cse541
 LOGIC for COMPUTER SCIENCE

Professor Anita Wasilewska

LECTURE 3e

Chapter 3 REVIEW
 Some Definitions and Problems

SOME DEFINITIONS: Part One

There are some basic DEFINITIONS from Chapter 3

You have to KNOW them for Q1 and MIDTERM

Knowing all basic Definitions is the first step for understanding the material

DEFINITIONS: Propositional Extensional Semantics

Definition 1

Given a propositional language $\mathcal{L}_{\text {CON }}$ for the set
$C O N=C_{1} \cup C_{2}$, where C_{1}, C_{2} are respectively the sets of
unary and binary connectives
Let V be a non-empty set of logical values
Connectives $\nabla \in C_{1}$, $\circ \in C_{2}$ are called extensional iff their semantics is defined by respective functions

$$
\nabla: V \longrightarrow V \text { and } \quad \circ: V \times V \longrightarrow V
$$

DEFINITIONS: Propositional Extensional Semantics

Definition 2

Formal definition of a propositional extensional semantics for a given language $\mathcal{L}_{\text {CON }}$ consists of providing definitions of the following four main components:

1. Logical Connectives
2. Truth Assignment
3. Satisfaction, Model, Counter-Model
4. Tautology

CLASSICAL PROPOSITIONAL SEMANTICS

DEFINITIONS: Truth Assignment Extension v^{*}

Definition 3

The Language: $\quad \mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$
Given the truth assignment $v: V A R \longrightarrow\{T, F\}$ in classical
semantics for the language $\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$
We define its extension v^{*} to the set \mathcal{F} of all formulas of \mathcal{L} as $v^{*}: \mathcal{F} \longrightarrow\{T, F\}$ such that
(i) for any $a \in V A R$

$$
v^{*}(a)=v(a)
$$

(ii) and for any $A, B \in \mathcal{F}$ we put

$$
\begin{gathered}
v^{*}(\neg A)=\neg v^{*}(A) ; \\
v^{*}((A \cap B))=\cap\left(v^{*}(A), v^{*}(B)\right) ; \\
v^{*}((A \cup B))=\cup\left(v^{*}(A), v^{*}(B)\right) ; \\
v^{*}((A \Rightarrow B))=\Rightarrow\left(v^{*}(A), v^{*}(B)\right) ; \\
v^{*}((A \Leftrightarrow B))=\Leftrightarrow\left(v^{*}(A), v^{*}(B)\right)
\end{gathered}
$$

DEFINITIONS: Truth Assignment Extension v^{*} Revisited

Notation

For binary connectives (two argument functions) we adopt a convention to write the symbol of the connective (name of the 2 argument function) between its arguments as we do in a case arithmetic operations
The condition (ii) of the definition of the extension v^{*} can be hence written as follows
(ii) and for any $A, B \in \mathcal{F}$ we put

$$
\begin{aligned}
v^{*}(\neg A) & =\neg v^{*}(A) \\
v^{*}((A \cap B)) & =v^{*}(A) \cap v^{*}(B) \\
v^{*}((A \cup B)) & =v^{*}(A) \cup v^{*}(B) ; \\
v^{*}((A \Rightarrow B)) & =v^{*}(A) \Rightarrow v^{*}(B) ; \\
v^{*}((A \Leftrightarrow B)) & =v^{*}(A) \Leftrightarrow v^{*}(B)
\end{aligned}
$$

DEFINITIONS: Satisfaction Relation

Definition 4 Let $v: V A R \longrightarrow\{T, F\}$
We say that
v satisfies a formula $A \in \mathcal{F}$ iff $\quad v^{*}(A)=T$

Notation: $\quad v \models A$
We say that
v does not satisfy a formula $A \in \mathcal{F} \quad$ iff $\quad v^{*}(A) \neq T$

Notation: $\quad v \not \vDash A$

DEFINITIONS: Model, Counter-Model, Classical Tautology

Definition 5

Given a formula $A \in \mathcal{F}$ and $v: V A R \longrightarrow\{T, F\}$
We say that
v is a model for A iff $v \models A$
v is a counter-model for A iff $v \not \vDash A$
Definition 6
A is a tautology iff for any $v: V A R \longrightarrow\{T, F\}$ we have that $v \models A$

Notation
We write symbolically $\models A$ to denote that A is a classical tautology

DEFINITIONS: Restricted Truth Assignments

Notation: for any formula A, we denote by $V A R_{A}$ a set of all variables that appear in A

Definition 7 Given a formula $A \in \mathcal{F}$, any function

$$
v_{A}: \quad V A R_{A} \longrightarrow\{T, F\}
$$

is called a truth assignment restricted to A

DEFINITIONS: Restricted Model, Counter Model

Notation: for any formula A, we denote by $V A R_{A}$ a set of all variables that appear in A

Definition 8 Given a formula $A \in \mathcal{F}$
Any function
$w: V A R_{A} \longrightarrow\{T, F\} \quad$ such that $\quad w^{*}(A)=T$
is called a restricted MODEL for A

Any function

$$
w: \quad V A R_{A} \longrightarrow\{T, F\} \quad \text { such that } \quad w^{*}(A) \neq T
$$

is called a restricted Counter- MODEL for A

DEFINITIONS: Models for Sets of Formulas

Consider $\mathcal{L}=\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}$ and let $\mathcal{S} \neq \emptyset$ be any non empty set of formulas of \mathcal{L}, i.e.

$$
\mathcal{S} \subseteq \mathcal{F}
$$

Definition 9
A truth truth assignment $\quad v: V A R \longrightarrow\{T, F\}$
is a model for the set \mathcal{S} of formulas if and only if
$v \models A$ for all formulas $A \in \mathcal{S}$
We write

$$
v \models \mathcal{S}
$$

to denote that v is a model for the set \mathcal{S} of formulas

DEFINITIONS: Consistent Sets of Formulas

Definition 10

A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ of formulas is called consistent if and only if \mathcal{G} has a model, i.e. we have that
$\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if
there is v such that $v \models \mathcal{G}$

Otherwise \mathcal{G} is called inconsistent

DEFINITIONS: Independent Statements

Definition 11

A formula A is called independent from a non-empty set $\mathcal{G} \subseteq \mathcal{F}$
if and only if there are truth assignments v_{1}, v_{2} such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

i.e. we say that a formula A is independent if and only if
$\mathcal{G} \cup\{A\}$ and $\mathcal{G} \cup\{\neg A\}$ are consistent

Many Valued Extensional Semantics M

DEFINITIONS: Semantics M

Definition 11

The extensional semantics \mathbf{M} is defined for a non-empty set of V of logical values of any cardinality
We only assume that the set V of logical values of \mathbf{M} always has a special, distinguished logical value which serves to define a notion of tautology
We denote this distinguished value as T
Formal definition of many valued extensional semantics \mathbf{M} for the language $\mathcal{L}_{\text {CON }}$ consists of giving definitions of the following main components:

1. Logical Connectives under semantics M
2. Truth Assignment for M
3. Satisfaction Relation, Model, Counter-Model under semantics M
4. Tautology under semantics M

Definition of M - Extensional Connectives

Given a propositional language $\mathcal{L}_{\text {CON }}$ for the set $C O N=C_{1} \cup C_{2}$, where C_{1} is the set of all unary connectives, and C_{2} is the set of all binary connectives
Let V be a non-empty set of logical values adopted by the semantics M
Definition 12
Connectives $\nabla \in C_{1}$, $\circ \in C_{2}$ are called \mathbf{M}-extensional iff their semantics \mathbf{M} is defined by respective functions

$$
\nabla: V \longrightarrow V \text { and } \circ: V \times V \longrightarrow V
$$

DEFINITION: Definability of Connectives under a semantics M

Given a propositional language $\mathcal{L}_{\text {CON }}$ and its extensional semantics M

We adopt the following definition

Definition 13

A connective $\circ \in C O N$ is definable in terms of some connectives $\circ_{1}, \circ_{2}, \ldots \circ_{n} \in C O N$ for $n \geq 1$ under the semantics \mathbf{M} if and only if the connective \circ is a certain function composition of functions $\circ_{1}, \circ_{2}, \ldots \circ_{n}$ as they are defined by the semantics M

DEFINITION: \mathbf{M} Truth Assignment Extension v^{*} to \mathcal{F}

Definition 14

Given the \mathbf{M} truth assignment $v: V A R \longrightarrow V$
We define its \mathbf{M} extension v^{*} to the set \mathcal{F} of all formulas of \mathcal{L} as any function $v^{*}: \mathcal{F} \longrightarrow V$, such that the following conditions are satisfied
(i) for any a $\in V A R$

$$
v^{*}(a)=v(a)
$$

(ii) For any connectives $\nabla \in C_{1}, \quad \circ \in C_{2}$ and for any formulas $A, B \in \mathcal{F}$ we put

$$
\begin{gathered}
v^{*}(\nabla A)=\nabla v^{*}(A) \\
v^{*}((A \circ B))=\circ\left(v^{*}(A), v^{*}(B)\right)
\end{gathered}
$$

DEFINITION: M Satisfaction, Model, Counter Model, Tautology

Definition 15 Let $v: V A R \longrightarrow V$
Let $T \in V$ be the distinguished logical value
We say that
$v \quad \mathbf{M}$ satisfies a formula $A \in \mathcal{F} \quad\left(v \models_{M} A\right) \quad$ iff
$v^{*}(A)=T$
Definition 16
Given a formula $A \in \mathcal{F}$ and $v: V A R \longrightarrow V$
Any v such that $v \models_{M} A$ is called a \mathbf{M} model for A
Any v such that $v \forall_{\mathbf{M}} A$ is called a \mathbf{M} counter model for A
A is a \mathbf{M} tautology $\left(\models_{\mathbf{M}} A\right) \quad$ iff $\quad v \models_{\mathbf{M}} A$, for all
$v: V A R \longrightarrow V$

CHAPTER 3: Some Questions

Chapter 3: Question 1

Question 1

Find a restricted model for formula A, where

$$
A=(\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c)))
$$

You can't use short-hand notation
Show each step of solution

Solution

For any formula A, we denote by $V A R_{A}$ a set of all variables that appear in A
In our case we have $V A R_{A}=\{a, b, c\}$
Any function $\quad v_{A}: V A R_{A} \longrightarrow\{T, F\} \quad$ is called a truth assignment restricted to A

Chapter 3: Question 1

Let $v: V A R \longrightarrow\{T, F\}$ be any truth assignment such that

$$
v(a)=v_{A}(a)=T, v(b)=v_{A}(b)=T, v(c)=v_{A}(c)=F
$$

We evaluate the value of the extension v^{*} of v on the formula A as follows

$$
\begin{aligned}
& v^{*}(A)=v^{*}((\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c)))) \\
& =v^{*}(\neg a) \Rightarrow v^{*}((\neg b \cup(b \Rightarrow \neg c))) \\
& =\neg v^{*}(a) \Rightarrow\left(v^{*}(\neg b) \cup v^{*}((b \Rightarrow \neg c))\right) \\
& =\neg v(a) \Rightarrow(\neg v(b) \cup(v(b) \Rightarrow \neg v(c))) \\
& =\neg v_{A}(a) \Rightarrow\left(\neg v_{A}(b) \cup\left(v_{A}(b) \Rightarrow \neg v_{A}(c)\right)\right) \\
& (\neg T \Rightarrow(\neg T \cup(T \Rightarrow \neg F)))=F \Rightarrow(F \cup T)=F \Rightarrow T=T, \text { i.e. }
\end{aligned}
$$

$$
v_{A} \models A \quad \text { and } \quad v \models A
$$

Chapter 3: Question 2

Question 2

Find a restricted model and a restricted counter-model for A, where

$$
A=(\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c)))
$$

You can use short-hand notation. Show work Solution
Notation: for any formula A, we denote by $V A R_{A}$ a set of all variables that appear in A
In our case we have $V A R_{A}=\{a, b, c\}$
Any function $\quad V_{A}: V A R_{A} \longrightarrow\{T, F\}$ is called a truth assignment restricted to A
We define now $v_{A}(a)=T, v_{A}(b)=T, v_{A}(c)=F$, in shorthand: $a=T, b=T, c=F$ and evaluate $(\neg T \Rightarrow(\neg T \cup(T \Rightarrow \neg F)))=F \Rightarrow(F \cup T)=F \Rightarrow T=T$, i.e.

$$
v_{A} \models A
$$

Chapter 3: Question 2

Observe that
$(\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c))=T \quad$ when $a=T$ and b, c any truth values as by definition of implication we have that $F \Rightarrow$ anything $=T$

Hence $a=T$ gives us 4 models as we have 2^{2} possible values on b and c

Chapter 3: Question 2

We take as a restricted counter-model: $\mathrm{a}=\mathrm{F}, \mathrm{b}=\mathrm{T}$ and $\mathrm{c}=\mathrm{T}$ Evaluation: observe that
$(\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c))=F \quad$ if and only if
$\neg a=T \quad$ and $\quad(\neg b \cup(b \Rightarrow \neg c))=F \quad$ if and only if
$a=F, \neg b=F \quad$ and $(b \Rightarrow \neg c)=F \quad$ if and only if
$a=F, b=T$ and $(T \Rightarrow \neg C)=F$ if and only if
$a=F, b=T \quad$ and $\neg c=F \quad$ if and only if
$a=F, b=T$ and $c=T$
The above proves also that $a=F, b=T$ and $c=T$ is the only restricted counter -model for A

Chapter 3: Question 3

Question 3 Justify whether the following statements true or false

S1 There are more then 3 possible restricted counter-models for A

S2 There are more then 2 possible restricted models of A Solution

S1Statement: There are more then 3 possible restricted counter-models for A is false

We have just proved that there is only one possible restricted counter-model for A
S2 Statement: There are more then 2 possible restricted models of A is true

There are 7 possible restricted models for A
Justification: $2^{3}-1=7$

Chapter 3: Question 4

Question 4

1. List 3 models for A from Question 2, i.e. for formula

$$
A=(\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c)))
$$

that are extensions to the set VAR of all variables of one of the restricted models that you have found in Questions 1,
2. List $\mathbf{2}$ counter models for A that are extensions of one of the restricted countrer models that you have found in the Questions 1, 2

Chapter 3: Question 4

Solution

1. One of the restricted models is, for example a function
$v_{A}:\{a, b, c\} \longrightarrow\{T, F\}$ such that
$v_{A}(a)=T, v_{A}(b)=T, v_{A}(c)=F$
We extend v_{A} to the set of all propositional variables VAR to obtain a (non restricted) models as follows

Chapter 3: Question 4

Model w_{1} is a function
$w_{1}: V A R \longrightarrow\{T, F\}$ such that
$w_{1}(a)=v_{A}(a)=T, \quad w_{1}(b)=v_{A}(b)=T$,
$w_{1}(c)=v_{A}(c)=F, \quad$ and $w_{1}(x)=T$, for all
$x \in \operatorname{VAR}-\{a, b, c\}$

Model w_{2} is defined by a formula
$w_{2}(a)=v_{A}(a)=T, \quad w_{2}(b)=v_{A}(b)=T$,
$w_{2}(c)=v_{A}(c)=F$, and $w_{2}(x)=F$, for all
$x \in \operatorname{VAR}-\{a, b, c\}$

Chapter 3: Question 4

Model w_{3} is defined by a formula
$w_{3}(a)=v_{A}(a)=T, w_{3}(b)=v_{A}(b)=T, w_{3}(c)=v(c)=F$,
$w_{3}(d)=F$ and $w_{3}(x)=T$ for all $x \in \operatorname{VAR}-\{a, b, c, d\}$

There is as many of such models, as extensions of v_{A} to the set $V A R$, i.e. as many as real numbers

Chapter 3: Question 4

2. A counter-model for a formula
$A=(\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c))$ is, by definition any function

$$
v: V A R \longrightarrow\{T, F\}
$$

such that $v^{*}(A)=F$
A restricted counter-model for the formula A, the only one, as already proved in is a function

$$
v_{A}:\{a, b\} \longrightarrow\{T, F\}
$$

such that such that

$$
v_{A}(a)=F, \quad v_{A}(b)=T, \quad v_{A}(c)=T
$$

Chapter 3: Question 4

We extend v_{A} to the set of all propositional variables VAR to obtain (non restricted) some counter-models.
Here are two of such extensions
Counter- model w_{1} :
$w_{1}(a)=v_{A}(a)=F, \quad w_{1}(b)=v_{A}(b)=T$,
$w_{1}(c)=v(c)=T$, and $w_{1}(x)=F$, for all
$x \in \operatorname{VAR}-\{a, b, c\}$
Counter- model w_{2} :
$w_{2}(a)=v_{A}(a)=T, w_{2}(b)=v_{A}(b)=T$,
$w_{2}(c)=v(c)=T$, and $w_{2}(x)=T$ for all
$x \in \operatorname{VAR}-\{a, b, c\}$
There is as many of such counter- models, as extensions of V_{A} to the set VAR, i.e. as many as real numbers

Chapter 3: Models for Sets of Formulas

Definition

A truth assignment v is a model for a set $\mathcal{G} \subseteq \mathcal{F}$
of formulas of a given language $\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$
if and only if

$$
v \models B \quad \text { for all } \quad B \in \mathcal{G}
$$

We denote it by $\quad v \vDash \mathcal{G}$
Observe that the set $\mathcal{G} \subseteq \mathcal{F}$ can be finite or infinite

Chapter 3: Consistent Sets of Formulas

Definition

A set $\mathcal{G} \subseteq \mathcal{F}$ of formulas is called consistent if and only if \mathcal{G} has a model, i.e. we have that
$\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if
there is v such that $v \models \mathcal{G}$

Otherwise \mathcal{G} is called inconsistent

Chapter 3: Independent Statements

Definition

A formula A is called independent from a set $\mathcal{G} \subseteq \mathcal{F}$
if and only if there are truth assignments v_{1}, v_{2} such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

i.e. we say that a formula A is independent
if and only if
$\mathcal{G} \cup\{A\}$ and $\mathcal{G} \cup\{\neg A\}$ are consistent

Chapter 3: Question 5

Question 5

Given a set

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Show that \mathcal{G} is consistent

Solution

We have to find $v: V A R \longrightarrow\{T, F\}$ such that

$$
v \models \mathcal{G}
$$

It means that we need to bf find v such that

$$
v^{*}((a \cap b) \Rightarrow b)=T, \quad v^{*}(a \cup b)=T, \quad v^{*}(\neg a)=T
$$

Chapter 3: Question 5

Observe that $\models((a \cap b) \Rightarrow b)$, hence we have that

1. $v^{*}((a \cap b) \Rightarrow b)=T \quad$ for any v
$v^{*}(\neg a)=\neg v^{*}(a)=\neg v(a)=T$
only when $v(a)=F$ hence
2. $v(a)=F$
$v^{*}(a \cup b)=v^{*}(a) \cup v^{*}(b)=v(a) \cup v(b)=F \cup v(b)=T$ only when $v(b)=T$ so we get
3. $v(b)=T$

This means that for any $v: V A R \longrightarrow\{T, F\}$ such that
$v(a)=F, \quad v(b)=T, \quad v \models \mathcal{G}$
and we proved that \mathcal{G} is consistent

Chapter 3: Question 6

Question 6

Show that a formula $A=(\neg a \cap b)$ is not independent of

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Solution

We have to show that it is impossible to construct v_{1}, v_{2} such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

Observe that we have just proved that any v such that $v(a)=F$, and $v(b)=T$ is the only model restricted to the set of variables $\{a, b\}$ for \mathcal{G} so we have to check now if it is possible that $\quad v \models A$ and $v \models \neg A$

Chapter 3: Question 6

We have to evaluate $v^{*}(A)$ and $v^{*}(\neg A)$ for
$v(a)=F$, and $v(b)=T$
$v^{*}(A)=v^{*}((\neg a \cap b)=\neg v(a) \cap v(b)=\neg F \cap T=T \cap T=T$
and so $\quad v \vDash A$
$v^{*}(\neg A)=\neg v^{*}(A)=\neg T=F$
and so $v \not \vDash \neg A$

This ends the proof that A is not independent of \mathcal{G}

Chapter 3: Question 7

Question 7

Find an infinite number of formulas that are independent of

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

This my solution - there are many others, but this one seemed to me to be the simplest

Solution

We just proved that any v such that $v(a)=F, v(b)=T$ is the only model restricted to the set of variables $\{a, b\}$ and so all other possible models for \mathcal{G} must be extensions of v

Chapter 3: Question 7

We define a countably infinite set of formulas (and their negations) and corresponding extensions of v (restricted to to the set of variables $\{a, b\}$) such that $v \models \mathcal{G}$ as follows

Observe that all extensions of v restricted to to the set of variables $\{a, b\}$ have as domain the infinitely countable set

$$
\operatorname{VAR}-\{a, b\}=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}
$$

We take as a set of formulas (to be proved to be independent) the set of atomic formulas

$$
\mathcal{F}_{0}=\operatorname{VAR}-\{a, b\}=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}
$$

Chapter 3: Question 7

proof of independence of any formula of \mathcal{F}_{0}
Let $c \in \mathcal{F}_{0}$
We define truth assignments $\quad v_{1}, v_{2}: V A R \longrightarrow\{T, F\}$
such that

$$
v_{1} \models \mathcal{G} \cup\{c\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg c\}
$$

as follows

$$
v_{1}(a)=v(a)=F, \quad v_{1}(b)=v(b)=T \text { and } v_{1}(c)=T
$$

for all $c \in \mathcal{F}_{0}$
$v_{2}(a)=v(a)=F, \quad v_{2}(b)=v(b)=T$ and $v_{2}(c)=F$
for all $c \in \mathcal{F}_{0}$

CHAPTER 3

Some Extensional Many Valued Semantics

Chapter 3: Question 8

Question 8
We define a 4 valued H_{4} logic semantics as follows
The language is $\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$
The logical connectives $\neg, \Rightarrow, \cup, \cap$ of \mathbf{H}_{4} are operations in the set $\left\{F, \perp_{1}, \perp_{2}, T\right\}$, where $\left\{F<\perp_{1}<\perp_{2}<T\right\}$ and are defined as follows
Conjunction \cap is a function
$\cap:\left\{F, \perp_{1}, \perp_{2}, T\right\} \times\left\{F, \perp_{1}, \perp_{2}, T\right\} \longrightarrow\left\{F, \perp_{1}, \perp_{2}, T\right\}$,
such that for any $x, y \in\left\{F, \perp_{1}, \perp_{2}, T\right\}$

$$
x \cap y=\min \{x, y\}
$$

Chapter 3: Question 8

Disjunction U is a function
$\cup:\left\{F, \perp_{1}, \perp_{2}, T\right\} \times\left\{F, \perp_{1}, \perp_{2}, T\right\} \longrightarrow\left\{F, \perp_{1}, \perp_{2}, T\right\}$,
such that for any $x, y \in\left\{F, \perp_{1}, \perp_{2}, T\right\}$

$$
x \cup y=\max \{x, y\}
$$

Implication \Rightarrow is a function
$\Rightarrow:\left\{F, \perp_{1}, \perp_{2}, T\right\} \times\left\{F, \perp_{1}, \perp_{2}, T\right\} \longrightarrow\left\{F, \perp_{1}, \perp_{2}, T\right\}$, such that for any $x, y \in\left\{F, \perp_{1}, \perp_{2}, T\right\}$,

$$
x \Rightarrow y= \begin{cases}T & \text { if } x \leq y \\ y & \text { otherwise }\end{cases}
$$

Negation: for any $x, y \in\left\{F, \perp_{1}, \perp_{2}, T\right\}$

$$
\neg x=x \Rightarrow F
$$

Chapter 3: Question 8

Part 1 Write Truth Tables for IMPLICATION and NEGATION in H_{4}

Solution

H_{4} Implication

\Rightarrow	F	\perp_{1}	\perp_{2}	T
F	T	T	T	T
\perp_{1}	F	T	T	T
\perp_{2}	F	\perp_{1}	T	T
T	F	\perp_{1}	\perp_{2}	T
H_{4} Negation				

$$
\begin{array}{c|cccc}
\neg & \mathrm{F} & \perp_{1} & \perp_{2} & \mathrm{~T} \\
\hline & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F}
\end{array}
$$

Chapter 3: Question 7

Part 2 Verify whether

$$
\models_{\mathbf{H}_{4}}((a \Rightarrow b) \Rightarrow(\neg a \cup b))
$$

Solution

Take any v such that
$v(a)=\perp_{1} \quad v(b)=\perp_{2}$
Evaluate
$v *((a \Rightarrow b) \Rightarrow(\neg a \cup b))=\left(\perp_{1} \Rightarrow \perp_{2}\right) \Rightarrow\left(\neg \perp_{1} \cup \perp_{2}\right)=$
$\left.T \Rightarrow\left(F \cup \perp_{2}\right)\right)=T \Rightarrow \perp_{2}=\perp_{2}$
This proves that our v is a counter-model and hence

$$
\not \forall_{\mathbf{H}_{4}}((a \Rightarrow b) \Rightarrow(\neg a \cup b))
$$

Chapter 3: Question 9

Question 9
Show that (can't use TTables!)

$$
\vDash((\neg a \cup b) \Rightarrow(((c \cap d) \Rightarrow \neg d) \Rightarrow(\neg a \cup b)))
$$

Solution
Denote $A=(\neg a \cup b)$, and $B=((c \cap d) \Rightarrow \neg d)$
Our formula becomes a substitution of a basic tautology

$$
(A \Rightarrow(B \Rightarrow A))
$$

and hence is a tautology

Chapter 3: Challenge Exercise

1. Define your own propositional language $\mathcal{L}_{\text {CON }}$ that contains also different connectives that the standard connectives $\neg, \cup, \cap, \Rightarrow$
Your language $\mathcal{L}_{\text {CON }}$ does not need to include all (if any!) of the standard connectives $\neg, \cup, \cap, \Rightarrow$
2. Describe intuitive meaning of the new connectives of your language
3. Give some motivation for your own semantic
4. Define formally your own extensional semantics \mathbf{M} for your language $\mathcal{L}_{\text {CON }}$-it means
write carefully all Steps 1-4 of the definition of your M

Chapter 3: Question 10

Question 10

Definition

Let S_{3} be a 3-valued semantics for $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$ defined as follows:
$V=\{F, U, T\}$ is the set of logical values with the distinguished value T

$$
\begin{aligned}
& x \Rightarrow y=\neg x \cup y \quad \text { for any } x, y \in\{F, U, T\} \\
& \qquad \neg F=T, \quad \neg U=F, \quad \neg T=U
\end{aligned}
$$

and

U	F	U	T
F	F	U	T
U	U	U	U
T	T	U	T

Question 10

Part 1

Consider the following classical tautologies:

$$
A_{1}=(a \cup \neg a), \quad A_{2}=(a \Rightarrow(b \Rightarrow a))
$$

Find S_{3} counter-models for A_{1}, A_{2}, if exist
You can't use shorthand notation
Solution
Any v such that $v(a)=v(b)=U$ is a counter-model for both A_{1} and A_{2}, as

$$
\begin{aligned}
& v^{*}(a \cup \neg a)=v^{*}(a) \cup \neg v^{*}(b)=U \cup \neg U=U \cup F=U \neq T \\
& v^{*}(a \Rightarrow(b \Rightarrow a))=v^{*}(a) \Rightarrow\left(v^{*}(b) \Rightarrow v^{*}(a)\right)=U \Rightarrow(U \Rightarrow \\
& U)=U \Rightarrow U=\neg U \cup U=F \cup U=U \neq T
\end{aligned}
$$

Question 10

Part 2

Consider the following classical tautologies:

$$
A_{1}=(a \cup \neg a), \quad A_{2}=(a \Rightarrow(b \Rightarrow a))
$$

Define your own 2-valued semantics S_{2} for \mathcal{L}, such that none of A_{1}, A_{2} is a S_{2} tautology
Verify your results. You can use shorthand notation.

Solution

This is not the only solution, but it is the simplest and most obvious I could think of! Here it is.
We define S_{2} connectives as follows

$$
\neg x=F, \quad x \Rightarrow y=F, \quad x \cup y=F \text { for all } x, y \in\{F, T\}
$$

Obviously, for any v,

$$
v^{*}(a \cup \neg a)=F \text { and } v^{*}(a \Rightarrow(b \Rightarrow a))=F
$$

Chapter 3: Question 11

Question 11

Prove using proper classical logical equivalences (list them at each step) that for any formulas A, B of language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$

$$
\neg(A \Leftrightarrow B) \equiv((A \cap \neg B) \cup(\neg A \cap B))
$$

Solution

$$
\begin{aligned}
& \neg(A \Leftrightarrow B) \equiv^{\operatorname{def}} \neg((A \Rightarrow B) \cap(B \Rightarrow A)) \\
& \equiv^{\text {deMorgan }}(\neg(A \Rightarrow B) \cup \neg(B \Rightarrow A)) \\
& \equiv^{\text {negimpl }}((A \cap \neg B) \cup(B \cap \neg A)) \equiv^{\text {commut }}((A \cap \neg B) \cup(\neg A \cap B))
\end{aligned}
$$

Question 12

Question 12

Prove using proper classical logical equivalences (list them at each step) that for any formulas A, B of language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$

$$
((B \cap \neg C) \Rightarrow(\neg A \cup B)) \equiv((B \Rightarrow C) \cup(A \Rightarrow B))
$$

Solution

$$
\begin{aligned}
& ((B \cap \neg C) \Rightarrow(\neg A \cup B)) \\
& \equiv^{i m p l}(\neg(B \cap \neg C) \cup(\neg A \cup B)) \\
& \equiv^{\text {deMorgan }}((\neg B \cup \neg \neg C) \cup(\neg A \cup B)) \\
& \equiv^{\text {dneg }}((\neg B \cup C) \cup(\neg A \cup B)) \equiv^{\text {impl }}((B \Rightarrow C) \cup(A \Rightarrow B))
\end{aligned}
$$

Question 13

Question 13

We define $Ł$ connectives for $\mathcal{L}_{\{\neg, u, \Rightarrow\}}$ as follows
$Ł$ Negation \neg is a function:

$$
\neg:\{T, \perp, F\} \longrightarrow\{T, \perp, F\}
$$

such that

$$
\neg \perp=\perp, \quad \neg T=F, \neg F=T
$$

$Ł$ Conjunction \cap is a function:

$$
\cap:\{T, \perp, F\} \times\{T, \perp, F\} \longrightarrow\{T, \perp, F\}
$$

such that $x \cap y=\min \{x, y\}$ for all $x, y \in\{T, \perp, F\}$
Remember that we assumed: $F<\perp<T$

Question 13

$Ł$ Implication \Rightarrow is a function:

$$
\Rightarrow:\{T, \perp, F\} \times\{T, \perp, F\} \longrightarrow\{T, \perp, F\}
$$

such that

$$
x \Rightarrow y= \begin{cases}\neg x \cup y & \text { if } x>y \\ T & \text { otherwise }\end{cases}
$$

Given a formula $((a \cap b) \Rightarrow \neg b) \in \mathcal{F}$ of $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$
Use the fact that $v: V A R \longrightarrow\{F, \perp, T\}$ is such that
$v^{*}(((a \cap b) \Rightarrow \neg b))=\perp$ under $Ł$ semantics to evaluate $v^{*}(((b \Rightarrow \neg a) \Rightarrow(a \Rightarrow \neg b)) \cup(a \Rightarrow b))$
You can use shorthand notation

Question 13 Solution

Solution

The formula $((a \cap b) \Rightarrow \neg b)=\perp$ in $Ł$ connectives semantics in
two cases written is the shorthand notation as
C1 $\quad(a \cap b)=\perp$ and $\neg b=F$
C2 $(a \cap b)=T$ and $\neg b=\perp$.
Consider case C1
$\neg b=F$, so $v(b)=T$, and hence $(a \cap T)=v(a) \cap T=\perp$
if and only if $v(a)=\perp$
It means that $v^{*}(((a \cap b) \Rightarrow \neg b))=\perp$ for any v, is such that
$v(a)=\perp$ and $v(b)=T$

Question 13 Solution

We now evaluate (in shorthand notation)

$$
\begin{aligned}
& v^{*}(((b \Rightarrow \neg a) \Rightarrow(a \Rightarrow \neg b)) \cup(a \Rightarrow b)) \\
& =(((T \Rightarrow \neg \perp) \Rightarrow(\perp \Rightarrow \neg T)) \cup(\perp \Rightarrow T))=((\perp \Rightarrow \perp) \cup T)=T
\end{aligned}
$$

Consider now Case C2

$\neg b=\perp$, i.e. $b=\perp$, and hence $(a \cap \perp)=T$ what is
impossible, hence v from the Case $\mathbf{C 1}$ is the only one

Question 14

Question 14

Use the Definability of Conjunction in terms of disjunction and negation Equivalence

$$
(A \cap B) \equiv \neg(\neg A \cup \neg B)
$$

to transform a formula

$$
A=\neg(\neg(\neg a \cap \neg b) \cap a)
$$

of the language $\mathcal{L}_{\{\cap, \neg\}}$ into a logically equivalent formula B of the language $\mathcal{L}_{\{\mathrm{U}, \mathrm{\imath}\}}$

Question 14

Solution

$$
\begin{aligned}
& \neg(\neg(\neg a \cap \neg b) \cap a) \equiv \neg \neg(\neg \neg(\neg a \cap \neg b) \cup \neg a) \\
& \equiv((\neg a \cap \neg b) \cup \neg a) \equiv(\neg(\neg \neg a \cup \neg \neg b) \cup \neg a) \\
& \equiv \neg(a \cup b) \cup \neg a)
\end{aligned}
$$

The formula B of $\mathcal{L}_{\{\cup, \neg\}}$ equivalent to A is

$$
B=(\neg(a \cup b) \cup \neg a)
$$

Equivalence of Languages Definition

Definition

Given two languages: $\mathcal{L}_{1}=\mathcal{L}_{\mathrm{CON}_{1}}$ and $\mathcal{L}_{2}=\mathcal{L}_{\mathrm{CON}_{2}}$, for $\mathrm{CON}_{1} \neq \mathrm{CON}_{2}$
We say that they are logically equivalent, i.e.

$$
\mathcal{L}_{1} \equiv \mathcal{L}_{2}
$$

if and only if the following conditions $\mathbf{C 1}, \mathbf{C} 2$ hold.
C1: for any formula A of \mathcal{L}_{1}, there is a formula B of \mathcal{L}_{2}, such that $A \equiv B$

C2: for any formula C of \mathcal{L}_{2}, there is a formula D of \mathcal{L}_{1}, such that $C \equiv D$

Question 14

Question 14

Prove the logical equivalence of the languages

$$
\mathcal{L}_{\{\neg, U\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}}
$$

Solution
We need two definability equivalences: implication in terms of disjunction and negation

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

and disjunction in terms of implication negation,

$$
(A \cup B) \equiv(\neg A \Rightarrow B)
$$

and the Substitution Theorem

Question 15

Question 15

Prove the logical equivalence of the languages

$$
\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \cap, \cup\}}
$$

Solution

We need only the definability of implication in terms of disjunction and negation equivalence

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

as the Substitution Theorem for any formula A of $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ there is a formula B of $\mathcal{L}_{\{\uparrow, \cap, \cup\}}$ such that $A \equiv B$ and the condition C1 holds

Observe that any formula A of language $\mathcal{L}_{\{\neg, \cap, \cup\}}$ is also a formula of the language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ and of course $A \equiv A$ so the condition $\mathbf{C 2}$ also holds

Question 16

Question 16

Prove that

$$
\mathcal{L}_{\{\neg, \cap\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}}
$$

Solution

The equivalence of languages holds due to the following two definability of connectives equivalences, respectively

$$
(A \cap B) \equiv \neg(A \Rightarrow \neg B), \quad(A \Rightarrow B) \equiv \neg(A \cap \neg B)
$$

and Substitution Theorem

Question 17

Question 17

Prove that in classical semantics

$$
\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow, \cup\}}
$$

Solution

OBSERVE that the condition C1 holds because any formula of $\mathcal{L}_{\{\neg, \Rightarrow\}}$ is also a formula of $\mathcal{L}_{\{\neg, \Rightarrow, U\}}$
Condition C2 holds due to the following definability of connectives equivalence

$$
(A \cup B) \equiv(\neg A \Rightarrow B)
$$

Question 18

Question 18

Prove that the equivalence defining \cup in terms of negation and implication in classical logic does not hold under $Ł$ semantics, i.e. that

$$
(A \cup B) \not \equiv \mathbf{L}(\neg A \Rightarrow B)
$$

but nevertheless

$$
\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathrm{L} \mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}\}}
$$

Question 18

Solution

We prove

$$
\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathrm{L} \mathcal{L}_{\{\neg, \Rightarrow, \cup\}}
$$

as follows
Condition C2 holds because the definability of connectives equivalence

$$
(A \cup B) \equiv \mathrm{L}((A \Rightarrow B) \Rightarrow B)
$$

Check it by verification as an exercise
C1 holds because any formula of $\mathcal{L}_{\{\neg, \Rightarrow\}}$ is a formula of $\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}\}}$
Observe that the equivalence $(A \cup B) \equiv(A \Rightarrow B) \Rightarrow B)$ provides also an alternative proof of $\mathbf{C} 2$ in classical case

