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Chapter 9
Hilbert Proof Systems

Completeness of Classical Predicate Logic

PART 3: Proof of the Completeness Theorem



Completeness Theorem

The proof of Gödel’s completeness theorem given by Kurt
Gdel in his doctoral dissertation of 1929 and published as an
article in 1930 is not easy to read today

It uses concepts and formalism that are no longer used and
terminology that is often obscure

Gödel’s proof was then simplified in 1947, when Leon Henkin
observed in his Ph.D. thesis that the hard part of the proof can
be presented as the Model Existence Theorem (published in
1949)

Henkin’s proof was simplified by Gisbert Hasenjaeger in 1953



Completeness Theorem

Other now classical proofs have been published by

Rasiowa and Sikorski in 1951, 1952 using Boolean algebraic

methods and by Beth in 1953, using topological methods

Still other proofs may be found in Hintikka (1955) and in
Beth (1959)

We follow a modern version of of Henkin proof



Hilbert-style Proof System H

We define now a Hilbert style proof system H we are going to
prove the completeness theorem for

Language L

The language L of the proof system H is a predicate (first
order) language with equality

We assume that the sets P, F, C are infinitely enumerable

We also assume that L has a full set of propositional
connectives, i.e.

L = L{¬,∩,∪,⇒}(P,F,C)



Hilbert-style Proof System H

Logical Axioms LA

The set LA of logical axioms consists of three groups of
axioms:

propositional axioms PA , equality axioms EA , and

quantifiers axioms QA

We write it symbolically as

LA = {PA , EA , QA }

For the set PA of propositional axioms we choose any
complete set of axioms for propositional logic with a full set
{¬,∩,∩,⇒} of propositional connectives



Hilbert-style Proof System H

In some formalizations, including the one in the

Handbook of Mathematical Logic, Barwise, ed. (1977)

we base our proof system H on, the authors just say for this
group PA of propositional axioms: ”all tautologies”

They of course mean all predicate formulas of L that are
substitutions of propositional tautologies

This is done for the need of being able to use freely these
predicate substitutions of propositional tautologies in the
proof of completeness theorem for the proof system they
formalize this way.



Hilbert-style Proof System H

In this case these tautologies are listed as axioms of the
system and hence are provable in it

This is a convenient approach, but also the one that makes
such a proof system not to be finitely axiomatizable

We avoid the infinite axiomatization by choosing a proper
finite set of predicate language version of propositional
axioms that is known (proved already for propositional case)
to be complete, i.e. the one in which all propositional
tautologies are provable

We choose, for name of the proof system H for Hilbert
Moreover, historical sake, we adopt Hilbert (1928) set of
axioms from chapter 5



Hilbert-style Proof System H

For the set EA of equational axioms we choose the same
set as in before because they were used in the proof of
Reduction to Propositional Logic Theorem

We want to be able to carry this proof within the system H

For the set QA of quantifiers axioms we choose the axioms
such that the Henkin set SHenkin axioms Q1, Q2 are their
particular cases

This again is needed, so the proof of the Reduction Theorem
can be carried within H



Hilbert-style Proof System H

Rules of inference R

There are four inference rules:

Modus Ponens (MP) and three quantifiers rules
(G), (G1), (G2), called Generalization Rules

We define the proof system H as follows

H = (L{¬,∩,∪,⇒}(P,F,C), F , LA , R = {(MP), (G), (G1), (G2)})

where L = L{¬,∩,∪,⇒}(P,F,C) is predicate (first order)
language with equality

We assume that the sets P, F, C are infinitely enumerable

F is the set of all well formed formulas of L



Hilbert-style Proof System H

LA is the set of logical axioms

LA = {PA ,EA ,QA }

for PA ,EA ,QA defined as follows

PA is the set of propositional axioms (Hilbert, 1928)

A1 (A ⇒ A)

A2 (A ⇒ (B ⇒ A))

A3 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A4 ((A ⇒ (A ⇒ B))⇒ (A ⇒ B))

A5 ((A ⇒ (B ⇒ C))⇒ (B ⇒ (A ⇒ C)))

A6 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))



Hilbert-style Proof System H

A7 ((A ∩ B)⇒ A)

A8 ((A ∩ B)⇒ B)

A9 ((A ⇒ B)⇒ ((A ⇒ C)⇒ (A ⇒ (B ∩ C)))

A10 (A ⇒ (A ∪ B))

A11 (B ⇒ (A ∪ B))

A12 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A13 ((A ⇒ B)⇒ ((A ⇒ ¬B)⇒ ¬A))

A14 (¬A ⇒ (A ⇒ B))

A15 (A ∪ ¬A)

for any A ,B ,C ∈ F



Hilbert-style Proof System H

EA is the set of equality axioms

E1 u = u

E2 (u = w ⇒ w = u)

E3 ((u1 = u2 ∩ u2 = u3)⇒ u1 = u3)

E4
((u1 = w1 ∩ ... ∩ un = wn)⇒ (R(u1, ..., un)⇒ R(w1, ...,wn)))

E5
((u1 = w1 ∩ ... ∩ un = wn)⇒ (t(u1, ..., un)⇒ t(w1, ...,wn)))

for any free variable or constant of L, R ∈ P, and t ∈ T

where R is an arbitrary n-ary relation symbol of L and t ∈ T
is an arbitrary n-ary term of L



Hilbert-style Proof System H

QA is the set of quantifiers axioms.

Q1 (∀xA(x)⇒ A(t))

Q2 (A(t)⇒ ∃xA(x))

where where t is a term

A(t) is a result of substitution of t for all free occurrences of
x in A(x) and

t is free for x in A(x), i.e. no occurrence of a variable in t
becomes a bound occurrence in A(t)



Hilbert-style Proof System H

R is the set of rules of inference

R = {(MP), (G), (G1), (G2)}

(MP) is Modus Ponens rule

(MP)
A ; (A ⇒ B)

B
for any formulas A ,B ∈ F

(G) is a quantifier generalization rule

(G)
A
∀xA

where A ∈ F and in particular we write

(G)
A(x)

∀xA(x)

for A(x) ∈ F and x ∈ VAR



Hilbert-style Proof System H

(G1 ) is a quantifier generalization rule

(G1)
(B ⇒ A(x))

(B ⇒ ∀xA(x))

where for A(x),B ∈ F , x ∈ VAR, and B is such that x is not
free in B

(G2 ) is a quantifier generalization rule

(G2)
(A(x)⇒ B)

(∃xA(x)⇒ B)

where for A(x),B ∈ F , x ∈ VAR, and B is such that x is not
free in B



Hilbert-style Proof System H

We define now, as we do for any proof system, a notion of

a formal proof of a formula A from a set S of formulas in H

as a finite sequence

B1,B2, . . . Bn

of formulas with each of which is either a logical axiom of H, a
member of S , or else follows from earlier formulas in the
sequence by one of the inference rules from R

and is such that
Bn = A

We write it formally as follows.



Formal Proof in H

Definition

Let Γ ⊆ F be any set of formulas of L

A proof in H of a formula A ∈ F from a set Γ of formulas is
a sequence

B1,B2, . . . Bn

of formulas, such that

B1 ∈ LA ∪ Γ, Bn = A

and for each 1 < i ≤ n, either Bi ∈ LA ∪ Γ or Bi is a
conclusion of some of the preceding expressions in the
sequence B1,B2, . . . Bn by virtue of one of the rules of
inference from R



Formal Proof in H

We write
Γ `H A

to denote that the formula A has a proof from Γ in H

The case when Γ = ∅ is a special one

By the definition, ∅ `H A means that in the proof of A only
logical axioms LA are used. We hence write

`H A

to denote that a formula A has a proof in H



Formal Proof in H

As we work now with a fixed (and only one) proof system H,
we use the notation

Γ ` A and ` A

to denote the proof of a formula A from a set Γ in H and

the proof of a formula A in H, respectively



Completeness Theorem

Any proof of the completeness theorem for a given proof
system consists always of two parts

First we have show that

all formulas that have a proof in the system are tautologies

This is called a soundness theorem or soundness part of
the completeness theorem



Completeness Theorem

The second implication says:

if a formula is a tautology then it has a proof in the proof
system

This alone is sometimes called a completeness theorem
(on assumption that the proof system issound)

Traditionally it is called a completeness part of the
completeness theorem



Soundness Theorem

We know that all axioms of H are predicate tautologies
(proved in chapter 8)

All rules of inference from R are sound as the
corresponding formulas were also proved in chapter 8 to be
predicate tautologies and so the system H is sound i.e. the
following holds for H

Soundness Theorem

For every formula A ∈ F of the language L of the proof
system H,

if ` A then |= A



Completeness Theorem

The soundness theorem proves that the proofs in the
system H ”produce” only tautologies

We show here, as the next step that our proof system H
”produces” not only tautologies, but that all tautologies are
provable in it

This is called a completeness theorem for classical
predicate (first order logic, as it all is proven with respect to
classical semantics

This is why it is called a completeness of classical predicate
logic



Completeness Theorem

The goal is now to prove the completeness part of the
following original theorem Gödel’ s theorem

Theorem (completeness of predicate logic)

For any formula A of the language L of the proof system H,

A is provable in H if and only if

A is a predicate tautology (valid)

We write it symbolically as

` A if and only if |= A



Completeness Theorem

We are going to prove the above Theorem (completeness of
predicate logic) as a particular case of the Gödel
Completeness Theorem that follows

This theorem is its more general, and more modern version

Its formulation, as well as the method of proving it, was first
introduced by Henkin in 1947

It uses a notion of a logical implication, and some other
notions that we introduce now below



Completeness Theorem

Sentence, Closure

Any formula of L without free variables is called a sentence

For any formula A(x1, . . . xn), a sentence

∀x1∀x2 . . .∀xn A(x1, . . . xn)

is called a closure of A(x1, . . . xn)

Directly from the above definition have that the following hold

Closure Fact

For any formula A(x1, . . . xn),

|= A(x1, . . . xn) if and only if |= ∀x1∀x2 . . .∀xn A(x1, . . . xn)



Completeness Theorem

Logical Implication

For any set Γ ⊆ F of formulas of L and any A ∈ F , we say
that the set Γ logically implies the formula A and write it as

Γ |= A

if and only if all models of Γ are models of A

Observe, that in order to prove that Γ |= B we have to show
that the implication

if M |= Γ then M |= B

holds for all structures M = [U, I] for L



Completeness Theorem

Directly from the Closure Lemma we get the following

Lemma

Let Γ be a set of sentences of L

For any formula A(x1, . . . xn) that is not a sentence,

Γ ` A(x1, . . . xn) if and only if Γ |= ∀x1∀x2 . . .∀xn A(x1, . . . xn)



Completeness Theorem

The above Lemma and Closure Lemma show that we need
to consider only sentences (closed formulas) of L since they
prove two properties:

(1 ) a formula of L is a tautology if and only if its closure
is a tautology

(2 ) a formula of L is provable from Γ if and only if its
closure is provable from Γ

This justifies the following generalization of the original
Gödel’ s completeness of predicate logic theorem



Completeness Theorem

Gödel Completeness Theorem

Let Γ be any set of sentences and A any sentence of a
language L of Hilbert proof system H

A sentence A is provable from Γ in H if and only if

the set Γ logically implies A

We write it in symbols,

Γ ` A if and only if Γ |= A .



Completeness Theorem

Remark

We want to remind that the Section: Reduction Predicate
Logic to Propositional Logic is an integral and the first part of
the proof the Gödel Completeness Theorem

We presented it separately for two reasons

R1. The reduction method and theorems and their proofs are
purely semantical in their nature and hence are independent
of the proof system H

R2. Because of the reason R1. the reduction method can
be used/adapted to a proof of completeness theorem of
any other proof system one needs to prove the classical
completeness theorem for



Consistency

There are two definitions of consistency: semantical and
syntactical

The semantical definition uses the notion of a model and
says, in plain English:

a set of formulas is consistent if it has a model

The syntactical one uses the notion of provability and says:

a set of formulas is consistent if one can’t prove a
contradiction from it

We have used, in the Proof Two of the Completeness
Theorem for propositional logic (chapter 5) the syntactical
definition of consistency

We use now the following semantical definition



Consistency

Definition (Consistent/Inconsistent)

A set Γ ⊆ F of formulas of L is consistent

if and only if it has a model, otherwise, is inconsistent

Directly from the above definition we have the following

Inconsistency Lemma

For any set Γ ⊆ F of formulas of L and any A ∈ F ,

if Γ |= A , then the set Γ ∪ {¬A } is inconsistent

Proof

Assume Γ |= A and Γ ∪ {¬A } is consistent

It means there is a structureM = [U, I], such that

M |= Γ andM |= ¬A , i.e. M 6|= A

This is a contradiction with Γ |= A



Crucial Lemma

Now we are going to prove the following Lemma that is
crucial, to the proof of the Completeness Theorem

Crucial Lemma

Let Γ be any set of sentences of a language L of H

The following conditions hold for any formulas A ,B ∈ F of L

(i) If Γ ` (A ⇒ B) and Γ ` (¬A ⇒ B) , then Γ ` B

(ii) If Γ ` ((A ⇒ C)⇒ B), then Γ ` (¬A ⇒ B) and
Γ ` (C ⇒ B)

(iii) If x does not appear in B and if
Γ ` ((∃yA(y)⇒ A(x))⇒ B), then Γ ` B

(iv) If x does not appear in B and if
Γ ` ((A(x)⇒ ∀yA(y))⇒ B), then Γ ` B



Crucial Lemma Proof

Proof

(i) Notice that the formula ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

is a substitution of a propositional tautology, hence by
definition of H, is provable in it

By monotonicity, Γ ` ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

By assuption Γ ` (A ⇒ B) and by Modus Ponens we get

Γ ` ((¬A ⇒ B)⇒ B)

By assuption Γ ` (¬A ⇒ B) and Modus Ponens we get

Γ ` B



Crucial Lemma Proof

(ii) The formulas

(1) (((A ⇒ B)⇒ (¬A ⇒ B)))

(2) (((A ⇒ B)⇒ B)⇒ (C ⇒ B))

are substitution of a propositional tautologies, hence are
provable in H

Assume Γ ` ((A ⇒ C)⇒ B)

By monotonicity and (1) we get

Γ ` (¬A ⇒ B)

and by (2) we get
` (C ⇒ B)



Crucial Lemma Proof

(iii) Assume
Γ ` ((∃yA(y)⇒ A(x))⇒ B)

Observe that it is a particular case of assumption

Γ ` ((A ⇒ C)⇒ B)

in (ii), for A = ∃yA(y), C = A(x) and B= B

Hence by (ii) we have that

Γ ` (¬∃yA(y)⇒ B) and Γ ` (A(x)⇒ B)

Apply Generalization Rule G2 to

Γ ` (A(x)⇒ B)

and we have
Γ ` (∃yA(y)⇒ B)



Crucial Lemma Proof

Then by (i) applied to

Γ ` (∃yA(y)⇒ B) and Γ ` (¬∃yA(y)⇒ B)

we get
Γ ` B

The proof of (iv) is similar to (iii) but uses the Generalization
Rule G1

This ends the proof of the Lemma



Completeness Theorem for H

Now we are ready to conduct the proof of the Completeness
Theorem for H stated as follows

H Completeness Theorem

Let Γ be any set of sentences and A any sentence of a
language L of Hilbert proof system H

Γ ` A if and only if Γ |= A

In particular, for any formula A of L,

` A if and only if |= A



Proof of Completeness Theorem for H

Proof

We prove the completeness part , i.e. we prove the
implication

if Γ |= A , then Γ ` A

Suppose that Γ |= A

This means that we assume that all L models of Γ are
models of A

By the Inconsistency Lemma the set Γ∪{¬A } is inconsistent

Let M |= Γ

We construct, as a next step, a witnessing expansion
language L(C) of L



Proof of Completeness Theorem for H

By the Reduction Theorem the set

Γ ∪ SHenkin ∪ EQ

is consistent in a sense of propositional logic in L

The set SHenkin is a Henkin Set and EQ are equality axioms
that are also the equality axioms EQ of H

By the Compactness Theorem for propositional logic of L
there is a finite set

S0 ⊆ Γ ∪ SHenkin ∪ EQ

such that S0 ∪ {¬A } is inconsistent in the sense of
propositional logic in L



Proof of Completeness Theorem for H

We list all elements of S0 in a sequence

A1, A2, . . . ,An, B1, B2, . . . ,Bm

where the sequence

A1, A2, . . . ,An

consists of those elements of S0 which are either in Γ ∪ EQ
or else are quantifiers axioms that are particular cases of the
quantifiers axioms QA of H. We list them in any order

The sequence
B1, B2, . . . ,Bm

consists of elements of S0 which are Henkin Axioms but
listed carefully as to be described as follows



Proof of Completeness Theorem for H

Observe that by definition,

L(C) =
⋃

n∈N
Ln for L = L0 ⊆ L1 ⊆ . . .

We define the rank of A ∈ L(C) to be the least n, such that
A ∈ Ln

Now we choose for B1 a Henkin Axiom in S0 of the
maximum rank

We choose for B2 a Henkin Axiom in S0 − {B1} of the
maximum rank

We choose for B3 a Henkin Axiom in S0 − {B1,B2} of the
maximum rank, etc. . . .



Proof of Completeness Theorem for H

The point of choosing the formulas Bi in this way is to make
sure that the witnessing constant about which Bi speaks,
does not appear in

Bi+1, Bi+2, . . . ,Bm

For example , if B1 is

(∃xA(x)⇒ A(cA [x]))

then A [x] does not appear in any of the other B2, . . . ,Bm,
by the maximality condition on B1



Proof of Completeness Theorem for H

We know that that S0 ∪ {¬A } is inconsistent in the sense of
propositional logic, i.e.

S0 ∪ {¬A } does not have a (propositional) model

This means that

v∗(¬A) , T for all v and so v∗(A) = T for all v

Hence a sentence

(S) (A1 ⇒ (A2 ⇒ . . . (An ⇒ (B1 ⇒ . . . (Bm ⇒ A))..)

is a propositional tautology



Proof of Completeness Theorem for H

We now replace in the sentence (S) each witnessing constant
by a distinct new variable and write the result as

(S′) (A1
′ ⇒ (A2

′ ⇒ . . . (An
′ ⇒ (B1

′ ⇒ . . . (Bm
′ ⇒ A))..)

We have A ′ = A since A has no witnessing constant in it

The result is still a tautology and hence is provable in H
from propositional axioms PA and Modus Ponens

By monotonicity

S0 ` (A1
′ ⇒ (A2

′ ⇒ . . . (An
′ ⇒ (B1

′ ⇒ . . . (Bm
′ ⇒ A))..)



Proof of Completeness Theorem for H

Each of A1
′,A2

′, . . . ,An
′ is either a quantifiers axiom from

QA of H or else in S0, so

S0 ` Ai
′ for all 1 ≤ i ≤ n

We apply Modus Ponens to the above and (S’) n times and
get

S0 ` (B1
′ ⇒ (B2

′ ⇒ . . . (Bm
′ ⇒ A))..)



Proof of Completeness Theorem for H

For example, if B1
′ is

(∃xC(x)⇒ C(x))

we have
S0 ` ((∃xC(x)⇒ C(x))⇒ B)

for B = (B2
′ ⇒ . . . (Bm

′ ⇒ A))..)

By the Crucial Lemma part (iii) that says:

(iii) If x does not appear in B and if
Γ ` ((∃yA(y)⇒ A(x))⇒ B) , then Γ ` B

we get S0 ` B, i.e.

S0 ` (B2
′ ⇒ . . . (Bm

′ ⇒ A))..)



Proof of Completeness Theorem for H

If, for example, B2
′ is

(D(x)⇒ ∀xD(x))

we have
S0 ` ((∃xC(x)⇒ C(x))⇒ D)

for D = (B3
′ ⇒ . . . (Bm

′ ⇒ A))..)

By the Crucial Lemma part (iv) that says:

(iv) If x does not appear in B and if
Γ ` ((A(x)⇒ ∀yA(y))⇒ B), then Γ ` B

we get S0 ` D, i.e.

S0 ` (B3
′ ⇒ . . . (Bm

′ ⇒ A))..)



Proof of Completeness Theorem for H

We hence apply parts (iii) and (iv) of the Crucial Lemma to
successively remove all

B1
′, . . . ,Bm

′

and obtain
S0 ` A

This ends the proof that

Γ ` A

We hence we completed the proof of the completeness part
of the first part

Γ ` A if and only if Γ |= A

of the H Completeness Theorem



Gödel’ s Completeness Theorem

The soundness part of the H Completeness Theorem i.e.
the implication

if Γ ` A , then Γ |= A

holds for any sentence A of L directly by Closure Lemma
and Soundness Theorem

The original Gödel’ s Theorem, is expressed by the second
part of the H Completeness Theorem:

` A if and only if |= A

It follows from Closure Lemma and the first part for Γ = ∅


