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Henkin Method

Propositional tautologies within L barely scratch the surface
of the collection of predicate (first -order) tautologies

For example the following first-order formulas are
propositional tautologies

(∃xA(x) ∪ ¬∃xA(x)), (∀xA(x) ∪ ¬∀xA(x)

(¬(∃xA(x) ∪ ∀xA(x))⇒ (¬∃xA(x) ∩ ¬∀xA(x)))

but the following are predicate (first order) tautologies that

are not propositional tautologies

∀x(A(x) ∪ ¬A(x))

(¬∀xA(x)⇒ ∃x¬A(x))



Henkin Method

To stress the difference between the propositional
tautologies of a propositional language and predicate (first
order) tautologies the word tautology is used only for the
propositional tautologies of a propositional language

The word a valid formula is used for the predicate (first order)
tautologies in this case

We use here both notions, with preference to word predicate
tautology or tautology for short when there is no room for
misunderstanding

To make sure that there is no misunderstandings we remind
the following basic definitions from chapter 8



Basic Definitions

Given a first order language L with the set of variables VAR
and the set of formulas F . Let

M = [M, I ]

be a structure for the languageL, with the universe M and
the interpretation I and let

s : VAR −→ M

be an assignment of L in M

Here are some basic definitions



Basic Definitions

D1. A is satisfied inM

Given a structure M = [M, I ], we say that a formula A

is satisfied inM if there is an assignment s : VAR −→ M
such that

(M, s) |= A

D2. A is true inM

Given a structure M = [M, I ], we say that a formula A

is true inM if
(M, s) |= A

for all assignments s : VAR −→ M



Basic Definitions

D3. Model M

If A is true in a structureM = [M, I ], thenM is called a
model for A

We denote it as
M |= A

D4. A is predicate tautology (valid)

A formula A is a predicate tautology (valid) if it is true in all
structuresM = [M, I ], i.e. if all structures are models of A

We use use the term predicate tautology and and denote it,
when there is no confusion with propositional case as

|= A



Basic Definitions

Case: A is a sentence

If the formula A is a sentence, then the truth or falsity of the
statement (M, s) |= A is completely independent of s

Thus we write
M |= A

and read M is a model of A , if for some (hence every)
valuation s

(M, s) |= A

D5. Model of a set S of formulas

M is a model of a set S (of sentences) if and only if M |= A
for all A ∈ S. We write it

M |= S



Predicate and Propositional Models



Relationship

Given a predicate language L

The predicate models for L are defined in terms of

structures M = [M, I ] and assignments s : VAR −→ M

The propositional models for L are defined in terms of of

truth assignments v : P −→ {T ,F}

The relationship between the predicate models and
propositional models is established by the following Lemma



Relationship Lemma

Lemma

Let M = [M, I] be a structure for the language L and let
s : VAR −→ M an assignment inM

There is a truth assignment

v : P −→ {T ,F}

such that for all formulas A of L,

(M, s) |= A if and only if v∗(A) = T

In particular, for any set S of sentences of L,

if M |= S then S is consistent in the propositional sense



Relationship Lemma Proof

Proof

For any prime formula A ∈ P we define

v(A) =

{
T if (M, s) |= A
F otherwise.

Since every formula in L is either prime or is built up from
prime formulas by means of propositional connectives, the
conclusion is obvious



Relationship Lemma

Observe, that the converse of the Lemma implication:

if M |= S then S is consistent in the propositional sense

is far from true

Consider a set

S = {∀x(A(x)⇒ B(x)),∀xA(x),∃x¬B(x)}

All formulas of S are different prime formulas

So S has and obvious model and hence is consistent in the
propositional sense

Obviously S has no predicate (first-order)model



Language with Equality

Definition (Language with Equality)
Let L be a predicate (first order) language with equality

L = L{¬,∩,∪,⇒}(P,F,C)

Equality Axioms
For any free variable or constant of L, i.e for any
u,w, ui ,wi ∈ (VAR ∪ C),
E1 u = u
E2 (u = w ⇒ w = u)

E3 ((u1 = u2 ∩ u2 = u3)⇒ u1 = u3)

E4
((u1 = w1 ∩ ... ∩ un = wn)⇒ (R(u1, ..., un)⇒ R(w1, ...,wn)))

E5
((u1 = w1 ∩ ... ∩ un = wn)⇒ (t(u1, ..., un)⇒ t(w1, ...,wn)))

where R ∈ P and t ∈ T, i.e. R is an arbitrary n-ary relation
symbol of L and t ∈ T is an arbitrary n-ary term of L



Language with Equality

Observe that given any structureM = [M, I ]

We have by simple verification that

for all s : VAR −→ M, and

for all A ∈ {E1,E2,E3,E4,E5},

(M, s) |= A

This proves the following

Fact

All equality axioms are predicate tautologies of L

This is why we call logic with equality axioms added to it,
still just a logic



Henkin’s Witnessing Expansion of L



Henkin’s Witnessing Expansion

Now we are going to define notions that are fundamental to
the Henkin’s technique for reducing predicate logic to
propositional logic

The first one is that of witnessing expansion of L

We construct an expansion of the language L by adding a
set of new constants to it

It means the we add a specially constructed the set C to the
set C of constants of L such that

C ∩ C = ∅

The language such constructed is called witnessing
expansion of the language L

The construction of the expansion is described as follows



Henkin’s Witnessing Expansion

Definition
For any predicate language

L = L(P,F,C)

the language
L(C) = L(P,F,C ∪ C))

is called a witnessing expansion of L

The set C of new constants and the language L(C) defined
by the construction described below

We denote L(C) as

L(C) = L ∪ C



Henkin’s Witnessing Expansion

Construction of the witnessing expansion of L

We define the set C of new constants by constructing (by
induction) an infinite sequence

C0,C1, ...,Cn, . . .

of sets of constants together with an infinite sequence

L0,L1, ...,Ln, . . .

of languages as follows

C0 = ∅ and L0 = L ∪ C0 = L

We denote by
A [x]

the fact that the formula A has exactly one free variable



Henkin’s Witnessing Expansion

For each such a formula A [x] we introduce a distinct new
constant denoted by

cA [x]

We define

C1 = {cA [x] : A [x] ∈ L0 } and L1 = L ∪ C1

Assume that we have already defined the set Cn of constants
and the language Ln

To each formula A [x] of Ln which is not already a formula
of Ln−1 we assign distinct new constant symbol

cA [x]



Henkin’s Witnessing Expansion

We write it informally as A [x] ∈ (Ln − Ln−1) to denote that
A [x] of Ln which is not already a formula of Ln−1

We define

Cn+1 = Cn ∪ {cA [x] : A [x] ∈ (Ln − Ln−1) }

Ln+1 = L ∪ Cn+1

We put

(∗) C =
⋃

Cn and L(C) = L ∪ C

For any formula A(x), a constant cA [x] ∈ C as defined by (∗) is
called a witnessing constant



Reduction to Propositional Logic Theorem



Henkin Axioms

Definition(Henkin Axioms)

The following sentences

H1 (∃xA(x)⇒ A(cA [x]))

H2 (A(c¬A [x])⇒ ∀xA(x))

are called Henkin axioms

The informal idea behind the Henkin axioms is the following

The axiom H1 says:

If ∃xA(x) is true in a structure, choose an element a
satisfying A(x) and give it a new name cA [x]

The axiom H2 says:

If ∀xA(x) is false, choose a counter example b and call it by
a new name c¬A [x]



Quantifiers Axioms

Definition (Quantifiers Axioms)

The following sentences

Q1 (∀xA(x)⇒ A(t))

where t is a closed term of L(C)

Q2 (A(t)⇒ ∃xA(x))

where t is a closed term of L(C)

re called quantifiers axioms

Observe that the quantifiers axioms Q1, Q2 obviously are
predicate tautologies



Henkin Set

Henkin Set

Any set of sentences of L(C) which are either Henkin
axioms or quantifiers axioms is called the Henkin set and
denoted by

SHenkin

The sentences of SHenkin are obviously not true in every
L(C)-structure

But we are going to show now that

every L-structure can be transformed into an L(C)-structure
which is a model of SHenkin

Before we do so we need to introduce two new notions



Reduct and Expansion

Reduct and Expansion

Given two languages L and L
′

such that

L ⊆ L
′

LetM
′

= [M, I
′

] be a structure for L
′

. The structure

M = [M, I
′

| L]

is called the reduct ofM
′

to the language L andM
′

is
called the expansion ofM to the language L

′

Thus the reduct ofM
′

and the expansion ofM are the same
except thatM

′

assigns meanings to the symbols in L − L
′



Reduct and Expansion Lemma

Lemma

LetM = [M, I] be any structure for the language L and

let L(C) be the witnessing expansion of L

There is an expansionM
′

= [M, I
′

] ofM = [M, I ] such that

M
′

|= SHenkin

Proof

In order to define the expansion ofM toM
′

we have to
define the interpretation I

′

for the symbols of the language
L(C) = L ∪ C , such that I

′

restricted to L is the
interpretation I , i.e. such that

I
′

| L = I



Lemma Proof

This means that we have to define cI′ for all c ∈ C

By the definition, cI′ ∈ M, so this also means that we have to
assign the elements of M to all constants c ∈ C in such a
way that the resulting expansion is a model for all sentences
from SHenkin

The quantifier axioms are predicate tautologies so they are
going to be true regardless

so we have to worry only about the Henkin axioms



Lemma Proof

Observe now that if the Lemma holds for the Henkin axiom
H1 (∃xA(x)⇒ A(cA [x]))

then it must hold for the axiom H2
Namely, let’s consider the axiom H2:

(A(c¬A [x])⇒ ∀xA(x))

Assume that A(c¬A [x]) is true in the expansionM
′

, i.e. that

M
′

|= A(c¬A [x]) and that M
′

6|= ∀xA(x)

This means that
M

′

|= ¬∀xA(x)

and by the De Morgan Laws

M
′

|= ∃x¬A(x)



Lemma Proof

But we have assumed thatM
′

is a model for H1

In particular

M
′

|= (∃x¬A(x)⇒ ¬A(c¬A [x]))

and hence asM
′

|= ∃x¬A(x) we have that

M
′

|= ¬A(c¬A [x])

This contradicts the assumption that

M
′

|= A(c¬A [x])

Thus we proved that

if M
′

is a model for all axioms of the type H1, it is also a
model for all axioms of the type H2



Lemma Proof

We define now cI′ for all c ∈ C, where

C =
⋃

Cn

We do so by induction on n

Base case: n = 1 and cA [x] ∈ C1

By definition,
C1 = {cA [x] : A [x] ∈ L}

In this case we have that ∃xA(x) ∈ L and hence the notion

M |= ∃xA(x)

is well defined, asM = [M, I] is the structure for the language
L



Lemma Proof

As we consider arbitrary structureM, there are two
possibilities:

M |= ∃xA(x) or M 6|= ∃xA(x)

We define cI′ , for all c ∈ C1 as follows

IfM |= ∃xA(x), then (M, v′) |= A(x) for certain
v′(x) = a ∈ M. We set

(cA [x]))I′ = a

IfM 6|= ∃xA(x), we set

(cA [x]))I′ arbitrarily



Lemma Proof

This makes all the positive H1 type Henkin axioms about the
cA [x] ∈ C1 true, i.e.

M = (M, I) |= (∃xA(x)⇒ A(cA [x]))

But once cA [x] ∈ C1 are all interpreted in M, then the notion

M
′

|= A

is defined for all formulas A ∈ L ∪ C1

We carry the same argument and define cI′ , for all c ∈ C2

and so on . . .



Lemma Proof

The inductive step is performed in the exactly the same way
as the one above

Observe that we have aleady we proved that

if M
′

is a model for all axioms of the type H1, it is also a
model for all axioms of the type H2

Hence this ends the proof of the Lemma



Canonical Structure

Definition (Canonical Structure)

Given a structureM = [M, I] for the language L

The expansion
M

′

= [M, I
′

]

ofM = [M, I] is called a canonical structure for L(C)

if all a ∈ M are denoted by some c ∈ C. That is

M = {cI′ : c ∈ C}

Now we are ready to state and prove a theorem that provides
the essential step in the proof of the completeness theorem
for predicate logic.



The Reduction to Propositional Logic

Theorem (The Reduction Theorem)

Let L = L(P,F,C) be a predicate language and let
L(C) = L(P,F,C ∪ C) be a witnessing expansion of L

For any set S of sentences of L the following conditions are
equivalent

(i) S has a model, i.e. there is a structureM = [M, I] for the
language L such thatM |= A for all A ∈ S

(ii) There is a canonical structure M = [M, I] for L(C)
which is a model for S, i.e. such thatM |= A for all A ∈ S

(iii) The set S ∪ SHenkin ∪ EQ is consistent in sense of
propositional logic, where EQ denotes the equality axioms
E1 − E5



Reduction Theorem Proof

Proof

We have to prove that the conditions (i), (ii), (iii) of the
theorem are equivalent

The implication (ii)→ (i) is immediate

The implication (i)→ (iii) follows from the Lemma

We have to prove only the implication (iii) → (ii)

Assume (iii) , i.e. that the set S ∪ SHenkin ∪ EQ is consistent
in sense of propositional logic and let v be a truth assignment
to the prime sentences of L(C) , such that

v∗(A) = T for all A ∈ S ∪ SHenkin ∪ EQ



Reduction Theorem Proof

To prove the theorem, we construct a canonical L(C)
structureM = [M, I] such that, for all sentences A of L(C),

M |= A if and only if v∗(A) = T

By assumption, the truth assignment v is a propositional
model for the set SHenkin, so v∗ satisfies the following
conditions:

(i) v∗(∃xA(x)) = T if and only if v∗(A(cA [x])) = T

(ii) v∗(∀xA(x)) = T if and only if v∗(A(t)) = T

for all closed terms t of L(C)



Reduction Theorem Proof

The conditions (i) and (ii) allow us to construct the canonical
L(C) modelM = [M, I] out of the constants in C in the
following way

To defineM = [M, I] we must

(1.) specify the universe M ofM

(2.) define, for each n-ary predicate symbol R ∈ P, the
interpretation RI as an n-argument relation in M

(3.) define, for each n-ary function symbol f ∈ F, the
interpretation fI : Mn → M, and

(4.) define, for each constant symbol c of L(C), i.e.
c ∈ C ∪ C, its interpretation as element cI ∈ M



Reduction Theorem Proof

The construction of the structure

M = [M, I]

must be such that the condition

(CM) M |= A if and only if v∗(A) = T

holds for for all sentences A of L(C)

This condition (CM) tells us how to construct the definitions
(1.) - (4.) above



Reduction Theorem Proof

Here are the definitions

(1.) Definition of the universe M ofM

In order to define the universe M we first define a relation ≈
on C as follows

c ≈ d if and only if v(c = d)) = T

The equality axioms EQ guarantee that the relation ≈ is
equivalence relation on C. Here is the proof

Reflexivity of ≈

All equality axioms EQ are predicate tautologies, so
v(c = d)) = T by axiom E1 and we have

c ≈ c for all c ∈ C



Reduction Theorem Proof

Symmetry condition

if c ≈ d, then d ≈ c

holds by axiom E2

Assume c ≈ d, by definition v(c = d)) = T

By axiom E2

v∗((c = d ⇒ d = c)) = v(c = d)⇒ v(d = c) = T

i.e. T ⇒ v(d = c) = T

This is possible only if v(d = c) = T

This proves that d ≈ c



Reduction Theorem Proof

We prove transitivity in a similar way

Assume now that c ≈ d and d ≈ e

By the axiom E3 we have that

v∗(((c = d ∩ d = e)⇒ c = e)) = T

Since v(c = d)) = T and v(d = e)) = T by the assumption
c ≈ d and d ≈ e, we evaluate

v∗((c = d ∩ d = e)⇒ c = e) = (T ∩ T ⇒ c = e) =

(T ⇒ c = e) = T and get that (c = e) = T and hence

d ≈ e



Reduction Theorem Proof

We denote by [c] the equivalence class of c and we define
the universe M ofM as

M = {[c] : c ∈ C}

(2.) Definition of RI ⊆ Mn

Let M be the the universe defined above

We define RI ⊆ Mn as follows

([c1], [c2], . . . , [cn]) ∈ RI if and only if v(R(c1, c2, . . . , cn)) = T

We have to prove now that RI is well defined by the condition
above



Reduction Theorem Proof

In order to prove that RI is well defined we must verify:

if [c1] = [d1], . . . , [cn] = [dn] and ([c1], [c2], . . . , [cn]) ∈ RI

then ([d1], [d2], . . . , [dn]) ∈ RI

We have by the axiom E4 that

v∗(((c1 = d1 ∩ ... cn = dn)⇒ (R(c1, .., cn)⇒ R(d1, .., dn)))) = T

By the assumption [c1] = [d1], . . . , [cn] = [dn] we have that

v(c1 = d1) = T , . . . , v(cn = dn) = T



Reduction Theorem Proof

By the assumption ([c1], [c2], . . . , [cn]) ∈ RI, we have that

v(R(c1, ..., cn)) = T

Hence the axiom E4 condition becomes

(T ⇒ (T ⇒ v(R(d1, ..., dn)))) = T

It holds only when v(R(d1, ..., dn)) = T

and so we proved that

([d1], [d2], . . . , [dn]) ∈ RI



Reduction Theorem Proof

(3.) Definition of fI : Mn → M

Let c1, c2, . . . , cn ∈ C and f ∈ F

We claim that there is c ∈ C such that

f(c1, c2, . . . , cn) = c and v(f(c1, c2, . . . , cn) = c) = T

For consider the formula

A [x] given by f(c1, c2, . . . , cn) = x

If v∗(∃xA(x)) = v∗(∃x f(c1, c2, . . . , cn) = x) = T

we want to prove

v∗(A(cA [x])) = T i.e. v(f(c1, c2, . . . , cn) = cA ) = T



Reduction Theorem Proof

So suppose that v(f(c1, c2, . . . , cn) = cA ) = F

But one member of he Henkin set SHenkin is the sentence

(A(f(c1, c2, . . . , cn))⇒ ∃xA(x))

so we must have that

v∗(A(f(c1, c2, . . . , cn))) = F

But this says that v assigns F to the atomic sentence

f(c1, c2, . . . , cn) = f(c1, c2, . . . , cn)



Reduction Theorem Proof

By the axiom E1 v(ci = ci) = T for i = 1, 2 . . . n

By axiom E5 we have that

(v∗(c1 = c1∩. . . cn = cn)⇒ v∗(f(c1, . . . , cn) = f(c1, . . . , cn))) = T

This means that T ⇒ F = T and this contradiction proves

there is c ∈ C such that

f(c1, c2, . . . , cn) = c and v(f(c1, c2, . . . , cn) = c) = T

We hence define

fI(([c1], . . . , [cn]) = [c] for c such that v(f(c1, . . . , cn) = c) = T

The argument similar to the one used in (2.) proves that fI is
well defined



Reduction Theorem Proof

(4.) Definition of cI ∈ M

For any c ∈ C we take

cI = [c]

If d ∈ C, then an argument similar to that used on (3.) shows
that there is c ∈ C such that v(d = c) = T , i.e. d ≈ c, so
we put

dI = [c]

We hence completed the construction of the canonical
structureM = [M, I]



Reduction Theorem Proof

Observe that directly from the definition of the canonical
structureM = [M, I] we have that the property

(CM) M |= A if and only if v∗(A) = T

holds for atomic propositional sentences, i.e. we proved that

M |= B if and only if v∗(B) = T for sentences B ∈ P

To complete the proof of the Reduction Theorem we prove
now that the property (CM) holds for all other sentences

We carry the proof by induction on length of formulas

The Base Case is already proved. The Inductive Case is as
follows



Reduction Theorem Proof

Case of propositional connectives is similar to the case of a
formula (A ∩ B) below

M |= (A ∩ B) if and only if M |= A and M |= B

It follows directly from the satisfaction definition

M |= A andM |= B if and only if v∗(A) = T and v∗(B) = T

if and only if v∗(A ∩ B) = T

It holds by the induction hypothesis
We proved

M |= (A ∩ B) if and only if v∗(A ∩ B) = T

for all sentences A ,B of L(C)



Reduction Theorem Proof

We prove now the case of a sentence B of the form

∃xA(x)

We want to show that

M |= ∃xA(x) if and only if v∗(∃xA(x)) = T

Let v∗(∃xA(x)) = T

Then there is a c such that v∗(A(c)) = T , so by

induction hypothesis,M |= A(c) so by definition

M |= ∃xA(x)



Reduction Theorem Proof

On the other hand, if v∗(∃xA(x)) = F , then by SHenking

quantifier axiom Q2 we have that

v∗(A(t)) = F

for all closed terms t of L(C). In particular, for every c ∈ C

v∗(A(c)) = F

By induction hypothesis,

M |= ¬A(c) for all c ∈ C

Since every element of M is denoted by some c ∈ C we have
that

M |= ¬∃xA(x)

The proof of the case of a sentence B of the form ∀xA(x) is
similar and is left as and exercise
This ends the proof of the Reduction Theorem



Compactness Theorem
and

Löwenheim-Skolem Theorem



Compactness and Löwenheim-Skolem Theorems

The Reduction to Propositional Logic Theorem provides a
powerful method of constructing models of theories out of
symbols in a form of canonical models

It also gives us immediate proofs of the two important
theorems: Compactness Theorem for the predicate logic
and the Löwenheim-Skolem Theorem



Compactness Theorem

Compactness theorem
Let S be any set of predicate formulas of L
The set S has a model if and only if any finite subset S0 of
S has a model
Proof
Assume that S is a set of predicate formulas such that every
finite subset S0 of S has a model
We need to show that S has a model

The implication (iii)→ (i) of the Reduction Theorem says:
” If The set S ∪ SHenkin ∪ EQ is consistent in sense of
propositional logic, then S has a model”
So showing that S has a model this is equivalent to proving
that S ∪ SHenkin ∪ EQ is consistent in the sense of
propositional logic



Compactness Theorem

By already proved Compactness Theorem for propositional
logic of L, it suffices to prove that for every finite subset
S0 ⊂ S, the set S0 ∪ SHenkin ∪ EQ has a model

This follows from the assumption that S is a set such that
every finite subset S0 of S has a model and the implication
(i)→ (iii) of the Reduction Theorem that says:

” if S0 has a model, then the set S0 ∪ SHenkin ∪ EQ is
consistent, i.e. has a model



Löwenheim-Skolem Theorem

Löwenheim-Skolem Theorem

Let κ be an infinite cardinal

Let L be a predicate language with the alphabet A such
that card(A) ≤ κ

Let Γ be a set of at most κ formulas of the L

If the set S has a model, then there is a model

M = [M, I]

of S such that
cardM ≤ κ



Löwenheim-Skolem Theorem

Proof

Let L be a predicate language with the alphabet A such
that card(A) ≤ κ

Obviously, card(F ) ≤ κ

By the definition of the witnessing expansion L(C) of L,
C =

⋃
nCn and for each n, card(Cn) ≤ κ. So also cardC ≤ κ

Thus any canonical structure for L(C) has ≤ κ elements

By the implication (i)→ (ii) of the Reduction Theorem that
says: ” if there is a model of S , then there is a canonical
structureM = [M, I] for L(C) which is a model for S”

S has a model (canonical structure) with ≤ κ elements

This ends the proof


