}=\left[\begin{array}{lll}
N, & P_{l}:<, & c_{l}: 3
\end{array}\right]
$$

where N is set of natural numbers
The formula

$$
(\exists x P(x, c) \Rightarrow \forall x P(x, c))
$$

becomes in $\mathbf{M}=\left(N, P_{1}:<, c_{l}: 3\right)$ a mathematical statement (written with logical symbols):

$$
\exists n n<3 \Rightarrow \forall n n<3
$$

It is an obviously false statement in the set N of natural numbers, as there is $n \in N$, such that $n<3$, for example $n=2$, and it is not true that all natural numbers are smaller then 3

