cse541
 LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 8b

Chapter 8
 Classical Predicate Semantics and Proof Systems

PART 3: Predicate Tautologies

Predicate Tautologies

Predicate Tautologies

We have already proved the basic predicate tautology

$$
\models(\forall x A(x) \Rightarrow \exists x A(x))
$$

We prove now other three basic tautologies called

Dictum de Omni

For any formula $A(x)$ of \mathcal{L},

$$
\begin{aligned}
\models(\forall x A(x) & \Rightarrow A(t)), \quad \models(\forall x A(x) \Rightarrow A(x)) \\
& \models(A(t) \Rightarrow \exists x A(x))
\end{aligned}
$$

where t is a term, $A(t)$ is a result of substitution of t for all free occurrences of x in $A(x)$, and t is free for x in $A(x)$, i.e. no occurrence of a variable in t becomes a bound occurrence in $A(t)$

Proof of Dictum de Omni

Proof of

$$
\models(\forall x A(x) \Rightarrow A(t)), \quad \models(\forall x A(x) \Rightarrow A(x))
$$

is constructed in a sequence of the following steps
We leave details to complete as an exercise

S1

Consider a structure $\mathbf{M}=[U, I]$ and $s: V A R \longrightarrow U$
Let t, u be two terms
Denote by t^{\prime} a result of replacing in t all occurrences of a variable x by the term u, i.e.

$$
t^{\prime}=t(x / u)
$$

Let s^{\prime} results from s by replacing $s(x)$ by $s_{l}(u)$
We prove by induction over the length of t that

$$
s_{l}(t(x / u))=s_{l}\left(t^{\prime}\right)=s^{\prime} l(u)
$$

Proof of Dictum de Omni

S2

Let t be free for x in $\mathrm{A}(\mathrm{x})$
$A(t)$ is a results from $A(x)$ by replacing t for all free occurrences of x in $A(x)$, i.e.

$$
A(t)=A(x / t)
$$

Let

$$
s: V A R \longrightarrow U
$$

and s^{\prime} be obtained from s by replacing $s(x)$ by $s_{l}(u)$
We use

$$
s_{l}(t(x / u))=s_{l}\left(t^{\prime}\right)=s^{\prime} l(u)
$$

and induction on the number of connectives and quantifiers in $A(x)$ and prove

$$
(\mathbf{M}, s) \models A(x / t) \text { if and only if } \quad\left(\mathbf{M}, s^{\prime}\right) \models A(x)
$$

Proof of Dictum de Omni

S3

Directly from satisfaction definition and

$$
(\mathbf{M}, s) \models A(x / t) \text { if and only if } \quad\left(\mathbf{M}, s^{\prime}\right) \models A(x)
$$

we get that for any $\mathbf{M}=[U, I]$ and any $s: V A R \longrightarrow U$,

$$
\text { if }(\mathbf{M}, s) \models \forall x A(x) \text {, then }(\mathbf{M}, s) \models A(t)
$$

This proves

$$
\vDash(\forall x A(x) \Rightarrow A(t))
$$

Observe that obviously a term x is free for x in $A(x)$, so we also get as a particular case of $t=x$ that

$$
\models(\forall x A(x) \Rightarrow A(x))
$$

Dictum de Omni Restrictions

Proof of

$$
\vDash(A(t) \Rightarrow \exists x A(x))
$$

is included in detail in Section 3
Remark
The restrictions on terms in Dictum de Omni tautologies are essential

Here is a simple example explaining why they are needed in

$$
\vDash(\forall x A(x) \Rightarrow A(t)), \quad \vDash(\forall x A(x) \Rightarrow A(x))
$$

Let $A(x)$ be a formula

$$
\neg \forall y P(x, y) \quad \text { for } \quad P \in \mathbf{P}
$$

Notice that a term $t=y$ is not free for \mathbf{y} in $\mathrm{A}(\mathrm{x})$

Dictum de Omni Restrictions

Consider the first formula in Dictum de Omni for $A(x)=\neg \forall y P(x, y)$ and term $t=y$

$$
(\forall x \neg \forall y P(x, y) \Rightarrow \neg \forall y P(y, y))
$$

Take

$$
\mathbf{M}=[N, I] \quad \text { for } I \text { such that } P_{I}:=
$$

Obviously,

$$
\mathbf{M} \models \forall x \neg \forall y \quad P(x, y)
$$

as

$$
\forall m \neg \forall n(m=n)
$$

is a true mathematical statement in the set N of natural numbers

Dictum de Omni Restrictions

$$
\mathbf{M} \notin \neg \forall y P(y, y)
$$

as

$$
\neg \forall n(n=n)
$$

is a false statement for $n \in N$

The second Dictum de Omni formula is a particular case of the first
We have proved that without the restrictions on terms

$$
\forall \models(\forall x A(x) \Rightarrow A(t)) \text { and } \not \models(\forall x A(x) \Rightarrow A(x))
$$

The example for $\models(A(t) \Rightarrow \exists x A(x))$ is similar
$" t$ free for x in $A(x)$ "

Here are some useful and easy to prove properties of the notion " term t free for x in $A(x)$ "

Properties

For any formula $A \in \mathcal{F}$ and any term $t \in \mathbf{T}$ the following properties hold
P1. Closed term t, i.e. term with no variables is free for any variable x in A
P2. Term t is free for any variable in A if none of the variables in t is bound in A
P3. Term $t=x$ is free for x in any formula A
P4. Any term is free for x in A if A contains no free occurrences of x

Predicate Tautologies

Here are some more important predicate tautologies
For any formulas $A(x), B(x), A, B$ of \mathcal{L}, where the formulas A, B do not contain any free occurrences of x the following holds
Generalization

$$
\begin{aligned}
& \models((B \Rightarrow A(x)) \Rightarrow(B \Rightarrow \forall x A(x))) \\
& \models((B(x) \Rightarrow A) \Rightarrow(\exists x B(x) \Rightarrow A))
\end{aligned}
$$

Distributivity 1

$$
\begin{aligned}
\models & \models x(A \Rightarrow B(x)) \Rightarrow(A \Rightarrow \forall x B(x))) \\
& \models \forall x(A(x) \Rightarrow B) \Rightarrow(\exists x A(x) \Rightarrow B) \\
& \models \exists x(A(x) \Rightarrow B) \Rightarrow(\forall x A(x) \Rightarrow B)
\end{aligned}
$$

Restrictions

The restrictions that the formulas A, B do not contain any free occurrences of x is essential for both Generalization and Distributivity 1 tautologies

Here is a simple example explaining why they are needed The relaxation of the restrictions would lead to the following disaster

Let A and B be both the same atomic formula $P(x)$
Thus x is free in A and we have the following instance of the first .Distributivity 1 tautology

$$
.(\forall x(P(x) \Rightarrow P(x)) \Rightarrow(P(x) \Rightarrow \forall x P(x)))
$$

Restrictions

Take

$$
\mathbf{M}=[N, I] \text { for I such that } P_{l}=O D D
$$

where $O D D \subseteq N$ is the set of odd numbers
Let $s: V A R \longrightarrow N$
By definition of the interpretation i,

$$
s_{l}(x) \in P_{l} \quad \text { if and only if } \quad s_{l}(x) \in O D D
$$

Then obviously

$$
(\mathbf{M}, s) \notin \forall x P(x)
$$

and $\mathbf{M}=[N, I] \quad$ is a counter model for

$$
(\forall x(P(x) \Rightarrow P(x)) \Rightarrow(P(x) \Rightarrow \forall x P(x)))
$$

as

$$
\models \forall x(P(x) \Rightarrow P(x))
$$

The examples for restrictions on other tautologies are similar.

Predicate Tautologies

Distributivity 2

For any formulas $A(x), B(x)$ of \mathcal{L}

$$
\begin{aligned}
& \models(\exists x(A(x) \cap B(x)) \Rightarrow(\exists x A(x) \cap \exists x B(x))) \\
& \models((\forall x A(x) \cup \forall x B(x)) \Rightarrow \forall x(A(x) \cup B(x))) \\
& \models(\forall x(A(x) \Rightarrow B(x)) \Rightarrow(\forall x A(x) \Rightarrow \forall x B(x)))
\end{aligned}
$$

The converse implications to the above are not predicate tautologies
The counter models are provided in the Section 3

De Morgan Laws

De Morgan Laws

For any formulas $A(x), B(x)$ of \mathcal{L},

$$
\begin{aligned}
& \models(\neg \forall x A(x) \Rightarrow \exists x \neg A(x)) \\
& \models(\neg \exists x A(x) \Rightarrow \forall x \neg A(x)) \\
& \models(\exists x \neg A(x) \Rightarrow \neg \forall x A(x)) \\
& \models(\neg \exists x A(x) \Rightarrow \forall x \neg A(x))
\end{aligned}
$$

We prove the first law as an example
The proofs of all other laws are similar

De Morgan Laws

Proof of

$$
\models(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))
$$

We carry the proof by contradiction
Assume that

$$
\not \models \models(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))
$$

By definition, there is

$$
\mathbf{M}=[U, I] \text { and } s: V A R \longrightarrow U
$$

such that

$$
(\mathbf{M}, s) \models \neg \forall x A(x)) \quad \text { and } \quad(\mathbf{M}, s) \not \models \exists x \neg A(x)
$$

De Morgan Laws

Consider

$$
(\mathbf{M}, s) \models \neg \forall x A(x)
$$

By satisfaction definition

$$
(\mathbf{M}, s) \not \models \forall x A(x)
$$

This holds only if for all s^{\prime}, such that s, s^{\prime} agree on all variables except on x,

$$
\left(\mathbf{M}, s^{\prime}\right) \not \models A(x)
$$

De Morgan Laws

Consider now

$$
(\mathbf{M}, s) \not \models \exists x \neg A(x)
$$

This holds only if there is no s^{\prime}, such that

$$
\left(\mathbf{M}, s^{\prime}\right) \models \neg A(x)
$$

i.e. there is no s^{\prime}, such that $\left(\mathbf{M}, s^{\prime}\right) \not \vDash A(x)$

This means that for all s^{\prime},

$$
\left(\mathbf{M}, s^{\prime}\right) \models A(x)
$$

Contradiction with already proved

$$
\left(\mathbf{M}, s^{\prime}\right) \not \models A(x)
$$

This ends the proof

Quantifiers Alternations

Quantifiers Alternations

For any formula $A(x, y)$ of \mathcal{L},

$$
\models(\exists x \forall y A(x, y) \Rightarrow \forall y \exists x A(x, y))
$$

The converse implication

$$
(\forall y \exists x A(x, y) \Rightarrow \exists x \forall y A(x, y))
$$

is not a predicate tautology
Here is a proof
Take as $A(x, y)$ an atomic formula $R(x, y)$
Consider the instance formula

$$
(\forall y \exists x R(x, y) \Rightarrow \exists x \forall y R(x, y))
$$

Quantifiers Alternations

We construct now a counter model for the instance formula

$$
(\forall y \exists x R(x, y) \Rightarrow \exists x \forall y R(x, y))
$$

Take a structure

$$
\mathbf{M}=[R, I]
$$

where R is the set of real numbers and $R_{l}:<$
The instance formula becomes a mathematical statement

$$
(\forall y \exists x(x<y) \Rightarrow \exists x \forall y(x<y))
$$

that obviously false in the set of real numbers
We proved

$$
\not \models(\forall y \exists x A(x, y) \Rightarrow \exists x \forall y A(x, y))
$$

Equational Laws of Quantifiers

Logical Equivalence

The most frequently used laws of quantifiers have a form of a logical equivalence, symbolically written as \equiv

Logical equivalence \equiv is not a new logical connective but just a very useful symbol

Logical equivalence \equiv has the same properties as the mathematical equality = and can be used in a similar way as we use the equality

Note that we use the same equivalence symbol \equiv and the tautology symbol \models for propositional and predicate languages when there is no confusion

Logical Equivalence

We define formally the logical equivalence \equiv as follows.
Definition of Logical Equivalence
For any formulas A, B of the predicate language \mathcal{L},

$$
A \equiv B \text { if and only if } \models(A \Rightarrow B) \text { and } \models(B \Rightarrow A)
$$

Remark that the predicate language \mathcal{L} we defined the semantics for does not include the equivalence connective \Leftrightarrow. If it does we extend the satisfaction definition in a natural way and adopt the following, natural definition
Definition
For any formulas $A, B \in \mathcal{F}$ of the predicate language \mathcal{L} with the equivalence connective \Leftrightarrow

$$
A \equiv B \quad \text { if and only if } \models(A \Leftrightarrow B)
$$

Logical Equivalence Theorems

The basic theorems establishing relationship between propositional and some predicate tautologies are as follows

Tautologies Theorem

If a formula A is a propositional tautology,
then by substituting for propositional variables in A any formula of the predicate language \mathcal{L} we obtain a formula which is a predicate tautology

Logical Equivalence Theorems

Equivalences Theorem

Given propositional formulas A, B
If $A \equiv B$ is a propositional equivalence, and
A^{\prime}, B^{\prime} are formulas of the predicate language L obtained by a substitution of any formulas of \mathcal{L} for propositional variables in A and B, respectively,
then

$$
A^{\prime} \equiv B^{\prime}
$$

holds under predicate semantics

Logical Equivalence Example

Example

Consider the following propositional logical equivalence

$$
(a \Rightarrow b) \equiv(\neg a \cup b)
$$

Substituting

$$
\exists x P(x, z) \text { for } a \text { and } \forall y R(y, z) \text { for } b
$$

we get by the EquivalencesTheorem that the following logical equivalence holds

$$
(\exists x P(x, z) \Rightarrow \forall y R(y, z)) \equiv(\neg \exists x P(x, z) \cup \forall y R(y, z))
$$

Equivalence Substitution

We prove in similar way as in the propositional case the following.

Equivalence Substitution Theorem

Let a formula B_{1} be obtained from a formula A_{1} by a substitution of a formula B for one or more occurrences of a sub-formula A of A_{1}, what we denote as

$$
B_{1}=A_{1}(A / B)
$$

Then the following holds for any formulas A, A_{1}, B, B_{1} of \mathcal{L}

$$
\text { If } A \equiv B, \text { then } A_{1} \equiv B_{1}
$$

Logical Equivalence Theorem

Directly from the Dictum de Omi and theGeneralization tautologies we get the proof of the following theorem useful for building new logical equivalences from the old, known ones

E- Theorem

For any formulas $A(x), B(x)$ of \mathcal{L}

$$
\begin{aligned}
& \text { if } A(x) \equiv B(x), \text { then } \forall x A(x) \equiv \forall x B(x) \\
& \text { if } A(x) \equiv B(x), \text { then } \exists x A(x) \equiv \exists x B(x)
\end{aligned}
$$

Logical Equivalence Example

Example

We know from the previous example that

$$
(\exists x P(x, z) \Rightarrow \forall y R(y, z)) \equiv(\neg \exists x P(x, z) \cup \forall y R(y, z))
$$

We get, as the direct consequence of the above theorem the following logical equivalence

$$
\begin{aligned}
& \forall z(\exists x P(x, z) \Rightarrow \forall y R(y, z)) \equiv \forall z(\neg \exists x P(x, z) \cup \forall y R(y, z)) \\
& \exists z(\exists x P(x, z) \Rightarrow \forall y R(y, z)) \equiv \exists z(\neg \exists x P(x, z) \cup \forall y R(y, z))
\end{aligned}
$$

Equational Laws of Quantifiers

We concentrate now only on these laws of quantifiers which have a form of a logical equivalence
They are called the equational laws of quantifiers
Directly from the logical equivalence definition and the De
Morgan tautologies we get the following
De Morgan Laws
For any formulas $A(x), B(x)$ of \mathcal{L}

$$
\begin{aligned}
& \neg \forall x A(x) \equiv \exists x \neg A(x) \\
& \neg \exists x A(x) \equiv \forall x \neg A(x)
\end{aligned}
$$

We now apply them to show that the quantifiers can be defined one by the other i.e. that the following Definability Laws hold

Equational Laws of Quantifiers

Definability Laws

For any formula $A(x)$ of \mathcal{L}

$$
\begin{aligned}
& \forall x A(x) \equiv \neg \exists x \neg A(x) \\
& \exists x A(x) \equiv \neg \forall x \neg A(x)
\end{aligned}
$$

The first law is often used as a definition of the universal quantifier in terms of the existential one (and negation) The second law is a definition of the existential quantifier in terms of the universal one (and negation)

Equational Laws of Quantifiers

Proof of

$$
\forall x A(x) \equiv \neg \exists x \neg A(x)
$$

Substituting any formula $A(x)$ for a variable a in the propositional equivalence $a \equiv \neg \neg a$ we get by the Equivalence Theorem that

$$
A(x) \equiv \neg \neg A(x)
$$

Applying the E-Theorem to the above we obtain

$$
\exists x A(x) \equiv \exists x \neg \neg A(x)
$$

By the De Morgan Law

$$
\exists x \neg \neg A(x) \equiv \neg \forall x \neg A(x)
$$

By the Equivalence Substitution Theorem

$$
\exists x A(x) \equiv \neg \forall x \neg A(x)
$$

This ends the proof

Equational Laws of Quantifiers

Proof of

$$
\forall x A(x) \equiv \neg \exists x \neg A(x)
$$

Substituting any formula $A(x)$ for a variable a in the propositional equivalence $a \equiv \neg \neg a$ we get by the Equivalence Theorem that

$$
A(x) \equiv \neg \neg A(x)
$$

Applying the E-Theorem to the above we obtain

$$
\forall x A(x) \equiv \forall x \neg \neg A(x)
$$

By the De Morgan Law and Equivalence Substitution Theorem

$$
\begin{gathered}
\forall x \neg \neg A(x) \equiv \neg \exists x \neg A(x) \\
\forall x A(x) \equiv \neg \exists x \neg A(x)
\end{gathered}
$$

This ends the proof

Equational Laws of Quantifiers

Other important equational laws are the following introduction and elimination laws
Listed equivalences are not independent, some of them are the consequences of the others

Introduction and Elimination Laws

If B is a formula such that B does not contain any free occurrence of x, then the following logical equivalences hold for any formula $A(x)$ of \mathcal{L}

$$
\begin{aligned}
& \forall x(A(x) \cup B) \equiv(\forall x A(x) \cup B) \\
& \forall x(A(x) \cap B) \equiv(\forall x A(x) \cap B) \\
& \exists x(A(x) \cup B) \equiv(\exists x A(x) \cup B) \\
& \exists x(A(x) \cap B) \equiv(\exists x A(x) \cap B)
\end{aligned}
$$

Equational Laws of Quantifiers

Introduction and Elimination Laws

$$
\begin{aligned}
& \forall x(A(x) \Rightarrow B) \equiv(\exists x A(x) \Rightarrow B) \\
& \exists x(A(x) \Rightarrow B) \equiv(\forall x A(x) \Rightarrow B) \\
& \forall x(B \Rightarrow A(x)) \equiv(B \Rightarrow \forall x A(x)) \\
& \exists x(B \Rightarrow A(x)) \equiv(B \Rightarrow \exists x A(x))
\end{aligned}
$$

As we said before, the equivalences are not independent We show now as an example the proof of the third one from the first two

Equational Laws of Quantifiers

We write this proof in a short, symbolic way as follows

$$
\begin{array}{lcl}
\exists x(A(x) \cup B) & \stackrel{\text { law }}{\equiv} & \neg \forall x \neg(A(x) \cup B) \\
& \stackrel{\text { thms }}{\equiv} & \neg \forall x(\neg A(x) \cap \neg B) \\
& \stackrel{\text { law }}{\equiv} & \neg(\forall x \neg A(x) \cap \neg B) \\
& \stackrel{\text { law,thm }}{\equiv} & (\neg \forall x \neg A(x) \cup \neg \neg B) \\
& \stackrel{\text { thm }}{\equiv} & (\exists x A(x) \cup B)
\end{array}
$$

We leave completion and explanation of all details as it as and exercise

Equational Laws of Quantifiers

Distributivity Laws

Let $A(x), B(x)$ be any formulas with a free variable x

Law of distributivity of universal quantifier over conjunction

$$
\forall x(A(x) \cap B(x)) \equiv(\forall x A(x) \cap \forall x B(x))
$$

Law of distributivity of existential quantifier over disjunction

$$
\exists x(A(x) \cup B(x)) \equiv(\exists x A(x) \cup \exists x B(x))
$$

Equational Laws of Quantifiers

Alternations of Quantifiers

Let $A(x, y)$ be any formula with a free variables x, y

$$
\begin{aligned}
& \forall x \forall y(A(x, y) \equiv \forall y \forall x(A(x, y) \\
& \exists x \exists y(A(x, y) \equiv \exists y \exists x(A(x, y)
\end{aligned}
$$

Equational Laws of Quantifiers

Renaming the Variables
Let $A(x)$ be any formula with a free variablex and let y be a variable that does not occur in $A(x) y$, then the following holds

$$
\begin{aligned}
& \forall x A(x) \equiv \forall y A(y) \\
& \exists x A(x) \equiv \exists y A(y)
\end{aligned}
$$

Equational Laws of Quantifiers

Restricted De Morgan Laws

For any formulas $A(x), B(x)$ of \mathcal{L}

$$
\begin{aligned}
& \neg \forall_{B(x)} A(x) \equiv \exists_{B(x)} \neg A(x) \\
& \neg \exists_{B(x)} A(x) \equiv \forall_{B(x)} \neg A(x)
\end{aligned}
$$

Equational Laws of Quantifiers

Here is a poof of first equality
The proof of the second one is similar and is left as an exercise.

$$
\begin{gathered}
\neg \forall_{B(x)} A(x) \equiv(\neg \forall x(B(x) \Rightarrow A(x)) \equiv \\
\neg \forall x(\neg B(x) \cup A(x)) \equiv \exists x \neg(\neg B(x) \cup A(x)) \equiv \\
\left.\exists x(\neg \neg B(x) \cap \neg A(x)) \equiv \exists x(B(x) \cap \neg A(x)) \equiv \exists_{B(x)} \neg A(x)\right)
\end{gathered}
$$

Equational Laws of Quantifiers

Restricted Introduction and Elimination Laws

Let B be a formula that does not contain any free occurrence of x
then the following logical equivalences hold for any formulas $A(x), B(x), C(x)$ of \mathcal{L}

$$
\begin{aligned}
& \forall_{C(x)}(A(x) \cup B) \equiv\left(\forall_{C(x)} A(x) \cup B\right) \\
& \exists_{C(x)}(A(x) \cap B) \equiv\left(\exists_{C(x)} A(x) \cap B\right) \\
& \forall_{C(x)}(A(x) \Rightarrow B) \equiv\left(\exists_{C(x)} A(x) \Rightarrow B\right) \\
& \forall_{C(x)}(B \Rightarrow A(x)) \equiv\left(B \Rightarrow \forall_{C(x)} A(x)\right)
\end{aligned}
$$

The proofs are similar to the proof of the restricted De Morgan Laws. The similar generalization of the other Introduction and Elimination Laws for restricted domain quantifiers fails

Equational Laws of Quantifiers

We prove by constructing proper counter-models the following.

$$
\begin{gathered}
\exists_{C(x)}(A(x) \cup B) \not \equiv\left(\exists_{C(x)} A(x) \cup B\right) \\
\forall_{C(x)}(A(x) \cap B) \not \equiv\left(\forall_{C(x)} A(x) \cap B\right) \\
\exists_{C(x)}(A(x) \Rightarrow B) \not \equiv\left(\forall_{C(x)} A(x) \Rightarrow B\right) \\
\exists_{C(x)}(B \Rightarrow A(x)) \neq(B \Rightarrow \exists x A(x))
\end{gathered}
$$

Equational Laws of Quantifiers

Nevertheless it is possible to correctly generalize them all as to cover quantifiers with restricted domain

We show now how we get the correct generalization of

$$
\exists_{C(x)}(A(x) \cup B) \not \equiv\left(\exists_{C(x)} A(x) \cup B\right)
$$

We leave the other cases an exercise

Equational Laws of Quantifiers

Example

The correct restricted quantifiers equality is

$$
\exists_{C(x)}(A(x) \cup B) \equiv\left(\exists_{C(x)} A(x) \cup(\exists x C(x) \cap B)\right)
$$

We derive it as follows.

$$
\begin{gathered}
\exists_{C(x)}(A(x) \cup B) \equiv \exists x(C(x) \cap(A(x) \cup B)) \equiv \\
\exists x((C(x) \cap A(x)) \cup(C(x) \cap B)) \equiv(\exists x(C(x) \cap A(x)) \cup \exists x(C(x) \cap B)) \\
\left.\equiv \exists_{C(x)} A(x) \cup(\exists x C(x) \cap B)\right)
\end{gathered}
$$

We leave it as an exercise to specify and write references to transformation or equational laws used at each step of the computation

Chapter 8
 Classical Predicate Semantics and Proof Systems

Slides Set 3

PART 4: Proof Systems: Soundness and Completeness

Proof Systems: Soundness and Completeness

We adopt now general definitions from chapter 4 concerning proof systems to the case of classical first order (predicate) logic

Chapters 4 and 5 contain a great array of examples, exercises, homework problems explaining in a great detail all notions we introduce here for the predicate case

The examples and f exercises we provide here are not numerous and restricted to the laws of quantifiers

Proof Systems

Given a predicate language

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow, \neg\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

Any proof system

$$
S=(\mathcal{L}, \mathcal{F}, L A, \mathcal{R})
$$

is a predicate (first order) proof system
The predicate proof system S is a Hilbert proof system if the set \mathcal{R} of its rules contains the Modus Ponens rule

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

where $A, B \in \mathcal{F}$

Proof Systems

Semantic Link: Logical Axioms LA
We want the set $L A$ of logical axioms to be a non-empty set of classical predicate tautologies, i.e.

$$
L A \subseteq \mathbf{T}_{p}
$$

where

$$
\mathbf{T}_{p}=\left\{A \text { of } \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow, \neg\}}(\mathbf{P}, \mathbf{F}, \mathbf{C}): \models_{p} A\right\}
$$

We use symbols

$$
\models_{p}, \mathbf{T}_{p}
$$

to stress the fact that we talk about predicate language and classical predicate tautologies

Rules of Inference

Semantic Link 2: Rules of Inference \mathcal{R}
We want the the rules of inference $r \in \mathcal{R}$ of S to preserve truthfulness. Rules that do so are called sound

Definition
Given an inference rule $r \in \mathcal{R}$ of the form

$$
\text { (r) } \frac{P_{1} ; P_{2} ; \ldots ; P_{m}}{C}
$$

where $P_{1} . P_{2}, \ldots, P_{m}, C \in \mathcal{F}$
We say that the rule (r) is sound if and only if the following condition holds for all structures $\mathbf{M}=[U, I]$ for \mathcal{L}

$$
\text { If } \mathbf{M} \models\left\{P_{1}, P_{2}, . P_{m}\right\} \text { then } \mathbf{M} \vDash C
$$

Rules of Inference

Exercise

Prove the soundness of the rule

$$
\text { (r) } \frac{\forall x A(x)}{\exists x A(x)}
$$

Proof

Assume that (r) is not sound
It means that there is a structure $\mathbf{M}=[U, I]$, such that

$$
\mathbf{M} \models \forall x A(x) \text { and } \mathbf{M} \not \models \exists x A(x)
$$

Let $(\mathbf{M}, s) \models \forall x A(x)$ and $(\mathbf{M}, s) \not \models \exists x A(x)$
It means that $\left(\mathbf{M}, s^{\prime}\right) \models A(x)$ for all s^{\prime} such that s, s^{\prime} agree on all variables except on x, and it is not true that there is s^{\prime} such that s, s^{\prime} agree on all variables except on x, and $\left(\mathbf{M}, s^{\prime}\right) \models A(x)$
This is impossible and this contradiction proves soundness of (r)

Rules of Inference

Exercise

Prove that the rule

$$
\text { (r) } \frac{\exists x A(x)}{\forall x A(x)}
$$

is not sound
Proof
Observe that to prove that the rule (r) is not sound we have to provide an example of an instance of a formula $A(x)$ and construct a counter model

Let $A(x)$ be an atomic formula $P(x, c)$, for any $P \in \mathbf{P}, \# P=2$ We take as a counter model a structure

$$
\mathbf{M}=\left(N, \quad P_{l}:<, \quad c_{l}: 3\right)
$$

where N is the set of natural numbers

Rules of Inference

Here is a "shorthand" solution
The atomic formula ($\exists x P(x, c)$ becomes in

$$
\mathbf{M}=\left(N, \quad P_{l}:<, \quad c_{l}: 3\right)
$$

a true mathematical statement (written with logical symbols):

$$
\exists n n<3
$$

The formula ($\forall x P(x, c)$ becomes a mathematical statement

$$
\forall n n<3
$$

which is an obviously false in the set N of natural numbers
This proves that the the rule (r) is not sound

Rules of Inference

Definition of Strongly Sound Rule

An inference rule $r \in \mathcal{R}$ of the form

$$
\text { (r) } \frac{P_{1} ; P_{2} ; \ldots ; P_{m}}{C}
$$

is strongly sound if the following condition holds for all structures $\mathbf{M}=[U, I]$ for \mathcal{L}

$$
\mathbf{M} \models\left\{P_{1}, P_{2}, . P_{m}\right\} \quad \text { if and only if } \quad \mathbf{M} \models C
$$

We can, and we do state it informally as
(r) is strongly sound if and only if $P_{1} \cap P_{2} \cap \ldots \cap P_{m} \equiv C$

Rules of Inference

Example

The sound rule

$$
\text { (r1) } \frac{\neg \forall x A(x)}{\exists x \neg A(x)}
$$

is strongly sound by De Morgan Laws

Example

The sound rule

$$
\text { (r2) } \frac{\forall x A(x)}{\exists x A(x)}
$$

is not strongly sound by exercise above

Soundness

Definition of Sound Proof System

Given the predicate (first order) proof system

$$
S=(\mathcal{L}, \mathcal{F}, L A, \mathcal{R})
$$

We say that S is sound if the following conditions hold
(1) $L A \subseteq T_{p}$
(2) Each rule of inference $r \in \mathcal{R}$ is sound

The proof system S is strongly sound if the condition (2) is replaced by the following condition (2')
(2') Each rule of inference $r \in \mathcal{R}$ is strongly sound

Soundness Theorem

When we define (develop) a proof system S our first goal is to make sure that it is a "sound" one

It means that that all we prove in it is true. The following theorem establishes this goal

Soundness Theorem for S
Given a predicate proof system S
For any $A \in \mathcal{F}$, the following implication holds.

$$
\text { If } \vdash s A \text { then } \models_{p} A
$$

We write it in a more concise form as

$$
\mathbf{P}_{S} \subseteq \mathbf{T}_{p}
$$

Soundness Theorem

Proof of Soundness Theorem

Observe that if we have already proven that S is sound as stated in the definition the proof of the implication

$$
\text { If } \vdash s A \text { then } \models_{p} A
$$

is a straightforward application of the mathematical induction over the length of the formal proof of the formula A

It means that in order to prove the Soundness Theorem for a proof system S it is enough to verify the two conditions of the soundness definition, i.e. to verify
(1) $L A \subseteq T_{p}$ and
(2) each rule of inference $r \in \mathcal{R}$ is sound

CompletessTheorem

Proving Soundness Theorem for any proof system S is indispensable and moreover, the proof is quite easy
The next step in developing a logic (classical predicate logic in our case now) is to answer the following necessary and difficult question

Given a proof system S about which we know that all it proves is true (tautology)
Can we prove all we know to be true ?. It means:
Can S prove all tautologies?

Proving the following theorem establishes this goal

CompletenessTheorem

Completeness Theorem for S
Given a predicate proof system S
For any $A \in \mathcal{F}$, the following holds

$$
\vdash_{s} A \text { if and only if } \models_{p} A
$$

We write it in a more concise form as

$$
\mathbf{P}_{S}=\mathbf{T}_{p}
$$

CompletenessTheorem

The Completeness Theorem consists of two parts

Part 1: Soundness Theorem

$$
\mathbf{P}_{S} \subseteq \mathbf{T}_{p}
$$

Part 2: Completeness part of the Completeness Theorem

$$
\mathbf{T}_{p} \subseteq \mathbf{P}_{S}
$$

CompletenessTheorem

There are many methods and techniques fo rproving the CompletenessTheorem

It applies even for classical proof systems (logics) alone

Non-classical logics often require new and usually very sophisticated methods

CompletenessTheorem

We presented two very different proofs of the
Completeness Theorem for classical propositional Hilbert
style proof system in chapter 5

Then we presented yet another very different constructive proofs for automated theorem proving systems for classical propositional logic chapter 6

As a next step we present an old, standard proof of the predicate Completeness Theorem for Hilbert style proof system for classical logic in the next chapter 9

