# cse541 <br> LOGIC for COMPUTER SCIENCE 

Professor Anita Wasilewska

## CHAPTER 2 REVIEW

## Mathematical Statements Translations

Our goal now is to "translate " mathematical and natural language statement into correct formulas of the predicate language $\mathcal{L}$.
Let's start with some observations.
01 The quantifiers in $\forall_{x \in N}, \exists_{y \in Z}$ are not the one used in logic.
02 The predicate language $\mathcal{L}$ admits only quantifiers
$\forall x, \exists y$, for any variables $x, y \in V A R$.
03 The quantifiers $\forall_{x \in N}, \exists_{y \in Z}$ are called quantifiers with restricted domain.
The restriction of the quantifier domain can, and often is given by more complicated statements.

## Quantifiers with Restricted Domain

The quantifiers $\forall_{A(x)}$ and $\exists_{A(x)}$ are called quantifiers with restricted domain, or restricted quantifiers, where $A(x) \in \mathcal{F}$ is any formula with a free variable $x \in \operatorname{VAR}$.

## Definition

$\forall_{A(x)} B(x)$ stands for a formula $\forall x(A(x) \Rightarrow B(x)) \in \mathcal{F}$.
$\exists_{A(x)} B(x)$ stands for a formula $\exists x(A(x) \cap B(x)) \in \mathcal{F}$.
We write it as the following transformations rules for restricted quantifiers

$$
\begin{aligned}
& \forall_{A(x)} B(x) \equiv \forall x(A(x) \Rightarrow B(x)) \\
& \exists_{A(x)} B(x) \equiv \exists x(A(x) \cap B(x))
\end{aligned}
$$

# Translations to Formulas of $\mathcal{L}$ 



## Translations to Formulas of $\mathcal{L}$

Given a mathematical statement $\mathbf{S}$ written with logical symbols.
We obtain a formula $A \in \mathcal{F}$ that is a translation of $\mathbf{S}$ into $\mathcal{L}$ by conducting a following sequence of steps.
Step 1 We identify basic statements in S, i.e. mathematical statements that involve only relations. They are to be translated into atomic formulas.

We identify the relations in the basic statements and choose the predicate symbols as their names.
We identify all functions and constants (if any) in the basic statements and choose the function symbols and constant symbols as their names.
Step 2 We write the basic statements as atomic formulas of $\mathcal{L}$.

## Translations to Formulas of $\mathcal{L}$

Remember that in the predicate language $\mathcal{L}$ we write a function symbol in front of the function arguments not between them as we write in mathematics.
The same applies to relation symbols.
For example we re-write a basic mathematical statement $x+2>y$ as $>(+(x, 2), y)$, and then we write it as an atomic formula $P(f(x, c), y)$
$P \in \mathbf{P}$ stands for two argument relation $>$,
$f \in \mathbf{F}$ stands for two argument function + , and $c \in \mathbf{C}$ stands for the number 2.

## Translations to Formulas of $\mathcal{L}$

Step 3 We write the statement $\mathbf{S}$ a formula with restricted quantifiers (if needed)
Step 4. We apply the transformations rules for restricted quantifiers to the formula from Step 3 and obtain a proper formula A of $\mathcal{L}$ as a result, i.e. as a transtlation of the given mathematical statement $\mathbf{S}$

In case of a translation from mathematical statement written without logical symbols we add a following step.
Step 0 We identify propositional connectives and quantifiers and use them to re-write the statement in a form that is as close to the structure of a logical formula as possible

## Translations Examples

## Exercise

Given a mathematical statement $\mathbf{S}$ written with logical
symbols

$$
\left(\forall_{x \in N} x \geq 0 \cap \exists_{y \in Z} y=1\right)
$$

1. Translate it into a proper logical formula with restricted quantifiers i.e. into a formula of $\mathcal{L}$ that uses the restricted domain quantifiers.
2. Translate your restricted quantifiers formula into a correct formula without restricted domain quantifiers, i.e. into a proper formula of $\mathcal{L}$

A long and detailed solution is given in Chapter 2, page 28. A short statement of the exercise and a short solution follows

## Translations Examples

## Exercise

Given a mathematical statement $\mathbf{S}$ written with logical symbols

$$
\left(\forall_{x \in N} x \geq 0 \cap \exists_{y \in Z} y=1\right)
$$

Translate it into a proper formula of $\mathcal{L}$.

## Short Solution

The basic statements in S are: $x \in N, x \geq 0, y \in Z, y=1$
The corresponding atomic formulas of $\mathcal{L}$ are:
$N(x), G\left(x, c_{1}\right), Z(y), E\left(y, c_{2}\right)$, for
$n \in N, x \geq 0, y \in Z, y=1$, respectively.
The statement $\mathbf{S}$ becomes restricted quantifiers formula

$$
\left.\left(\forall_{N(x}\right) G\left(x, c_{1}\right) \cap \exists_{Z(y)} E\left(y, c_{2}\right)\right)
$$

By the transformation rules we get $A \in \mathcal{F}$ :

$$
\left(\forall x\left(N(x) \Rightarrow G\left(x, c_{1}\right)\right) \cap \exists y\left(Z(y) \cap E\left(y, c_{2}\right)\right)\right)
$$

## Translations Examples

## Exercise

Here is a mathematical statement $\mathbf{S}$ :
"For all real numbers $x$ the following holds: If $x<0$, then there is a natural number n , such that $x+n<0$."

1. Re-write $\mathbf{S}$ as a symbolic mathematical statement SF that only uses mathematical and logical symbols.
2. Translate the symbolic statement SF into to a corresponding formula $A \in \mathcal{F}$ of the predicate language $\mathcal{L}$

## Translations Examples

## Solution

The statement $\mathbf{S}$ is:
"For all real numbers $x$ the following holds: If $x<0$, then there is a natural number $n$, such that $x+n<0$."
S becomes a symbolic mathematical statement SF

$$
\forall_{x \in R}\left(x<0 \Rightarrow \exists_{n \in N} x+n<0\right)
$$

We write $\mathrm{R}(\mathrm{x})$ for $x \in R, \mathrm{~N}(\mathrm{y})$ for $n \in N$, a constant c for the number 0 . We use $L \in \mathbf{P}$ to denote the relation $<$ We use $f \in \mathbf{F}$ to denote the function +
The statement $x<0$ becomes an atomic formula $\mathrm{L}(\mathrm{x}, \mathrm{c})$. The statement $x+n<0$ becomes $L(f(x, y), c)$

## Translations Examples

Solution c.d.
The symbolic mathematical statement SF

$$
\forall_{x \in R}\left(x<0 \Rightarrow \exists_{n \in N} x+n<0\right)
$$

becomes a restricted quantifiers formula

$$
\forall_{R(x)}\left(L(x, c) \Rightarrow \exists_{N(y)} L(f(x, y), c)\right)
$$

We apply now the transformation rules and get a corresponding formula $A \in \mathcal{F}$ :

$$
\forall x(N(x) \Rightarrow(L(x, c) \Rightarrow \exists y(N(y) \cap L(f(x, y), c)))
$$

## PART 3: Translations to Predicate Languages

## Translations Exercises

## Exercise 1

Given a Mathematical Statement written with logical symbols

$$
\forall_{x \in R} \exists_{n \in N}\left(x+n>0 \Rightarrow \exists_{m \in N}(m=x+n)\right)
$$

1. Translate it into a proper logical formula with restricted domain quantifiers
2. Translate your restricted domain quantifiers logical formula into a correct logical formula without restricted domain quantifiers

## Exercise 1 Solution

1. We translate the Mathematical Statement

$$
\forall_{x \in R} \exists_{n \in N}\left(x+n>0 \Rightarrow \exists_{m \in N}(m=x+n)\right)
$$

into a proper logical formula with restricted domain quantifiers as follows

## Step 1

We identify all predicates and use their symbolic representation as follows:
$R(x)$ for $x \in R$
$N(x)$ for $n \in N$
$G(x, y)$ for relation $>, E(x, y)$ for relation $=$

## Exercise 1 Solution

## Step 2

We identify all functions and constants and their symbolic representation as follows:
$f(x, y)$ for the function,$+ c$ for the constant 0

## Step 3

We write mathematical expressions in as symbolic logic formulas as follows:
$\mathrm{G}(\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{c})$ for $x+n>0$ and $\mathrm{E}(\mathrm{z}, \mathrm{f}(\mathrm{x}, \mathrm{y}))$ for $m=x+n$ Step 4
We identify logical connectives and quantifiers and write the logical formula with restricted domain quantifiers as follows

$$
\forall_{R(x)} \exists_{N(y)}\left(G(f(x, y), c) \Rightarrow \exists_{N(z)} E(z, f(x, y))\right)
$$

## Exercise 1 Solution

2. We translate the logical formula with restricted domain quantifiers

$$
\forall_{R(x)} \exists_{N(y)}\left(G(f(x, y), c) \Rightarrow \exists_{N(z)} E(z, f(x, y))\right)
$$

into a correct logical formula without restricted domain quantifiers as follows

$$
\begin{aligned}
\forall x\left(R(x) \Rightarrow \exists_{N(y)}\left(G(f(x, y), c) \Rightarrow \exists_{N(z)} E(z, f(x, y))\right)\right) \\
\equiv \forall x\left(R(x) \Rightarrow \exists y\left(N(y) \cap\left(G(f(x, y), c) \Rightarrow \exists_{N(z)} E(z, f(x, y))\right)\right)\right) \\
\equiv \forall x(R(x) \Rightarrow \exists y(N(y) \cap(G(f(x, y), c) \Rightarrow \exists z(N(z) \cap E(z, f(x, y))))
\end{aligned}
$$

Correct logical formula is:
$\forall x(R(x) \Rightarrow \exists y(N(y) \cap(G(f(x, y), c) \Rightarrow \exists z(N(z) \cap E(z, f(x, y))))))$

## Translations Exercises

## Exercise 2

Here is a mathematical statement $\mathbf{S}$ :
For all natural numbers $n$ the following holds:
If $n<0$, then there is a natural number $m$, such that
$m+n<0$
P1. Re-write $\mathbf{S}$ as a Mathematical Statement "formula" MSF that only uses mathematical and logical symbols
P2. Translate your Mathematical Statement "formula" MSF into to a correct predicate language formula LF
P3. Argue whether the statement $\mathbf{S}$ it true of false
P4. Give an interpretattion of the predicate language formula LF under which it is false

## Exercise 2 Solution

## P1. We re-write mathematical statement $\mathbf{S}$

For all natural numbers $n$ the following holds:
If $n<0$, then there is a natural number $m$, such that $m+n<0$
as a Mathematical Statement "formula" MSF that only uses mathematical and logical symbols as follows

$$
\forall_{n \in N}\left(n<0 \Rightarrow \exists_{m \in N}(m+n<0)\right)
$$

## Exercise 2 Solution

P2. We translate the MSF "formula"

$$
\forall_{n \in N}\left(n<0 \Rightarrow \exists_{m \in N}(m+n<0)\right)
$$

into a correct predicate language formula using the following 5 steps

## Step 1

We identify predicates and write their symbolic representation as follows
We write $\mathrm{N}(\mathrm{x})$ for $x \in N$ and $\mathrm{L}(\mathrm{x}, \mathrm{y})$ for relation $<$

## Step 2

We identify functions and constants and write their symbolic representation as follows
$f(x, y)$ for the function + and $c$ for the constant 0

## Exercise 2 Solution

## Step 3

We write the mathematical expressions in $\mathbf{S}$ as atomic formulas as follows:
$\mathrm{L}(\mathrm{f}(\mathrm{y}, \mathrm{c}), \mathrm{c})$ for $m+n<0$

## Step 4

We identify logical connectives and quantifiers and write the logical formula with restricted domain quantifiers as follows

$$
\forall_{N(x)}\left(L(x, c) \Rightarrow \exists_{N(y)} L(f(y, c), c)\right)
$$

## Exercise 2 Solution

## Step 5

We translate the above into a correct logical formula

$$
\forall x(N(x) \Rightarrow(L(x, c) \Rightarrow \exists y(N(y) \cap L(f(y, c), c)))
$$

P3 Argue whether the statement $\mathbf{S}$ it true of false
Statement $\forall_{n \in N}\left(n<0 \Rightarrow \exists_{m \in N}(m+n<0)\right)$ is TRUE as the statement $n<0$ is FALSE for all $n \in N$ and the classical implication FALSE $\Rightarrow$ Anyvalue is always TRUE

## Exercise 2 Solution

P4. Here is an interpretation in a non-empty set $X$ under which the predicate language formula

$$
\forall x(N(x) \Rightarrow(L(x, c) \Rightarrow \exists y(N(y) \cap L(f(y, c), c)))
$$

is false
Take a set $X=\{1,2\}$
We interpret $\mathrm{N}(\mathrm{x})$ as $x \in\{1,2\}, \mathrm{L}(\mathrm{x}, \mathrm{y})$ as $x>y$, and constant c as 1
We interpret f as a two argument function $f_{l}$ defined on the set $X$ by a formula $f_{l}(y, x)=1$ for all $y, x \in\{1,2\}$
The mathematical statement

$$
\forall_{x \in\{1,2\}}\left(x>1 \Rightarrow \exists_{y \in\{1,2\}}\left(f_{l}(y, x)>1\right)\right)
$$

is a false statement when $x=2$
In this case we have $2>1$ is true and as $f_{l}(y, 2)=1$ for all $y \in\{1,2\}$ we get that $\left.\exists_{y \in\{1,2\}}\left(f_{l}(y, 2)>1\right)\right)$ is false as $1>1$ is false

## Predicate Tautologies

The notion of predicate tautology is much more complicated then that of the propositional one
We introduce it intuitively here and define it formally in later chapters
Predicate tautologies are also called valid formulas, or laws of quantifiers to distinguish them from the propositional case We provide here a motivation, some examples and an intuitive definitions

We also list and discuss the most used and useful predicate tautologies and equational laws of quantifiers

## Interpretation

The formulas of the predicate language $\mathcal{L}$ have a meaning only when an interpretation is given for its symbols

We define the interpretation I in a set $U \neq \emptyset$ by interpreting predicate and functional symbols of $\mathcal{L}$ as concrete relations and functions defined in the set $U$
We interpret constants symbols as elements of the set $U$

The set $U$ is called the universe of the interpretation I

## Model Structure

We define a model structure for the predicate language $\mathcal{L}$ as a pair

$$
\mathbf{M}=(U, I)
$$

where the set $U$ is called the structure universe and of the I is the structure interpretation in the universe $U$

Given a formula A of $\mathcal{L}$, and the model structure $\mathbf{M}=(U, I)$ We denote by

$$
A_{I}
$$

a statement defined in the structure $\mathbf{M}=(U, I)$ that is determined by the formula $A$ and the interpretation I in the universe $U$

## Model Structure

When the formula $A$ is a sentence, it means it is a formula without free variables, the model structure statement

$$
A_{I}
$$

represents a proposition that is true or false in the universe U , under the interpretation I

When the formula $A$ is not a sentence, it contains free variables and may be satisfied (i.e. true) for some values in the universe $U$ and not satisfied (i.e. false) for the others

Lets look at few simple examples

## Examples

## Example

Let $A$ be a formula $\exists x P(x, c)$
Consider a model structure $\mathbf{M}_{1}=\left(N, l_{1}\right)$
The universe of the interpretation $I_{1}$ is the set N of natural numbers

We define $I_{1}$ as follows:
We interpret the two argument predicate $P$ as a relation $<$ and the constant c as number 5, i.e we put
$P_{l_{1}}:=$ and $c_{l_{1}}: 5$

## Examples

The formula A: $\exists x P(x, c)$ under the interpretation $I_{1}$ becomes a mathematical statement

$$
\exists x x=5
$$

defined in the set N of natural numbers We write it for short

$$
A_{l_{1}}: \exists_{x \in N} x=5
$$

$A_{l_{1}}$ is obviously a true mathematical statement in the model structure $\mathbf{M}_{1}=\left(N, l_{1}\right)$
We write it symbolically as

$$
\mathbf{M}_{1} \models \exists x P(x, c)
$$

and say: $\mathbf{M}_{1}$ is a model for the formula $A$

## Examples

## Example

Consider now a model structure $\mathbf{M}_{2}=\left(N, I_{2}\right)$ and the formula A: $\exists x P(x, c)$

We interpret now the predicate P as relation < in the set N of natural numbers and the constant c as number 0

We write it as

$$
P_{l_{2}}:<\text { and } c_{l_{2}}: 0
$$

## Examples

The formula A: $\exists x P(x, c)$ under the interpretation $I_{2}$ becomes a mathematical statement $\exists x x<0$ defined in the set N of natural numbers

We write it for short

$$
A_{l_{2}}: \quad \exists_{x \in N} x<0
$$

$A_{12}$ is obviously a false mathematical statement.
We say: the formula A : $\exists x P(x, c)$ is false under the interpretation $I_{2}$ in $\mathbf{M}_{2}$, or we say for short: $A$ is false in $\mathbf{M}_{2}$
We write it symbolically as

$$
\mathbf{M}_{2} \not \models \exists x P(x, c)
$$

and say that $\mathbf{M}_{2}$ is a counter-model for the formula A

## Examples

## Example

Consider now a model structure
$\mathbf{M}_{3}=\left(Z, I_{3}\right)$ and the formula A: $\exists x P(x, c)$

We define an interpretation $I_{3}$ in the set of all integers $Z$ exactly as the interpretation $I_{1}$ was defined, i.e. we put

$$
P_{l_{3}}:<\text { and } c_{l_{3}}: 0
$$

## Examples

In this case we get

$$
A_{l_{3}}: \exists_{x \in Z} x<0
$$

Obviously $A_{13}$ is a true mathematical statement

The formula $A$ is true under the interpretation $I_{3}$ in $\mathbf{M}_{3}$ ( A is satisfied, true in $\mathrm{M}_{3}$ )
We write it symbolically as

$$
\mathbf{M}_{3} \models \exists x P(x, c)
$$

$M_{3}$ is yet another model for the formula $A$

## Examples

When a formula $A$ is not a closed, i.e. is not a sentence, the situation gets more complicated

A can be satisfied (i.e. true) for some values in the universe $U$ of a $\mathbf{M}=(U, I)$

But also and can be not satisfied (i.e. false) for some other values in the universe $U$ of a $\mathbf{M}=(U, I)$

We explain it in the following examples

## Examples

## Example

Consider a formula

$$
A_{1}: R(x, y)
$$

We define a model structure

$$
\mathbf{M}=(N, I)
$$

where $R$ is interpreted as a relation $\leq$ defined in the set $N$ of all natural numbers, i.e. we put $R_{l}: \leq$ In this case we get

$$
A_{11}: x \leq y
$$

and $A_{1}: R(x, y)$ is satisfied in model structure $\mathbf{M}=(N, I)$ by all $n, m \in N$ such that $n \leq m$

## Examples

## Example

Consider a following formula

$$
A_{2}: \forall y R(x, y)
$$

and the same model structure $\mathbf{M}=(N, I)$, where $R$ is interpreted as a relation $\leq$ defined in the set N of all natural numbers, i.e. we put

$$
R_{l}: \leq
$$

In this case we get that

$$
A_{21}: \forall_{y \in N} x \leq y
$$

and so the formula $A_{2}: \forall y R(x, y)$ is satisfied in $\mathbf{M}=(N, I)$ only by the natural number 0

## Examples

## Example

Consider now a formula

$$
A_{3}: \exists x \forall y R(x, y)
$$

and the same model structure $\mathbf{M}=(N, I)$, where $R$ is interpreted as a relation $\leq$ defined in the set N of all natural numbers, i.e. we put $R_{l}: \leq$

In this case the statement

$$
A_{31}: \exists_{x \in N} \forall_{y \in N} x \leq y
$$

asserts that there is a smallest number
This is a true statement and we call the structure $\mathbf{M}=(N, I)$ ia model for the formula $A_{3}: \exists x \forall y R(x, y)$

## Predicate Tautology Definition

We want the predicate language tautologies to have the same property as the tautologies of the propositional language, namely to be always true

In this case, we intuitively agree that it means that we want the predicate tautologies to be formulas that are true under any interpretation in any possible universe

A rigorous definition of the predicate tautology is provided in Chapter 8

## Predicate Tautology Definition

We construct the rigorous definition of a predicate tautology in a following sequence of steps

S1 We define formally the notion of interpretation I of symbols of the language $\mathcal{L}$ in a set $U \neq \emptyset$, i.e. in a model structure $\mathbf{M}=(U, I)$ for $\mathcal{L}$

S2 We define formally a notion
" a formula $A$ of $\mathcal{L}$ is true in the structure $\mathbf{M}=(U, I)$ "
We write it symbolically $\mathbf{M} \models A$ and call thestructure $\mathbf{M}=(U, I)$ a model for the formula $A$

## Predicate Tautology Definition

S3 We define a notion " A is a predicate tautology" as follows

## Defintion

For any formula $A$ of predicate language $\mathcal{L}$,
A is a predicate tautology (valid formula) if and only if

$$
\mathbf{M} \models A
$$

for all model structures $\mathbf{M}=(U, I)$ for the language $\mathcal{L}$

## Predicate Tautology Definition

Directly from the above definition we get the following definition of a notion "A is not a predicate tautology"

## Defintion

For any formula $A$ of predicate language $\mathcal{L}$,
A is not a predicate tautology if and only if there is a model structure $\mathbf{M}=(U, I)$ for $\mathcal{L}$, such that
$\mathbf{M} \not \vDash A$
We call such model structure M a counter-model for A

## Predicate Tautology Definition

The definition of a notion
" A is not a predicate tautology"
says that in order to prove that a formula $A$ is not a predicate tautology one has to show a counter- model for it

It means that one has to define a non-empty set $U$ and define an interpretation I, such that we can prove that

$$
A_{I}
$$

is false

## Predicate Tautology Definition

We use terms predicate tautology or valid formula instead of just saying a tautology in order to distinguish tautologies belonging to two very different languages

For the same reason we usually reserve the symbol $\models$ for propositional case

Sometimes we use symbols

$$
\models_{p} \text { or } \models_{f}
$$

to denote predicate tautologies
p stands for predicate and f stands first order
Predicate tautologies are also called laws of quantifiers
We will use both names

## Predicate Tautologies Examples

Here are some examples of predicate tautologies and counter models for formulas that are not tautologies

## Example

For any formula $A(x)$ with a free variable x :

$$
\models_{p}(\forall x A(x) \Rightarrow \exists x A(x))
$$

Observe that the formula

$$
(\forall x A(x) \Rightarrow \exists x A(x))
$$

represents an infinite number of formulas.
It is a tautology for any formula $A(x)$ of $\mathcal{L}$ with a free variable x

## Predicate Tautologie Examples

The inverse implication to $(\forall x A(x) \Rightarrow \exists x A(x))$ is not a predicate tautology, i.e.

$$
\not \vDash_{p}(\exists x A(x) \Rightarrow \forall x A(x))
$$

To prove it we have to provide an example of a concrete formula $A(x)$ and construct a counter-model $\mathbf{M}=(U, I)$ for the formula

$$
F:(\exists x A(x) \Rightarrow \forall x A(x))
$$

Let the concrete $A(x)$ be an atomic formula $P(x, c)$
We define $\mathbf{M}=(N, I)$ for $N$ set of natural numbers and
$P_{1}:<, \quad c_{1}: 3$
The formula $F$ becomes an obviously false mathematical statement

$$
F_{l}:\left(\exists_{n \in N} n<3 \Rightarrow \forall_{n \in N} n<3\right)
$$

## Restricted Quantifiers Laws

We have to be very careful when we deal with restricted domain quantifiers
For example, the most basic predicate tautology

$$
(\forall x A(x) \Rightarrow \exists x A(x))
$$

fails when written with the restricted domain quantifiers, i.e.
We show that

$$
\not \vDash_{p}\left(\forall_{B(x)} A(x) \Rightarrow \exists_{B(x)} A(x)\right)
$$

To prove this we have to show that corresponding formula of $\mathcal{L}$ obtained by the restricted quantifiers transformations rules is not a predicate tautology, i.e. to prove:

$$
\forall_{p}(\forall x(B(x) \Rightarrow A(x)) \Rightarrow \exists x(B(x) \cap A(x))) .
$$

## Restricted Quantifiers Laws

We construct a counter-model $\mathbf{M}$ for the formula

$$
F: \quad(\forall x(B(x) \Rightarrow A(x)) \Rightarrow \exists x(B(x) \cap A(x)))
$$

We take

$$
\mathbf{M}=(N, I)
$$

where N is the set of natural numbers
We take as the concrete formulas $B(x), A(x)$ atomic formulas

$$
Q(x, c) \text { and } P(x, c)
$$

respectively, and the interpretation । i defined as

$$
Q_{1}:<, \quad P_{1}:>, \quad c_{l}:
$$

## Restricted Quantifiers Laws

The formula

$$
F:(\forall x(B(x) \Rightarrow A(x)) \Rightarrow \exists x(B(x) \cap A(x)))
$$

becomes a mathematical statement

$$
F_{I}: \quad\left(\forall_{n \in N}(x<0 \Rightarrow n>0) \Rightarrow \exists_{n \in N}(n<0 \cap n>0)\right)
$$

The satement $F_{l}$ is a false
because the statement $n<0$ is false for all natural numbers and the implication false $\Rightarrow B$ is true for any logical value of $B$ Hence $\forall_{n \in N}(n<0 \Rightarrow n>0)$ is a true statement and $\exists_{n \in N}(n<0 \cap n>0)$ is obviously false

## Restricted Quantifiers Laws

Restricted quantifiers law corresponding to the predicate tautology

$$
(\forall x A(x) \Rightarrow \exists x A(x))
$$

is

$$
\models_{p}\left(\forall_{B(x)} A(x) \Rightarrow\left(\exists x B(x) \Rightarrow \exists_{B(x)} A(x)\right)\right)
$$

We remind that it means that we prove that the corresponding proper formula of $\mathcal{L}$ obtained by the restricted quantifiers transformations rules is a predicate tautology, i.e. that

$$
\models_{p}(\forall x(B(x) \Rightarrow A(x)) \Rightarrow(\exists x B(x) \Rightarrow \exists x(B(x) \cap A(x))))
$$

## Quantifiers Laws

Another basic predicate tautology called a dictum de omni law is

$$
\models_{p}(\forall x A(x) \Rightarrow A(y))
$$

where $A(x)$ are any formulas with a free variable $x$ and $y \in \operatorname{VAR}$

The corresponding restricted quantifiers law is:

$$
\models_{p}\left(\forall_{B(x)} A(x) \Rightarrow(B(y) \Rightarrow A(y))\right),
$$

where $A(x), B(x)$ are any formulas with a free variable $x$ and $y \in \operatorname{VAR}$

## Quantifiers Laws

The next important laws are the Distributivity Laws
Distributivity of existential quantifier over conjunction holds only in one direction, namely the following is a predicate tautology

$$
\models_{p}(\exists x(A(x) \cap B(x)) \Rightarrow(\exists x A(x) \cap \exists x B(x))),
$$

where $A(x), B(x)$ are any formulas with a free variable $x$ The inverse implication is not a predicate tautology, i.e.

$$
\not \vDash_{p}((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))
$$

## Quantifiers Laws

To prove it we have to find an example of concrete formulas $A(x), B(x) \in \mathcal{F}$ and a model structure $\mathbf{M}=(U, I)$ with the interpretation $I$, such that $\mathbf{M}$ is counter- model for the formula

$$
F:((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))
$$

We define the counter - model for $F$ is as follows
Take $\mathbf{M}=(R, I)$ where R is the set of real numbers Let $A(x), B(x)$ be atomic formulas $Q(x, c), \mathscr{I}(x, c)$ We define the interpretation 1 as $Q_{1}:>, \quad P_{1}:<, \quad c_{1}: 0$. The formula $F$ becomes an obviously false mathematical statement

$$
F_{I}:\left(\left(\exists_{x \in R} x>0 \cap \exists_{x \in R} x<0\right) \Rightarrow \exists_{x \in R}(x>0 \cap x<0)\right)
$$

## Quantifiers Laws

Distributivity of universal quantifier over disjunction holds only on one direction, namely the following is a predicate tautology for any formulas $A(x), B(x)$ with a free variable $x$.

$$
\models_{p}((\forall x A(x) \cup \forall x B(x)) \Rightarrow \forall x(A(x) \cup B(x))) .
$$

The inverse implication is not a predicate tautology, i.e.

$$
\not \models_{p}(\forall x(A(x) \cup B(x)) \Rightarrow(\forall x A(x) \cup \forall x B(x)))
$$

## Quantifiers Laws

To prove it we have to find an example of concrete formulas $A(x), B(x) \in \mathcal{F}$ and a model structure $\mathbf{M}=(U, I)$ that is counter- model for the formula

$$
F:(\forall x(A(x) \cup B(x)) \Rightarrow(\forall x A(x) \cup \forall x B(x)))
$$

We take $\mathbf{M}=(R, I)$ where $R$ is the set of real numbers, and $A(x), B(x)$ are atomic formulas $Q(x, c), R(x, c)$
We define $Q_{l}: \geq$ and $R_{l}:<, c_{l}: 0$
The formula $F$ becomes an obviously false mathematical statement

$$
F_{I}:\left(\forall_{x \in R}(x \geq 0 \cup x<0) \Rightarrow\left(\forall_{x \in R} x \geq 0 \cup \forall_{x \in R} x<0\right)\right)
$$

## Logical Equivalence

The most frequently used laws of quantifiers have a form of a logical equivalence, symbolically written as $\equiv$

Remember that $\equiv$ is not a new logical connective

This is a very useful symbol
It says that two formulas always have the same logical value It can be used in the same way we the equality symbol =

## Logical Equivalence

We formally define the logical equivalence as follows

## Definition

For any formulas $A, B \in \mathcal{F}$ of the predicate language $\mathcal{L}$,

$$
A \equiv B \quad \text { if and only if } \models_{p}(A \Leftrightarrow B) .
$$

We have also a similar definition for the propositional language and propositional tautology

## Equational Laws for Quantifiers

## De Morgan

For any formula $A(x) \in \mathcal{F}$ with a free variable $x$,

$$
\neg \forall x A(x) \equiv \exists x \neg A(x), \quad \neg \exists x A(x) \equiv \forall x \neg A(x)
$$

## Definability

For any formula $A(x) \in \mathcal{F}$ with a free variable $x$,

$$
\forall x A(x) \equiv \neg \exists x \neg A(x), \quad \exists x A(x) \equiv \neg \forall x \neg A(x)
$$

## Equational Laws for Quantifiers

## Renaming the Variables

Let $A(x)$ be any formula with a free variable $x$ and let $y$ be a variable that does not occur in $A(x)$.
Let $A(x / y)$ be a result of replacement of each occurrence of $x$ by $y$, then the following holds.

$$
\forall x A(x) \equiv \forall y A(y), \quad \exists x A(x) \equiv \exists y A(y)
$$

## Alternations of Quantifiers

Let $A(x, y)$ be any formula with a free variables $x$ and $y$.

$$
\begin{aligned}
& \forall x \forall y(A(x, y) \equiv \forall y \forall x(A(x, y), \\
& \exists x \exists y(A(x, y) \equiv \exists y \exists x(A(x, y)
\end{aligned}
$$

## Equational Laws for Quantifiers

## Introduction and Elimination Laws

If $B$ is a formula such that $B$ does not contain any free occurrence of $x$, then the following logical equivalences hold.

$$
\begin{aligned}
& \forall x(A(x) \cup B) \equiv(\forall x A(x) \cup B), \\
& \exists x(A(x) \cup B) \equiv(\exists x A(x) \cup B), \\
& \forall x(A(x) \cap B) \equiv(\forall x A(x) \cap B), \\
& \exists x(A(x) \cap B) \equiv(\exists x A(x) \cap B)
\end{aligned}
$$

## Equational Laws for Quantifiers

## Introduction and Elimination Laws

If $B$ is a formula such that $B$ does not contain any free occurrence of $x$, then the following logical equivalences hold.

$$
\begin{aligned}
& \forall x(A(x) \Rightarrow B) \equiv(\exists x A(x) \Rightarrow B), \\
& \exists x(A(x) \Rightarrow B) \equiv(\forall x A(x) \Rightarrow B), \\
& \forall x(B \Rightarrow A(x)) \equiv(B \Rightarrow \forall x A(x)), \\
& \exists x(B \Rightarrow A(x)) \equiv(B \Rightarrow \exists x A(x))
\end{aligned}
$$

## Equational Laws for Quantifiers

## Distributivity Laws

Let $A(x), B(x)$ be any formulas with a free variable $x$

Distributivity of universal quantifier over conjunction.

$$
\forall x(A(x) \cap B(x)) \equiv(\forall x A(x) \cap \forall x B(x))
$$

Distributivity of existential quantifier over disjunction.

$$
\exists x(A(x) \cup B(x)) \equiv(\exists x A(x) \cup \exists x B(x))
$$

## Equational Laws for Quantifiers

We also define the notion of logical equivalence $\equiv$ for the formulas of the propositional language and its semantics
For any formulas $A, B \in \mathcal{F}$ of the propositional language $\mathcal{L}$,

$$
A \equiv B \quad \text { if and only if } \quad \models(A \Leftrightarrow B)
$$

Moreover, we prove that any substitution of propositional tautology by a formulas of the predicate language is a predicate tautology
The same holds for the logical equivalence

## Equational Laws for Quantifiers

In particular, we transform the propositional tautologies into the following corresponding predicate equivalences.
For any formulas $A, B$ of the predicate language $\mathcal{L}$,

$$
\begin{aligned}
& (A \Rightarrow B) \equiv(\neg A \cup B), \\
& (A \Rightarrow B) \equiv(\neg A \cup B)
\end{aligned}
$$

We use them to prove the following De Morgan Laws for restricted quantifiers.

## Equational Laws for Quantifiers

## Restricted De Morgan

For any formulas $A(x), B(x) \in \mathcal{F}$ with a free variable $x$,

$$
\neg \forall_{B(x)} A(x) \equiv \exists_{B(x)} \neg A(x), \quad \neg \exists_{B(x)} A(x) \equiv \forall_{B(x)} \neg A(x)
$$

Here is a poof of first equality. The proof of the second one is similar and is left as an exercise.

$$
\begin{gathered}
\neg \forall_{B(x)} A(x) \equiv \neg \forall x(B(x) \Rightarrow A(x)) \\
\equiv \neg \forall x(\neg B(x) \cup A(x)) \\
\equiv \exists x \neg(\neg B(x) \cup A(x)) \equiv \exists x(\neg \neg B(x) \cap \neg A(x)) \\
\left.\equiv \exists x(B(x) \cap \neg A(x)) \equiv \exists_{B(x)} \neg A(x)\right)
\end{gathered}
$$

