cse541
 LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 9a

Chapter 9
 Hilbert Proof Systems Completeness of Classical Predicate Logic

PART 2: Henkin Method
Reduction to Propositional Logic Theorem,
Compactness Theorem, Löwenheim-Skolem Theorem

Henkin Method

Propositional tautologies within \mathcal{L} barely scratch the surface of the collection of predicate (first -order) tautologies
For example the following first-order formulas are propositional tautologies

$$
\begin{gathered}
(\exists x A(x) \cup \neg \exists x A(x)), \quad(\forall x A(x) \cup \neg \forall x A(x) \\
(\neg(\exists x A(x) \cup \forall x A(x)) \Rightarrow(\neg \exists x A(x) \cap \neg \forall x A(x)))
\end{gathered}
$$

but the following are predicate (first order) tautologies that are not propositional tautologies

$$
\begin{gathered}
\forall x(A(x) \cup \neg A(x)) \\
(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))
\end{gathered}
$$

Henkin Method

To stress the difference between the propositional tautologies of a propositional language and predicate (first order) tautologies the word tautology is used only for the propositional tautologies of a propositional language
The word a valid formula is used for the predicate (first order) tautologies in this case

We use here both notions, with preference to word predicate tautology or tautology for short when there is no room for misunderstanding

To make sure that there is no misunderstandings we remind the following basic definitions from chapter 8

Basic Definitions

Given a first order language \mathcal{L} with the set of variables VAR and the set of formulas \mathcal{F}. Let

$$
\mathcal{M}=[M, I]
$$

be a structure for the language \mathcal{L}, with the universe M and the interpretation I and let

$$
s: V A R \longrightarrow M
$$

be an assignment of \mathcal{L} in M

Here are some basic definitions

Basic Definitions

D1. A is satisfied in \mathcal{M}
Given a structure $\mathcal{M}=[M, I]$, we say that a formula A is satisfied in \mathcal{M} if there is an assignment $s: V A R \longrightarrow M$ such that

$$
(\mathcal{M}, s) \models A
$$

D2. A is true in \mathcal{M}
Given a structure $\mathcal{M}=[M, I]$, we say that a formula A is true in \mathcal{M} if

$$
(\mathcal{M}, s) \models A
$$

for all assignments $s: V A R \longrightarrow M$

Basic Definitions

D3. Model \mathcal{M}
If A is true in a structure $\mathcal{M}=[M, I]$, then \mathcal{M} is called a model for A
We denote it as

$$
\mathcal{M} \models A
$$

D4. A is predicate tautology (valid)
A formula A is a predicate tautology (valid) if it is true in all structures $\mathcal{M}=[M, I]$, i.e. if all structures are models of A

We use use the term predicate tautology and and denote it, when there is no confusion with propositional case as

Basic Definitions

Case: A is a sentence
If the formula A is a sentence, then the truth or falsity of the statement $(\mathcal{M}, s) \models A$ is completely independent of s
Thus we write

$$
\mathcal{M} \models A
$$

and read \mathcal{M} is a model of A, if for some (hence every) valuation s

$$
(\mathcal{M}, s) \models A
$$

D5. Model of a set S of formulas
\mathcal{M} is a model of a set S (of sentences) if and only if $\mathcal{M} \models A$ for all $A \in S$. We write it

$$
\mathcal{M} \models S
$$

Predicate and Propositional Models

Relationship

Given a predicate language \mathcal{L}
The predicate models for \mathcal{L} are defined in terms of
structures $\mathcal{M}=[M, I]$ and assignments $s: V A R \longrightarrow M$
The propositional models for \mathcal{L} are defined in terms of of

$$
\text { truth assignments } v: \mathcal{P} \longrightarrow\{T, F\}
$$

The relationship between the predicate models and propositional models is established by the following Lemma

Relationship Lemma

Lemma

Let $\mathcal{M}=[M, I]$ be a structure for the language \mathcal{L} and let $s: V A R \longrightarrow M$ an assignment in \mathcal{M}
There is a truth assignment

$$
v: \mathcal{P} \longrightarrow\{T, F\}
$$

such that for all formulas A of \mathcal{L},

$$
(\mathcal{M}, s) \models A \text { if and only if } v^{*}(A)=T
$$

In particular, for any set S of sentences of \mathcal{L},
if $\mathcal{M} \models S$ then S is consistent in the propositional sense

Relationship Lemma Proof

Proof

For any prime formula $A \in P$ we define

$$
v(A)= \begin{cases}T & \text { if }(\mathcal{M}, s) \models A \\ F & \text { otherwise } .\end{cases}
$$

Since every formula in \mathcal{L} is either prime or is built up from prime formulas by means of propositional connectives, the conclusion is obvious

Relationship Lemma

Observe, that the converse of the Lemma implication:
if $\mathcal{M} \models S$ then S is consistent in the propositional sense is far from true

Consider a set

$$
S=\{\forall x(A(x) \Rightarrow B(x)), \forall x A(x), \exists x \neg B(x)\}
$$

All formulas of S are different prime formulas
So S has and obvious model and hence is consistent in the propositional sense
Obviously S has no predicate (first-order)model

Language with Equality

Definition (Language with Equality)

Let \mathcal{L} be a predicate (first order) language with equality

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

Equality Axioms

For any free variable or constant of \mathcal{L}, i.e for any
$u, w, u_{i}, w_{i} \in(V A R \cup C)$,
E1 $u=u$
E2 $(u=w \Rightarrow w=u)$
E3 $\quad\left(\left(u_{1}=u_{2} \cap u_{2}=u_{3}\right) \Rightarrow u_{1}=u_{3}\right)$
E4
$\left(\left(u_{1}=w_{1} \cap \ldots \cap u_{n}=w_{n}\right) \Rightarrow\left(R\left(u_{1}, \ldots, u_{n}\right) \Rightarrow R\left(w_{1}, \ldots, w_{n}\right)\right)\right)$
E5
$\left(\left(u_{1}=w_{1} \cap \ldots \cap u_{n}=w_{n}\right) \Rightarrow\left(t\left(u_{1}, \ldots, u_{n}\right) \Rightarrow t\left(w_{1}, \ldots, w_{n}\right)\right)\right)$
where $R \in \mathbf{P}$ and $t \in \mathbf{T}$, i.e. R is an arbitrary n -ary relation
symbol of \mathcal{L} and $t \in \mathbf{T}$ is an arbitrary n -ary term of \mathcal{L}

Language with Equality

Observe that given any structure $\mathcal{M}=[M, I]$
We have by simple verification that
for all $s: V A R \longrightarrow M$, and
for all $A \in\{E 1, E 2, E 3, E 4, E 5\}$,

$$
(\mathcal{M}, s) \models A
$$

This proves the following

Fact

All equality axioms are predicate tautologies of \mathcal{L}

This is why we call logic with equality axioms added to it, still just a logic

Henkin's Witnessing Expansion of \mathcal{L}

Henkin's Witnessing Expansion

Now we are going to define notions that are fundamental to the Henkin's technique for reducing predicate logic to propositional logic
The first one is that of witnessing expansion of \mathcal{L}
We construct an expansion of the language \mathcal{L} by adding a set of new constants to it
It means the we add a specially constructed the set C to the set \mathbf{C} of constants of \mathcal{L} such that

$$
C \cap \mathbf{C}=\emptyset
$$

The language such constructed is called witnessing expansion of the language \mathcal{L}
The construction of the expansion is described as follows

Henkin's Witnessing Expansion

Definition

For any predicate language

$$
\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

the language

$$
\mathcal{L}(C)=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C} \cup C))
$$

is called a witnessing expansion of \mathcal{L}
The set C of new constants and the language $\mathcal{L}(C)$ defined by the construction described below
We denote $\mathcal{L}(C)$ as

$$
\mathcal{L}(C)=\mathcal{L} \cup C
$$

Henkin's Witnessing Expansion

Construction of the witnessing expansion of \mathcal{L}

We define the set C of new constants by constructing (by induction) an infinite sequence

$$
C_{0}, C_{1}, \ldots, C_{n}, \ldots
$$

of sets of constants together with an infinite sequence

$$
\mathcal{L}_{0}, \mathcal{L}_{1}, \ldots, \mathcal{L}_{n}, \ldots
$$

of languages as follows

$$
C_{0}=\emptyset \quad \text { and } \quad \mathcal{L}_{0}=\mathcal{L} \cup C_{0}=\mathcal{L}
$$

We denote by

$$
A[x]
$$

the fact that the formula A has exactly one free variable

Henkin's Witnessing Expansion

For each such a formula $A[x]$ we introduce a distinct new constant denoted by

$$
c_{A[x]}
$$

We define

$$
C_{1}=\left\{C_{A[x]}: \quad A[x] \in \mathcal{L}_{0}\right\} \quad \text { and } \quad \mathcal{L}_{1}=\mathcal{L} \cup C_{1}
$$

Assume that we have already defined the set C_{n} of constants and the language \mathcal{L}_{n}
To each formula $A[x]$ of \mathcal{L}_{n} which is not already a formula of \mathcal{L}_{n-1} we assign distinct new constant symbol

Henkin’s Witnessing Expansion

We write it informally as $A[x] \in\left(\mathcal{L}_{n}-\mathcal{L}_{n-1}\right)$ to denote that $A[x]$ of \mathcal{L}_{n} which is not already a formula of \mathcal{L}_{n-1}
We define

$$
\begin{gathered}
C_{n+1}=C_{n} \cup\left\{c_{A[x]}: A[x] \in\left(\mathcal{L}_{n}-\mathcal{L}_{n-1}\right)\right\} \\
\mathcal{L}_{n+1}=\mathcal{L} \cup C_{n+1}
\end{gathered}
$$

We put

$$
\text { (*) } \quad C=\bigcup C_{n} \quad \text { and } \quad \mathcal{L}(C)=\mathcal{L} \cup C
$$

For any formula $A(x)$, a constant $C_{A[x]} \in C$ as defined by $(*)$ is called a witnessing constant

Reduction to Propositional Logic Theorem

Henkin Axioms

Definition(Henkin Axioms)

The following sentences
H1 $\quad\left(\exists x A(x) \Rightarrow A\left(c_{A[x]}\right)\right)$
H2 $\quad\left(A\left(c_{\neg A[x]}\right) \Rightarrow \forall x A(x)\right)$
are called Henkin axioms

The informal idea behind the Henkin axioms is the following
The axiom $\mathbf{H 1}$ says:
If $\exists x A(x)$ is true in a structure, choose an element a satisfying $A(x)$ and give it a new name $c_{A[x]}$
The axiom $\mathbf{H} 2$ says:
If $\forall x A(x)$ is false, choose a counter example b and call it by a new name $c_{\neg A[x]}$

Quantifiers Axioms

Definition (Quantifiers Axioms)

The following sentences
Q1 $\quad(\forall x A(x) \Rightarrow A(t))$
where t is a closed term of $\mathcal{L}(C)$
Q2 $(A(t) \Rightarrow \exists x A(x))$
where t is a closed term of $\mathcal{L}(C)$
re called quantifiers axioms

Observe that the quantifiers axioms Q1, Q2 obviously are predicate tautologies

Henkin Set

Henkin Set

Any set of sentences of $\mathcal{L}(C)$ which are either Henkin axioms or quantifiers axioms is called the Henkin set and denoted by

The sentences of $S_{\text {Henkin }}$ are obviously not true in every $\mathcal{L}(C)$-structure
But we are going to show now that
every \mathcal{L}-structure can be transformed into an $\mathcal{L}(C)$-structure which is a model of $S_{\text {Henkin }}$

Before we do so we need to introduce two new notions

Reduct and Expansion

Reduct and Expansion

Given two languages \mathcal{L} and \mathcal{L}^{\prime} such that

$$
\mathcal{L} \subseteq \mathcal{L}^{\prime}
$$

Let $\mathcal{M}^{\prime}=\left[M, I^{\prime}\right]$ be a structure for \mathcal{L}^{\prime}. The structure

$$
\mathcal{M}=\left[M, I^{\prime} \mid \mathcal{L}\right]
$$

is called the reduct of \mathcal{M}^{\prime} to the language \mathcal{L} and \mathcal{M}^{\prime} is called the expansion of \mathcal{M} to the language \mathcal{L}^{\prime}

Thus the reduct of \mathcal{M}^{\prime} and the expansion of \mathcal{M} are the same except that \mathcal{M}^{\prime} assigns meanings to the symbols in $\mathcal{L}-\mathcal{L}^{\prime}$

Reduct and Expansion Lemma

Lemma

Let $\mathcal{M}=[M, I]$ be any structure for the language \mathcal{L} and let $\mathcal{L}(C)$ be the witnessing expansion of \mathcal{L}
There is an expansion $\mathcal{M}^{\prime}=\left[M, I^{\prime}\right]$ of $\mathcal{M}=[M, I]$ such that

$$
\mathcal{M}^{\prime} \models S_{\text {Henkin }}
$$

Proof

In order to define the expansion of \mathcal{M} to \mathcal{M}^{\prime} we have to define the interpretation I^{\prime} for the symbols of the language $\mathcal{L}(C)=\mathcal{L} \cup C$, such that l^{\prime} restricted to \mathcal{L} is the interpretation I, i.e. such that

$$
I^{\prime} \mid \mathcal{L}=1
$$

Lemma Proof

This means that we have to define $c_{l^{\prime}}$ for all $c \in C$

By the definition, $c_{l^{\prime}} \in M$, so this also means that we have to assign the elements of M to all constants $c \in C$ in such a way that the resulting expansion is a model for all sentences from $S_{\text {Henkin }}$

The quantifier axioms are predicate tautologies so they are going to be true regardless
so we have to worry only about the Henkin axioms

Lemma Proof

Observe now that if the Lemma holds for the Henkin axiom H1 $\quad\left(\exists x A(x) \Rightarrow A\left(c_{A[x]}\right)\right)$
then it must hold for the axiom $\mathbf{H} 2$
Namely, let's consider the axiom H2:

$$
\left(A\left(c_{\neg A[x]}\right) \Rightarrow \forall x A(x)\right)
$$

Assume that $A\left(c_{\neg A[x]}\right)$ is true in the expansion \mathcal{M}^{\prime}, i.e. that

$$
\mathcal{M}^{\prime} \models A\left(c_{\neg A[x]}\right) \quad \text { and that } \quad \mathcal{M}^{\prime} \not \models \forall x A(x)
$$

This means that

$$
\mathcal{M}^{\prime} \models \neg \forall x A(x)
$$

and by the De Morgan Laws

$$
\mathcal{M}^{\prime} \models \exists x \neg A(x)
$$

Lemma Proof

But we have assumed that \mathcal{M}^{\prime} is a model for H1 In particular

$$
\mathcal{M}^{\prime} \models\left(\exists x \neg A(x) \Rightarrow \neg A\left(c_{\neg A[x]}\right)\right)
$$

and hence as $\mathcal{M}^{\prime} \models \exists x \neg A(x)$ we have that

$$
\mathcal{M}^{\prime} \models \neg A\left(c_{\neg A[x]}\right)
$$

This contradicts the assumption that

$$
\mathcal{M}^{\prime} \models A\left(c_{\neg A[x]}\right)
$$

Thus we proved that
if \mathcal{M}^{\prime} is a model for all axioms of the type $\mathbf{H} 1$, it is also a model for all axioms of the type H2

Lemma Proof

We define now $c_{l^{\prime}}$ for all $c \in C$, where

$$
C=\bigcup C_{n}
$$

We do so by induction on n
Base case: $n=1$ and $c_{A[x]} \in C_{1}$
By definition,

$$
C_{1}=\left\{c_{A[x]}: \quad A[x] \in \mathcal{L}\right\}
$$

In this case we have that $\exists x A(x) \in \mathcal{L}$ and hence the notion

$$
\mathcal{M} \models \exists x A(x)
$$

is well defined, as $\mathcal{M}=[M, I]$ is the structure for the language \mathcal{L}

Lemma Proof

As we consider arbitrary structure \mathcal{M}, there are two possibilities:

$$
\mathcal{M} \models \exists x A(x) \text { or } \mathcal{M} \nLeftarrow \exists x A(x)
$$

We define $c_{l^{\prime}}$, for all $c \in C_{1}$ as follows

If $\mathcal{M} \models \exists x A(x)$, then $\left(\mathcal{M}, v^{\prime}\right) \models A(x)$ for certain $v^{\prime}(x)=a \in M$. We set

$$
\left.\left(c_{A[x]]}\right)\right)_{l^{\prime}}=a
$$

If $\mathcal{M} \not \vDash \exists x A(x)$, we set
$\left(c_{A[x])}\right)_{\prime^{\prime}}$ arbitrarily

Lemma Proof

This makes all the positive $\mathbf{H 1}$ type Henkin axioms about the $C_{A[x]} \in C_{1}$ true, i.e.

$$
\mathcal{M}=(M, I) \models\left(\exists x A(x) \Rightarrow A\left(c_{A[x]}\right)\right)
$$

But once $c_{A[x]} \in C_{1}$ are all interpreted in M, then the notion

$$
\mathcal{M}^{\prime} \models A
$$

is defined for all formulas $A \in \mathcal{L} \cup C_{1}$

We carry the same argument and define $c_{l^{\prime}}$, for all $c \in C_{2}$ and so on...

Lemma Proof

The inductive step is performed in the exactly the same way as the one above

Observe that we have aleady we proved that if \mathcal{M}^{\prime} is a model for all axioms of the type $\mathbf{H} 1$, it is also a model for all axioms of the type H2

Hence this ends the proof of the Lemma

Canonical Structure

Definition (Canonical Structure)

Given a structure $\mathcal{M}=[M, I]$ for the language \mathcal{L}
The expansion

$$
\mathcal{M}^{\prime}=\left[M, I^{\prime}\right]
$$

of $\mathcal{M}=[M, I]$ is called a canonical structure for $\mathcal{L}(C)$
if all $a \in M$ are denoted by some $c \in C$. That is

$$
M=\left\{c_{l^{\prime}}: c \in C\right\}
$$

Now we are ready to state and prove a theorem that provides the essential step in the proof of the completeness theorem for predicate logic.

The Reduction to Propositional Logic

Theorem (The Reduction Theorem)

Let $\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ be a predicate language and let $\mathcal{L}(C)=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C} \cup C)$ be a witnessing expansion of \mathcal{L}
For any set S of sentences of \mathcal{L} the following conditions are equivalent
(i) S has a model, i.e. there is a structure $\mathcal{M}=[M, I]$ for the language \mathcal{L} such that $\mathcal{M} \models A$ for all $A \in S$
(ii) There is a canonical structure $\mathcal{M}=[M, I]$ for $\mathcal{L}(C)$ which is a model for S, i.e. such that $\mathcal{M} \models A$ for all $A \in S$ (iii) The set $S \cup S_{H e n k i n} \cup E Q$ is consistent in sense of propositional logic, where $E Q$ denotes the equality axioms E1-E5

Reduction Theorem Proof

Proof

We have to prove that the conditions (i), (ii), (iii) of the theorem are equivalent

The implication (ii) \rightarrow (i) is immediate
The implication (i) \rightarrow (iii) follows from the Lemma
We have to prove only the implication (iii) \rightarrow (ii)
Assume (iii), i.e. that the set $S \cup S_{\text {Henkin }} \cup E Q$ is consistent in sense of propositional logic and let v be a truth assignment to the prime sentences of $\mathcal{L}(C)$, such that

$$
v^{*}(A)=T \quad \text { for all } \quad A \in S \cup S_{\text {Henkin }} \cup E Q
$$

Reduction Theorem Proof

To prove the theorem, we construct a canonical $\mathcal{L}(C)$ structure $\mathcal{M}=[M, I]$ such that, for all sentences A of $\mathcal{L}(C)$,

$$
\mathcal{M} \models A \quad \text { if and only if } \quad v^{*}(A)=T
$$

By assumption, the truth assignment v is a propositional model for the set $S_{\text {Henkin, }}$ so v^{*} satisfies the following conditions:
(i) $v^{*}(\exists x A(x))=T \quad$ if and only if $\quad v^{*}\left(A\left(c_{A[x]}\right)\right)=T$
(ii) $\quad v^{*}(\forall x A(x))=T \quad$ if and only if $\quad v^{*}(A(t))=T$
for all closed terms t of $\mathcal{L}(C)$

Reduction Theorem Proof

The conditions (i) and (ii) allow us to construct the canonical $\mathcal{L}(C)$ model $\mathcal{M}=[M, I]$ out of the constants in C in the following way
To define $\mathcal{M}=[M, I]$ we must
(1.) specify the universe M of \mathcal{M}
(2.) define, for each n-ary predicate symbol $R \in \mathbf{P}$, the interpretation R_{l} as an n-argument relation in M
(3.) define, for each n-ary function symbol $f \in \mathbf{F}$, the interpretation $f_{l}: M^{n} \rightarrow M$, and
(4.) define, for each constant symbol c of $\mathcal{L}(C)$, i.e.
$c \in \mathbf{C} \cup C$, its interpretation as element $c_{l} \in M$

Reduction Theorem Proof

The construction of the structure

$$
\mathcal{M}=[M, I]
$$

must be such that the condition
(CM) $\quad \mathcal{M} \models A \quad$ if and only if $\quad v^{*}(A)=T$
holds for for all sentences A of $\mathcal{L}(C)$

This condition (CM) tells us how to construct the definitions
(1.) - (4.) above

Reduction Theorem Proof

Here are the definitions
(1.) Definition of the universe M of \mathcal{M}

In order to define the universe M we first define a relation \approx on C as follows

$$
c \approx d \quad \text { if and only if } \quad v(c=d))=T
$$

The equality axioms $E Q$ guarantee that the relation \approx is equivalence relation on C. Here is the proof
Reflexivity of \approx
All equality axioms $E Q$ are predicate tautologies, so $v(c=d))=T$ by axiom E1 and we have

$$
c \approx c \text { for all } c \in C
$$

Reduction Theorem Proof

Symmetry condition

$$
\text { if } c \approx d \text {, then } d \approx c
$$

holds by axiom E2
Assume $c \approx d$, by definition $v(c=d))=T$
By axiom E2

$$
v^{*}((c=d \Rightarrow d=c))=v(c=d) \Rightarrow v(d=c)=T
$$

i.e. $T \Rightarrow v(d=c)=T$

This is possible only if $v(d=c)=T$
This proves that $d \approx c$

Reduction Theorem Proof

We prove transitivity in a similar way
Assume now that $c \approx d$ and $d \approx e$
By the axiom E3 we have that

$$
v^{*}(((c=d \cap d=e) \Rightarrow c=e))=T
$$

Since $v(c=d))=T$ and $v(d=e))=T$ by the assumption $c \approx d$ and $d \approx e$, we evaluate
$v^{*}((c=d \cap d=e) \Rightarrow c=e)=(T \cap T \Rightarrow c=e)=$
$(T \Rightarrow c=e)=T$ and get that $(c=e)=T$ and hence

$$
d \approx e
$$

Reduction Theorem Proof

We denote by [c] the equivalence class of c and we define the universe M of \mathcal{M} as

$$
M=\{[c]: c \in C\}
$$

(2.) Definition of $R_{I} \subseteq M^{n}$

Let M be the the universe defined above
We define $R_{l} \subseteq M^{n}$ as follows
$\left(\left[c_{1}\right],\left[c_{2}\right], \ldots,\left[c_{n}\right]\right) \in R_{l}$ if and only if $v\left(R\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right)=T$
We have to prove now that R_{l} is well defined by the condition above

Reduction Theorem Proof

In order to prove that R_{l} is well defined we must verify:

$$
\begin{gathered}
\text { if }\left[c_{1}\right]=\left[d_{1}\right], \ldots,\left[c_{n}\right]=\left[d_{n}\right] \text { and }\left(\left[c_{1}\right],\left[c_{2}\right], \ldots,\left[c_{n}\right]\right) \in R_{l} \\
\text { then }\left(\left[d_{1}\right],\left[d_{2}\right], \ldots,\left[d_{n}\right]\right) \in R_{l}
\end{gathered}
$$

We have by the axiom E4 that
$v^{*}\left(\left(\left(c_{1}=d_{1} \cap \ldots c_{n}=d_{n}\right) \Rightarrow\left(R\left(c_{1}, . ., c_{n}\right) \Rightarrow R\left(d_{1}, . ., d_{n}\right)\right)\right)\right)=T$
By the assumption $\left[c_{1}\right]=\left[d_{1}\right], \ldots,\left[c_{n}\right]=\left[d_{n}\right]$ we have that

$$
v\left(c_{1}=d_{1}\right)=T, \ldots, v\left(c_{n}=d_{n}\right)=T
$$

Reduction Theorem Proof

By the assumption $\left(\left[c_{1}\right],\left[c_{2}\right], \ldots,\left[c_{n}\right]\right) \in R_{1}$, we have that

$$
v\left(R\left(c_{1}, \ldots, c_{n}\right)\right)=T
$$

Hence the axiom E4 condition becomes

$$
\left(T \Rightarrow\left(T \Rightarrow v\left(R\left(d_{1}, \ldots, d_{n}\right)\right)\right)\right)=T
$$

It holds only when $v\left(R\left(d_{1}, \ldots, d_{n}\right)\right)=T$ and so we proved that

$$
\left(\left[d_{1}\right],\left[d_{2}\right], \ldots,\left[d_{n}\right]\right) \in R_{l}
$$

Reduction Theorem Proof

(3.) Definition of $f_{l}: M^{n} \rightarrow M$

Let $c_{1}, c_{2}, \ldots, c_{n} \in C$ and $f \in \mathbf{F}$
We claim that there is $c \in C$ such that

$$
f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c \text { and } v\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c\right)=T
$$

For consider the formula
$A[x]$ given by $f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=x$

$$
\text { If } v^{*}(\exists x A(x))=v^{*}\left(\exists x f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=x\right)=T
$$

we want to prove

$$
v^{*}\left(A\left(c_{A[x]}\right)\right)=T \quad \text { i.e. } \quad v\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c_{A}\right)=T
$$

Reduction Theorem Proof

So suppose that $v\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c_{A}\right)=F$
But one member of he Henkin set $S_{\text {Henkin }}$ is the sentence

$$
\left(A\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right) \Rightarrow \exists x A(x)\right)
$$

so we must have that

$$
v^{*}\left(A\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right)\right)=F
$$

But this says that v assigns F to the atomic sentence

$$
f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=f\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Reduction Theorem Proof

By the axiom E1 $v\left(c_{i}=c_{i}\right)=T$ for $i=1,2 \ldots n$
By axiom E5 we have that
$\left(v^{*}\left(c_{1}=c_{1} \cap \ldots c_{n}=c_{n}\right) \Rightarrow v^{*}\left(f\left(c_{1}, \ldots, c_{n}\right)=f\left(c_{1}, \ldots, c_{n}\right)\right)\right)=T$
This means that $T \Rightarrow F=T$ and this contradiction proves there is $c \in C$ such that

$$
f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c \text { and } v\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c\right)=T
$$

We hence define
$f_{l}\left(\left(\left[c_{1}\right], \ldots,\left[c_{n}\right]\right)=[c]\right.$ for c such that $v\left(f\left(c_{1}, \ldots, c_{n}\right)=c\right)=T$
The argument similar to the one used in (2.) proves that f_{l} is well defined

Reduction Theorem Proof

(4.) Definition of $c_{l} \in M$

For any $c \in C$ we take

$$
c_{I}=[c]
$$

If $d \in \mathbf{C}$, then an argument similar to that used on (3.) shows that there is $c \in C$ such that $v(d=c)=T$, i.e. $d \approx c$, so we put

$$
d_{l}=[c]
$$

We hence completed the construction of the canonical structure $\mathcal{M}=[M, I]$

Reduction Theorem Proof

Observe that directly from the definition of the canonical structure $\mathcal{M}=[M, I]$ we have that the property

$$
\text { (CM) } \quad \mathcal{M} \models A \quad \text { if and only if } \quad v^{*}(A)=T
$$

holds for atomic propositional sentences, i.e. we proved that

$$
\mathcal{M} \models B \text { if and only if } v^{*}(B)=T \text { for sentences } B \in \mathcal{P}
$$

To complete the proof of the Reduction Theorem we prove now that the property (CM) holds for all other sentences

We carry the proof by induction on length of formulas The Base Case is already proved. The Inductive Case is as follows

Reduction Theorem Proof

Case of propositional connectives is similar to the case of a formula $(A \cap B)$ below

$$
\mathcal{M} \models(A \cap B) \text { if and only if } \mathcal{M} \models A \text { and } \mathcal{M} \models B
$$

It follows directly from the satisfaction definition
$\mathcal{M} \models A$ and $\mathcal{M} \models B$ if and only if $v^{*}(A)=T$ and $v^{*}(B)=T$ if and only if $v^{*}(A \cap B)=T$

It holds by the induction hypothesis
We proved

$$
\mathcal{M} \models(A \cap B) \text { if and only if } v^{*}(A \cap B)=T
$$

for all sentences A, B of $\mathcal{L}(C)$

Reduction Theorem Proof

We prove now the case of a sentence B of the form

$$
\exists x A(x)
$$

We want to show that

$$
\mathcal{M} \models \exists x A(x) \text { if and only if } v^{*}(\exists x A(x))=T
$$

Let $v^{*}(\exists x A(x))=T$
Then there is a c such that $v^{*}(A(c))=T$, so by induction hypothesis, $\mathcal{M} \models A(c)$ so by definition

$$
\mathcal{M} \models \exists x A(x)
$$

Reduction Theorem Proof

On the other hand, if $v^{*}(\exists x A(x))=F$, then by $S_{\text {Henking }}$ quantifier axiom Q2 we have that

$$
v^{*}(A(t))=F
$$

for all closed terms t of $\mathcal{L}(C)$. In particular, for every $c \in C$

$$
v^{*}(A(c))=F
$$

By induction hypothesis,

$$
\mathcal{M} \models \neg A(c) \text { for all } c \in C
$$

Since every element of M is denoted by some $c \in C$ we have that

$$
\mathcal{M} \models \neg \exists x A(x)
$$

The proof of the case of a sentence B of the form $\forall x A(x)$ is similar and is left as and exercise This ends the proof of the Reduction Theorem

Compactness Theorem and
 Löwenheim-Skolem Theorem

Compactness and Löwenheim-Skolem Theorems

The Reduction to Propositional Logic Theorem provides a powerful method of constructing models of theories out of symbols in a form of canonical models

It also gives us immediate proofs of the two important theorems: Compactness Theorem for the predicate logic and the Löwenheim-Skolem Theorem

Compactness Theorem

Compactness theorem

Let S be any set of predicate formulas of \mathcal{L}
The set S has a model if and only if any finite subset S_{0} of
S has a model
Proof
Assume that S is a set of predicate formulas such that every finite subset S_{0} of S has a model
We need to show that S has a model

The implication (iii) \rightarrow (i) of the Reduction Theorem says:
" If The set $S \cup S_{\text {Henkin }} \cup E Q$ is consistent in sense of propositional logic, then S has a model"
So showing that S has a model this is equivalent to proving that $S \cup S_{\text {Henkin }} \cup E Q$ is consistent in the sense of propositional logic

Compactness Theorem

By already proved Compactness Theorem for propositional logic of \mathcal{L}, it suffices to prove that for every finite subset $S_{0} \subset S$, the set $S_{0} \cup S_{\text {Henkin }} \cup E Q$ has a model

This follows from the assumption that S is a set such that every finite subset S_{0} of S has a model and the implication (i) \rightarrow (iii) of the Reduction Theorem that says:
" if S_{0} has a model, then the set $S_{0} \cup S_{\text {Henkin }} \cup E Q$ is consistent, i.e. has a model

Löwenheim-Skolem Theorem

Löwenheim-Skolem Theorem

Let κ be an infinite cardinal
Let \mathcal{L} be a predicate language with the alphabet \mathcal{A} such that $\operatorname{card}(\mathcal{A}) \leq \kappa$
Let Γ be a set of at most κ formulas of the \mathcal{L}

If the set S has a model, then there is a model

$$
\mathcal{M}=[M, I]
$$

of S such that

$$
\operatorname{cardM} \leq \kappa
$$

Löwenheim-Skolem Theorem

Proof

Let \mathcal{L} be a predicate language with the alphabet \mathcal{A} such that $\operatorname{card}(\mathcal{A}) \leq \kappa$
Obviously, $\operatorname{card}(\mathcal{F}) \leq \kappa$
By the definition of the witnessing expansion $\mathcal{L}(C)$ of \mathcal{L}, $C=U_{n} C_{n}$ and for each $n, \operatorname{card}\left(C_{n}\right) \leq \kappa$. So also card $C \leq \kappa$
Thus any canonical structure for $\mathcal{L}(C)$ has $\leq \kappa$ elements
By the implication (i) \rightarrow (ii) of the Reduction Theorem that
says: " if there is a model of S, then there is a canonical structure $\mathcal{M}=[M, I]$ for $\mathcal{L}(C)$ which is a model for S "
S has a model (canonical structure) with $\leq \kappa$ elements
This ends the proof

