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Chapter 9
Hilbert Proof Systems

Completeness of Classical Predicate Logic

PART 4: Deduction Theorem



Deduction Theorem

In mathematical arguments, one often assumes a statement
A on the assumption (hypothesis) of some other statement B
and then concludes that we have proved the implication

”if A, then B”

This reasoning is justified by the following theorem, called a
Deduction Theorem

It was first formulated and proved for a certain Hilbert proof
system S for the classical propositional logic by Herbrand in
1930 in a form stated as follows



Deduction Theorem

Deduction Theorem (Herbrand,1930)

For any formulas A ,B of the language of a propositional
proof system S,

if A `S B then `S (A ⇒ B)

In chapter 5 we formulated and proved the following, more
genera l version of the Herbrand Theorem for a very simple
(two logical axioms and Modus Ponens) propositional proof
system H1



Deduction Theorem

Deduction Theorem

For any subset Γ of the set of formulas F of H1 and for any
formulas A ,B ∈ F ,

Γ, A `H1 B if and only if Γ `H1 (A ⇒ B)

In particular,

A `H1B if and only if `H1 (A ⇒ B)

A natural question arises:

does deduction theorem hold for the predicate logic in
general and for its proof system H we defined here?.



Deduction Theorem

The Deduction Theorem can not be carried directly to the
predicate logic, but it nevertheless holds with some
modifications. Here is where the problem lays.

Fact

Given the proof system

H = (L(P,F,C), F , LA , R = {(MP), (G), (G1), (G2)})

For any formula A(x) ∈ F ,

A(x) ` ∀xA(x)

but it is not always the case that

` (A(x)⇒ ∀xA(x))
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Proof

Obviously, A(x) ` ∀xA(x) by Generalization rule (G)

Let now A(x) be an atomic formula P(x)

By the H Completeness Theorem

` (P(x)⇒ ∀xP(x)) if and only if |= (P(x)⇒ ∀xP(x))

Consider a structure
M = [M, I]

where M contains at least two elements c and d

We define PI ⊆ M as a property that holds only for c, i.e.

PI = {c}
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Take any assignment s : VAR −→ M

Then (M, s) |= P(x) only when s(x) = c for all x ∈ VAR

M = [M, I] is a counter model for (P(x)⇒ ∀xP(x))

as we found s such (M, s) |= P(x) and obviously
(M, s) 6|= ∀xP(x)

We proved that 6|= (P(x)⇒ ∀xP(x))

By the H Completeness Theorem this is equivalent to

0 (P(x)⇒ ∀xP(x))

and the Deduction Theorem fails as

Px ` ∀xP(x)
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The Fact shows that the problem is with application of the
generalization rule (G) to the formula A ∈ Γ

To handle this we introduce, after Mendelson(1987) the
following notion
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Definition
Let A be one of formulas in Γ and let

(P) B1,B2, ...,Bn

be a proof (deduction) of Bn from Γ, together with justification
at each step. We say that the formula
Bi depends upon A in the proof B1,B2, ...,Bn

if and only if the following holds
(1) Bi is A and the justification for Bi is Bi ∈ Γ

or
(2) Bi is justified as direct consequence by MP
or
(G) of some preceding formulas in the proof sequence (P),
where at least one of these preceding formulas depends
upon A
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Example
Here is a proof (deduction)

B1, B2, . . . , B5

showing that
A , (∀xA ⇒ C) ` ∀xC

B1 A
Hyp
B1 depends upon A
B2 ∀xA
B1, (G)

B2 depends upon A
B3 (∀xA ⇒ C)

Hyp
B3 depends upon (∀xA ⇒ C)
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B3 (∀xA ⇒ C)

Hyp

B3 depends upon (∀xA ⇒ C)

B4 C

MP on B2,B3

B4 depends upon A and (∀xA ⇒ C)

B5 ∀xC

(G)

B4 depends upon A and (∀xA ⇒ C)

Observe that the formulas A ,C may, or may not have x as a
free variable



Deduction Theorem

DT Lemma

If B does not depend upon A in a proof (deduction)
showing that Γ,A ` B, then Γ ` B

Proof

Let
B1,B2, . . . ,Bn = B

be a proof (deduction) of B from Γ,A ,

in which B does not depend upon A

We prove by induction over the length of the proof that

Γ ` B
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Assume that DT Lemma holds for all proofs of the length
less than n

If B ∈ Γ or B ∈ LA , by definition then Γ ` B

If B is a direct consequence of two preceding formulas,
then, since B does not depend upon A , neither do theses
preceding formulas

By inductive hypothesis, theses preceding formulas have a
proof from Γ alone

Hence so does B, i.e.
Γ ` B

Now we are ready to formulate and prove the Deduction
Theorem for predicate logic



Deduction Theorem

Deduction Theorem

For any formulas A ,B of the language of proof system H the
following holds

(1) Assume that in some proof (deduction) showing that

Γ,A ` B

no application of the generalization rule (G) to a formula that
depends upon A has as its quantified variable a free
variable of the formula A

Then we have that
Γ ` (A ⇒ B)

(2) If Γ ` (A ⇒ B), then Γ, A ` B



Deduction Theorem

Proof

The proof we present extends the proof of the Deduction
Theorem for propositional logic from chapter 5

We adopt the propositional proof to the system H and add the
relevant predicate cases

For the sake of clarity and independence we write now the
whole proof in all details
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(1) Assume that
Γ, A ` B

i.e. that we have a formal proof

B1, B2, . . . ,Bn

of B from the set of formulas Γ ∪ {A }

In order to prove that

Γ ` (A ⇒ B)

we will prove the following a stronger statement

(S) Γ ` (A ⇒ Bi) for all Bi (1 ≤ i ≤ n) in the proof of B
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Hence, in particular case, when i = n , we will obtain that also

Γ ` (A ⇒ B)

The proof of the statement (S) is conducted by induction on
1 ≤ i ≤ n

Base Step i = 1

When i = 1, it means that the formal proof contains only one
element B1

By the definition of the formal proof from Γ ∪ {A }, we have
that B1 ∈ LA , or B1 ∈ Γ, or B1 = A , i.e.

B1 ∈ LA ∪ Γ ∪ {A }

Here we have two cases
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Case 1 B1 ∈ LA ∪ Γ

Observe that the formula

(B1 ⇒ (A ⇒ B1))

is a particular case of the axiom A2 of H

By assumption B1 ∈ LA ∪ Γ, hence we get the required proof
of (A ⇒ B1) from Γ by the following application of the MP
rule

(MP)
B1 ; (B1 ⇒ (A ⇒ B1))

(A ⇒ B1)
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Case 2 B1 = A

When B1 = A , then to prove

Γ ` (A ⇒ B)

means to prove Γ ` (A ⇒ A)

But (A ⇒ A) ∈ LA (axiom A1 ) of H, i.e. ` (A ⇒ A). By the
monotonicity of the consequence we have that

Γ`(A ⇒ A)

The above cases conclude the proof of the Base Case i = 1



Deduction Theorem

Inductive Step

Assume that
Γ `(A ⇒ Bk )

for all k < i, we will show that using this fact we can conclude
that also

Γ `(A ⇒ Bi)

Consider a formula Bi in the proof sequence

By the definition, Bi ∈ LA ∪ Γ ∪ {A }

or Bi follows byMP from certain Bj ,Bm such that j < m < i

We have to consider againtwo cases
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Case 1
Bi ∈ LA ∪ Γ ∪ {A }
The proof of (A ⇒ Bi) from Γ in this case is obtained from
the proof of the Base Step for i = 1 by replacement B1 by
Bi and will be omitted here as a straightforward repetition
Case 2
Bi is a conclusion of MP
If Bi is a conclusion of MP , then we must have two formulas
Bj ,Bm in the proof sequence, such that j < i,m < i, j , m
and

(MP)
Bj ; Bm

Bi

item[[] By the inductive assumption, the formulas Bj ,Bm are
such that

Γ ` (A ⇒ Bj) and Γ ` (A ⇒ Bm)
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Moreover, by the definition of the Modus Ponens rule, the
formula Bm has to have a form (Bj ⇒ Bi), i.e.

Bm = (Bj ⇒ Bi)

and the the inductive assumption can be re-written as

(∗) Γ ` (A ⇒ Bj) and Γ ` (A ⇒ (Bj ⇒ Bi)) for j < i

Observe now that the formula

((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

is a substitution of the axiom A3 of H and hence

` ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))
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By the monotonicity,

(∗∗) Γ ` ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

Applying the rule MP to formulas (∗) and (∗∗) i.e. performing
the following

(MP)
(A ⇒ (Bj ⇒ Bi)); ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

((A ⇒ Bj)⇒ (A ⇒ Bi))

we get that also

Γ `((A ⇒ Bj)⇒ (A ⇒ Bi))
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Applying again the rule MP to formulas (∗) and the above

Γ `((A ⇒ Bj)⇒ (A ⇒ Bi))

i.e. performing the following

(MP)
(A ⇒ Bj) ; ((A ⇒ Bj)⇒ (A ⇒ Bi))

(A ⇒ Bi)

we get that
Γ `(A ⇒ Bi)
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Finally, suppose that there is some j < i such that

Bi is ∀xBj

By inductive assumption

Γ ` (A ⇒ Bj)

and either

(i) Bj does not depend upon A or

(ii) x is not free variable in A

We want to prove
Γ ` Bi

We have theses two cases (i) and (ii) to consider.
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Case (i)
Γ ` (A ⇒ Bj)

and Bj does not depend upon A

Then by DT Lemma we have that Γ ` Bj

and, consequently, by the generalization rule (G)

Γ ` ∀xBj

Thus we proved
Γ ` Bi
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Now, from just proved
Γ ` Bi

and axiom A2 of H

` (Bi ⇒ (A ⇒ Bi))

and monotonicity

Γ ` (Bi ⇒ (A ⇒ Bi))

and MP applied to them we get

Γ ` (A ⇒ Bi)
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Case (ii)
Γ ` (A ⇒ Bj) and x is not free variable in A

We know that |= (∀x(A ⇒ Bj)⇒ (A ⇒ ∀xBj))

hence the Completeness Theorem we get

` (∀x(A ⇒ Bj)⇒ (A ⇒ ∀xBj))

Since Γ ` (A ⇒ Bj) by inductive assumption, we get by the
generalization rule (G) and nmonotonicity

Γ ` ∀x(A ⇒ Bj)

By MP applied to the above

Γ ` (A ⇒ ∀xBj)

That is we got
Γ ` A ⇒ Bi)
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Since Γ ` (A ⇒ Bj) by inductive assumption, we get by the
generalization rule (G),

Γ ` ∀x(A ⇒ Bj)

and so, by MP
Γ ` A ⇒ ∀xBj)

That is we proved
Γ ` (A ⇒ Bi)

This completes the induction and the proves part (1) of the
Deduction Theorem
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Deduction Theorem part (2)

The proof of the implication

if Γ ` (A ⇒ B) then Γ, A `B

is straightforward

Assume Γ ` (A ⇒ B). By monotonicity we have also that

Γ,A ` (A ⇒ B)

Obviously, Γ,A ` A . Applying MP to the above, we get the
proof of B from {Γ,A } i.e. we have proved that

Γ, A ` B

This ends the proof of the Deduction Theorem for H



PART 5: Some other Axiomatizations



Hilbert and Ackermann (1928)

We present here some of most known, and historically
important axiomatizations of classical predicate logic, i.e. the
following Hilbert style proof systems

1. Hilbert and Ackermann (1928)

This formalization is based on D. Hilbert and W. Ackermann
book Grundzügen der Theoretischen Logik (Principles of
Theoretical Logic), Springer - Verlag, 1928

The book grew from the courses on logic and foundations of
mathematics Hilbert gave in years 1917-1922

He received help in writeup from Barnays and the material
was put into the book by Ackermann and Hilbert



Hilbert and Ackermann

The Hilbert and Ackermann book was conceived as an
introduction to mathematical logic and was followed by
another two volumes book written by D. Hilbert and P.
Bernays, Grundzügen der Mathematik I, II , Springer
-Verlag, 1934, 1939

Hilbert and Ackermann formulated and asked a question of
the completeness for their deductive (proof) system

It was answered affirmatively by Kurt Gödel in 1929 with
proof of his Completeness Theorem



Hilbert and Ackermann

We define the Hilbert and Ackermann proof system HA
following a pattern established for the H system

The original language used by Hilbert and Ackermann
contained only negation ¬ and disjunction ∪ and so do we

We define

HA = (L{¬,∪}(P,F,C), F , LA , R)

where
R = {(MP), (SB), (G1), (G2)}

The set LA of logical axioms is as follows



Hilbert and Ackermann (1928)

Propositional Axioms

A1 (¬(A ∪ A) ∪ A)

A2 (¬A ∪ (A ∪ B))

A3 (¬(A ∪ B) ∪ (B ∪ A))

A4 (¬(¬B ∪ C) ∪ (¬(A ∪ B) ∪ (A ∪ C)))

for any A ,B ,C , ∈ F

Quantifiers Axioms

Q1 (¬∀xA(x) ∪ A(x))

Q2 (¬A(x) ∪ ∃xA(x))

Q3 (¬A(x) ∪ ∃xA(x)),

for any A(x) ∈ F



Hilbert and Ackermann

Rules of Inference R

(MP) is the Modus Ponens rule. It has, in the language
L{¬,∪}, a form

(MP)
A ; (¬A ∪ B)

B
(SB) is a substitution rule

(SB)
A(x1, x2, . . . xn)

A(t1, t2, . . . tn)

where A(x1, x2, . . . xn) ∈ F and t1, t2, . . . tn ∈ T
.



Hilbert and Ackermann

(G1), (G2) are quantifiers generalization rules

(G1)
(¬B ∪ A(x))

(¬B ∪ ∀xA(x))

(G2)
(¬A(x) ∪ B)

(¬∃xA(x) ∪ B)

where A(x),B ∈ F and B is such that x is not free in B



Hilbert and Ackermann

The HA system is usually written now with the use of
implication, i.e. is based on a language

L = L{¬,⇒}(P,F,C)

We define

HAI = (L{¬,⇒}(P,F,C),F , LA , R)

for
R = {(MP), (SB), (G1), (G2)}

and the set LA of logical axioms as follows



Hilbert and Ackermann

Propositional Axioms

A1 ((A ∪ A)⇒ A)

A2 (A ⇒ (A ∪ B))

A3 ((A ∪ B)⇒ (B ∪ A))

A4 ((¬B ∪ C)⇒ ((A ∪ B)⇒ (A ∪ C)))

for any

A ,B ,C , ∈ F

Quantifiers Axioms

Q1 (∀xA(x)⇒ A(x))

Q2 (A(x)⇒ ∃xA(x))
for any A(x) ∈ F



Hilbert and Ackermann

Rules of Inference R

(MP) is Modus Ponens rule

(MP)
A ; (A ⇒ B)

B

for any formulas A ,B ∈ F

(SB) is a substitution rule

(SB)
A(x1, x2, . . . xn)

A(t1, t2, . . . tn)

where A(x1, x2, . . . xn) ∈ F andt1, t2, . . . tn ∈ T



Hilbert and Ackermann

(G1), (G2) are quantifiers generalization rules.

(G1)
(B ⇒ A(x))

(B ⇒ ∀xA(x))

(G2)
(A(x)⇒ B)

(∃xA(x)⇒ B)

where A(x),B ∈ F and B is such that x is not free in B

The form of the quantifiers axioms Q1, Q2, and quantifiers
generalization rule (G2) is due to Bernays



Mendelson (1987)

Here is the first order logic proof system as introduced in

Elliott Mendelson’s book Introduction to Mathematical Logic
(1987). Hence the name HM

HM is a generalization to the predicate language of the
proof system H2 for propositional logic defined after
Mendelson’s book and studied in Chapter 5

HM = (L{¬,∪}(P,F,C), F , LA , R = {(MP), (G)})

The HM components are as follows
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Propositional Axioms

A1 (A ⇒ (B ⇒ A))

A2 ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

for any A ,B ,C , ∈ F
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Quantifiers Axioms

Q1 (∀xA(x)⇒ A(t))

where t is a term, A(t) is a result of substitution of t for all
free occurrences of x in A(x) and t is free for x in A(x), i.e.

no occurrence of a variable in t becomes a bound
occurrence in A(t)

Q2 (∀x(B ⇒ A(x))⇒ (B ⇒ ∀xA(x)))

where A(x),B ∈ F and B is such that x is not free in B



Mendelson

Rules of Inference R

(MP) is the Modus Ponens rule

(MP)
A ; (A ⇒ B)

B

for any formulas A ,B ∈ F

(G) is the generalization rule

(G)
A(x)

∀xA(x)

where A(x) ∈ F and x ∈ VAR



Rasiowa and Sikorski (1950)

Rasiowa, Sikorski (1950)

Helena Rasiowa and Roman Sikorski are the authors of the
first algebraic proof of the Gödel completeness theorem
ever given in 1950

Other algebraic proofs were later given by Rieger, Beth, Łos
in 1951 , and Scott in 1954



Rasiowa and Sikorski (1950)

Here is Rasiowa- Sikorski original formalization

RS = (L{¬,∩,∪,⇒}(P,F,C), F , LA , R)

for
R = {(MP), (SB), (Q1), (Q2), (Q3), (Q4)}

The logical axioms LA are as follows

Propositional Axioms

A1 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A2 (A ⇒ (A ∪ B))

A3 (B ⇒ (A ∪ B))



Rasiowa and Sikorski

A4 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A5 ((A ∩ B)⇒ A)

A6 ((A ∩ B)⇒ B)

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A ∩ B)))

A8 ((A ⇒ (B ⇒ C))⇒ ((A ∩ B)⇒ C))

A9 (((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C))

A10 (A ∩ ¬A)⇒ B)

A11 ((A ⇒ (A ∩ ¬A))⇒ ¬A)

A12 (A ∪ ¬A)

for any A ,B ,C ∈ F



Rasiowa and Sikorski

Rules of Inference R

(MP) is Modus Ponens rule

(MP)
A ; (A ⇒ B)

B
for any formulas A ,B ∈ F

(SB) is a substitution rule

(SB)
A(x1, x2, . . . xn)

A(t1, t2, . . . tn)

where A(x1, x2, . . . xn) ∈ F and t1, t2, . . . tn ∈ T
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(G1), (G2) are the following quantifiers introduction rules

(G1)
(B ⇒ A(x))

(B ⇒ ∀xA(x))

(G2)
(A(x)⇒ B)

(∃xA(x)⇒ B)

where A(x),B ∈ F and B is such that x is not free in B
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(G3), (G3) are the following quantifiers elimination rules.

(G3)
(B ⇒ ∀xA(x))

(B ⇒ A(x))

(G4)
∃x(A(x)⇒ B)

(A(x)⇒ B)

where A(x),B ∈ F and B is such that x is not free in B



Rasiowa and Sikorski

The algebraic logic starts from purely logical
considerations, abstracts from them, places them into a
general algebraic context, and makes use of other branches
of mathematics such as topology, set theory, and functional
analysis

For example, Rasiowa and Sikorski algebraic
generalization of the completeness theorem for classical
predicate logic is the following



Rasiowa and Sikorski

Algebraic Completeness Theorem (Rasiowa, Sikorski 1950)

For every formula A of the classical predicate calculus RS the
following conditions are equivalent

i A is derivable in RS;

ii A is valid in every realization of L;

iii A is valid in every realization of L in any complete
Boolean algebra;

iv A is valid in every realization of L in the field B(X) of all
subsets of any set X , ∅;
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v A is valid in every semantic realization of L in any
enumerable set;

vi there exists a non-degenerate Boolean algebraA and an
infinite set J such that A is valid in every realization of L in J
and A;

vii AR(I) = V for the canonical realization R of L in the
Lindenbaum-Tarski algebra LT of RS and the identity
valuation I;

viii A is a predicate tautology.


