cse541 LOGIC for COMPUTER SCIENCE

Professor Anita Wasilewska

LECTURE 3e

Chapter 3 REVIEWSome Definitions and Problems

SOME DEFINITIONS: Part One

There are some basic **DEFINITIONS** from Chapter 3

You have to KNOW them for Q1 and MIDTERM

Knowing all basic **Definitions** is the first step for understanding the material

DEFINITIONS: Propositional Extensional Semantics

Definition 1

Given a propositional language \mathcal{L}_{CON} for the set $CON = C_1 \cup C_2$, where C_1, C_2 are respectively the sets of unary and binary connectives

Let V be a non-empty set of logical values

Connectives $\nabla \in C_1$, $o \in C_2$ are called **extensional** iff their semantics is defined by respective functions

 $\forall: V \longrightarrow V \text{ and } \circ: V \times V \longrightarrow V$

DEFINITIONS: Propositional Extensional Semantics

Definition 2

Formal definition of a **propositional extensional semantics** for a given language \mathcal{L}_{CON} consists of providing **definitions** of the following four main components:

- 1. Logical Connectives
- 2. Truth Assignment
- 3. Satisfaction, Model, Counter-Model
- 4. Tautology

CLASSICAL PROPOSITIONAL SEMANTICS

DEFINITIONS: Truth Assignment Extension *v**

Definition 3

The Language: $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$

Given the truth assignment $v: VAR \longrightarrow \{T, F\}$ in classical semantics for the language $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$

We define its **extension** v^* to the set \mathcal{F} of all formulas of \mathcal{L} as $v^* : \mathcal{F} \longrightarrow \{T, F\}$ such that

(i) for any $a \in VAR$

$$v^*(a) = v(a)$$

(ii) and for any $A, B \in \mathcal{F}$ we put

$$v^*(\neg A) = \neg v^*(A);$$

$$v^*((A \cap B)) = \bigcap (v^*(A), v^*(B));$$

$$v^*((A \cup B)) = \bigcup (v^*(A), v^*(B));$$

$$v^*((A \Rightarrow B)) = \Rightarrow (v^*(A), v^*(B));$$

$$v^*((A \Leftrightarrow B)) = \Leftrightarrow (v^*(A), v^*(B))$$

Notation

For binary connectives (two argument functions) we adopt a convention to write the symbol of the connective (name of the 2 argument function) between its arguments as we do in a case arithmetic operations

The **condition (ii)** of the definition of the extension v^* can be hence **written** as follows

(ii) and for any $A, B \in \mathcal{F}$ we put

$$v^*(\neg A) = \neg v^*(A);$$

$$v^*((A \cap B)) = v^*(A) \cap v^*(B);$$

$$v^*((A \cup B)) = v^*(A) \cup v^*(B);$$

$$v^*((A \Rightarrow B)) = v^*(A) \Rightarrow v^*(B);$$

$$v^*((A \Leftrightarrow B)) = v^*(A) \Leftrightarrow v^*(B)$$

DEFINITIONS: Satisfaction Relation

Definition 4 Let $v: VAR \longrightarrow \{T, F\}$

We say that

v satisfies a formula $A \in \mathcal{F}$ iff $v^*(A) = T$

Notation: $v \models A$

We say that

v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$

Notation: $v \not\models A$

DEFINITIONS: Model, Counter-Model, Classical Tautology

Definition 5

Given a formula $A \in \mathcal{F}$ and $v : VAR \longrightarrow \{T, F\}$

We say that

v is a **model** for A iff $v \models A$

v is a counter-model for A iff $v \not\models A$

Definition 6

A is a **tautology** iff for any $v : VAR \longrightarrow \{T, F\}$ we have that $v \models A$

Notation

We write symbolically $\models A$ to denote that A is a classical tautology

DEFINITIONS: Restricted Truth Assignments

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 7 Given a formula $A \in \mathcal{F}$, any function

$$v_A: VAR_A \longrightarrow \{T, F\}$$

is called a truth assignment restricted to A

DEFINITIONS: Restricted Model, Counter Model

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 8 Given a formula $A \in \mathcal{F}$ Any function

$$w: VAR_A \longrightarrow \{T, F\}$$
 such that $w^*(A) = T$ is called a **restricted MODEL** for A

Any function

$$w: VAR_A \longrightarrow \{T, F\}$$
 such that $w^*(A) \neq T$

is called a restricted Counter- MODEL for A

DEFINITIONS: Models for Sets of Formulas

Consider $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}$ and let $\mathcal{S} \neq \emptyset$ be any non empty set of formulas of \mathcal{L} , i.e.

$$S \subseteq \mathcal{F}$$

Definition 9

A truth truth assignment $v: VAR \longrightarrow \{T, F\}$ is a **model for the set** S of formulas if and only if

$$v \models A$$
 for all formulas $A \in S$

We write

$$v \models S$$

to denote that **v** is a model for the set S of formulas

DEFINITIONS: Consistent Sets of Formulas

Definition 10

A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ of **formulas** is called **consistent** if and only if \mathcal{G} has a model, i.e. we have that

 $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if **there is** v such that $v \models \mathcal{G}$

Otherwise G is called inconsistent

DEFINITIONS: Independent Statements

Definition 11

A formula A is called **independent** from a non-empty set $\mathcal{G} \subseteq \mathcal{F}$

if and only if there are truth assignments v_1, v_2 such that

$$v_1 \models \mathcal{G} \cup \{A\} \text{ and } v_2 \models \mathcal{G} \cup \{\neg A\}$$

i.e. we say that a formula A is **independent** if and only if

 $G \cup \{A\}$ and $G \cup \{\neg A\}$ are consistent

Many Valued Extensional Semantics M

DEFINITIONS: Semantics M

Definition 11

The extensional semantics **M** is defined for a non-empty set of **V** of **logical values of any cardinality**

We only **assume** that the set V of logical values of M always has a special, distinguished logical value which serves to define a notion of tautology

We denote this distinguished value as T

Formal definition of **many valued extensional semantics M** for the language \mathcal{L}_{CON} consists of giving **definitions** of the following main components:

- 1. Logical Connectives under semantics M
- 2. Truth Assignment for M
- Satisfaction Relation, Model, Counter-Model under semantics M
- 4. Tautology under semantics M

Definition of M - Extensional Connectives

Given a propositional language \mathcal{L}_{CON} for the set $CON = C_1 \cup C_2$, where C_1 is the set of all unary connectives, and C_2 is the set of all binary connectives Let V be a non-empty set of **logical values** adopted by the semantics M

Definition 12

Connectives $\nabla \in C_1$, $o \in C_2$ are called **M** -extensional iff their semantics **M** is defined by respective functions

$$\forall: V \longrightarrow V \text{ and } \circ: V \times V \longrightarrow V$$

DEFINITION: Definability of Connectives under a semantics M

Given a propositional language \mathcal{L}_{CON} and its **extensional** semantics M

We adopt the following definition

Definition 13

A connective $\circ \in CON$ is **definable** in terms of some connectives $\circ_1, \circ_2, ... \circ_n \in CON$ for $n \ge 1$ **under the semantics M** if and only if the connective \circ is a certain function composition of functions $\circ_1, \circ_2, ... \circ_n$ as they are **defined by the semantics M**

DEFINITION: **M** Truth Assignment Extension v^* to \mathcal{F}

Definition 14

Given the M truth assignment $v: VAR \longrightarrow V$

We define its **M extension** v^* to the set \mathcal{F} of all formulas of \mathcal{L} as any function $v^*: \mathcal{F} \longrightarrow V$, such that the following conditions are satisfied

(i) for any $a \in VAR$

$$v^*(a) = v(a);$$

(ii) For any connectives $\nabla \in C_1$, $o \in C_2$ and for any formulas $A, B \in \mathcal{F}$ we put

$$v^*(\nabla A) = \nabla v^*(A)$$
$$v^*((A \circ B)) = \circ (v^*(A), v^*(B))$$

DEFINITION: M Satisfaction, Model, Counter Model, Tautology

```
Definition 15 Let v: VAR \longrightarrow V
Let T \in V be the distinguished logical value
We say that
    M satisfies a formula A \in \mathcal{F} (v \models_{\mathbf{M}} A)
                                                                iff
v^{*}(A) = T
Definition 16
Given a formula A \in \mathcal{F} and v : VAR \longrightarrow V
Any v such that v \models_{\mathbf{M}} A is called a M model for A
Any v such that v \not\models_{\mathbf{M}} A is called a M counter model for A
A is a M tautology (\models_{\mathbf{M}} A) iff v \models_{\mathbf{M}} A, for all
v \cdot VAR \longrightarrow V
```

CHAPTER 3: Some Questions

Question 1

Find a restricted model for formula A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You can't use short-hand notation

Show each step of solution

Solution

For any formula A, we denote by VAR_A a set of all variables that appear in A

In our case we have $VAR_A = \{a, b, c\}$

Any function $v_A: VAR_A \longrightarrow \{T, F\}$ is called a truth assignment restricted to A

Let $v: VAR \longrightarrow \{T, F\}$ be any truth assignment such that

$$v(a) = v_A(a) = T$$
, $v(b) = v_A(b) = T$, $v(c) = v_A(c) = F$

We evaluate the value of the **extension** v^* of v on the formula A as follows

$$v^{*}(A) = v^{*}((\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))))$$

$$= v^{*}(\neg a) \Rightarrow v^{*}((\neg b \cup (b \Rightarrow \neg c)))$$

$$= \neg v^{*}(a) \Rightarrow (v^{*}(\neg b) \cup v^{*}((b \Rightarrow \neg c)))$$

$$= \neg v(a) \Rightarrow (\neg v(b) \cup (v(b) \Rightarrow \neg v(c)))$$

$$= \neg v_{A}(a) \Rightarrow (\neg v_{A}(b) \cup (v_{A}(b) \Rightarrow \neg v_{A}(c)))$$

$$(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T, i.e.$$

$$v_{A} \models A \quad \text{and} \quad v \models A$$

Question 2

Find a restricted model and a restricted counter-model for A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You **can use** short-hand notation. Show work

Solution

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

In our case we have $VAR_A = \{a, b, c\}$

Any function $v_A: VAR_A \longrightarrow \{T, F\}$ is called a truth assignment restricted to A

We define now $v_A(a) = T$, $v_A(b) = T$, $v_A(c) = F$, in shorthand: a = T, b = T, c = F and evaluate $(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T$, i.e.

$$v_A \models A$$

Observe that

 $(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) = T$ when a = T and b, c any truth values as by definition of implication we have that $F \Rightarrow \text{anything} = T$

Hence a = T gives us 4 models as we have 2^2 possible values on b and c

We take as a restricted counter-model: a=F, b=T and c=T **Evaluation:** observe that $(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) = F$ if and only if $\neg a = T$ and $(\neg b \cup (b \Rightarrow \neg c)) = F$ if and only if a = F, $\neg b = F$ and $(b \Rightarrow \neg c) = F$ if and only if a = F, b = T and $(T \Rightarrow \neg c) = F$ if and only if a = F, b = T and $\neg c = F$ if and only if a = F, b = T and c = T

The above proves also that a=F, b=T and c=T is the only restricted counter -model for A

Question 3 Justify whether the following statements **true** or **false**

S1 There are more then 3 possible restricted counter-models for *A*

S2 There are more then 2 possible restricted models of *A* **Solution**

S1Statement: There are more then 3 possible restricted counter-models for **A** is **false**

We have just proved that there is only one possible restricted counter-model for A

S2 Statement: There are more then 2 possible restricted models of *A* is **true**

There are 7 possible restricted models for A

Justification: $2^3 - 1 = 7$

Question 4

1. List 3 models for A from Question 2, i.e. for formula

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

that are **extensions** to the set *VAR* of all variables of **one** of the restricted models that you have found in Questions 1,

2. List 2 counter models for A that are extensions of one of the restricted countrer models that you have found in the Questions 1, 2

Solution

1. One of the **restricted models** is, for example a function

 $v_A: \{a,b,c\} \longrightarrow \{T,F\}$ such that

$$v_A(a) = T, \ v_A(b) = T, \ v_A(c) = F$$

We **extend** v_A to the set of all propositional variables VAR to obtain a (non restricted) **models** as follows

Model W_1 is a function

$$w_1: VAR \longrightarrow \{T, F\}$$
 such that $w_1(a) = v_A(a) = T$, $w_1(b) = v_A(b) = T$, $w_1(c) = v_A(c) = F$, and $w_1(x) = T$, for all $x \in VAR - \{a, b, c\}$

Model w_2 is defined by a formula

$$w_2(a) = v_A(a) = T$$
, $w_2(b) = v_A(b) = T$,
 $w_2(c) = v_A(c) = F$, and $w_2(x) = F$, for all $x \in VAR - \{a, b, c\}$

Model W_3 is defined by a formula

$$w_3(a) = v_A(a) = T$$
, $w_3(b) = v_A(b) = T$, $w_3(c) = v(c) = F$, $w_3(d) = F$ and $w_3(x) = T$ for all $x \in VAR - \{a, b, c, d\}$

There is as many of such models, as extensions of v_A to the set VAR, i.e. as many as real numbers

2. A counter-model for a formula

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))$$
 is, by **definition** any function

$$v: VAR \longrightarrow \{T, F\}$$

such that $v^*(A) = F$

A restricted counter-model for the formula A, the only one, as already proved in is a function

$$v_A: \{a,b\} \longrightarrow \{T,F\}$$

such that such that

$$v_A(a) = F, \ v_A(b) = T, \ v_A(c) = T$$

We extend v_A to the set of all propositional variables VAR to obtain (non restricted) some counter-models.

Here are **two** of such extensions

Counter- model w₁:

$$w_1(a) = v_A(a) = F$$
, $w_1(b) = v_A(b) = T$,
 $w_1(c) = v(c) = T$, and $w_1(x) = F$, for all $x \in VAR - \{a, b, c\}$

Counter- model w2:

$$w_2(a) = v_A(a) = T$$
, $w_2(b) = v_A(b) = T$,
 $w_2(c) = v(c) = T$, and $w_2(x) = T$ for all $x \in VAR - \{a, b, c\}$

There is as many of such **counter- models**, as extensions of v_A to the set VAR, i.e. as many as real numbers

Chapter 3: Models for Sets of Formulas

Definition

A truth assignment \mathbf{v} is a **model for a set** $\mathcal{G} \subseteq \mathcal{F}$ **of formulas** of a given language $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$ if and only if

$$v \models B$$
 for all $B \in \mathcal{G}$

We denote it by $v \models G$

Observe that the set $G \subseteq \mathcal{F}$ can be **finite** or **infinite**

Chapter 3: Consistent Sets of Formulas

Definition

A set $\mathcal{G} \subseteq \mathcal{F}$ of **formulas** is called **consistent** if and only if \mathcal{G} has a model, i.e. we have that

 $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if **there is** v such that $v \models \mathcal{G}$

Otherwise G is called inconsistent

Chapter 3: Independent Statements

Definition

A formula A is called **independent** from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if **there are** truth assignments v_1, v_2 such that

$$v_1 \models \mathcal{G} \cup \{A\} \text{ and } v_2 \models \mathcal{G} \cup \{\neg A\}$$

i.e. we say that a formula A is **independent** if and only if

 $\mathcal{G} \cup \{A\}$ and $\mathcal{G} \cup \{\neg A\}$ are consistent

Question 5

Given a set

$$G = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$$

Show that G is consistent

Solution

We have to find $v: VAR \longrightarrow \{T, F\}$ such that

$$v \models \mathcal{G}$$

It means that we need to bf find v such that

$$v^*((a \cap b) \Rightarrow b) = T$$
, $v^*(a \cup b) = T$, $v^*(\neg a) = T$

Observe that $\models ((a \cap b) \Rightarrow b)$, hence we have that 1. $v^*((a \cap b) \Rightarrow b) = T$ for any v $v^*(\neg a) = \neg v^*(a) = \neg v(a) = T$ **only** when v(a) = F hence **2.** v(a) = F $v^*(a \cup b) = v^*(a) \cup v^*(b) = v(a) \cup v(b) = F \cup v(b) = T$ **only** when v(b) = T so we get 3. v(b) = TThis **means** that for any $v: VAR \longrightarrow \{T, F\}$ such that v(a) = F, v(b) = T, $v \models G$ and we **proved** that *G* is **consistent**

Question 6

Show that a formula $A = (\neg a \cap b)$ is **not independent** of

$$\mathcal{G} = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$$

Solution

We have to show that it is impossible to construct v_1, v_2 such that

$$v_1 \models \mathcal{G} \cup \{A\}$$
 and $v_2 \models \mathcal{G} \cup \{\neg A\}$

Observe that we have just proved that any \mathbf{v} such that $\mathbf{v}(a) = F$, and $\mathbf{v}(b) = T$ is **the only** model restricted to the set of variables $\{a, b\}$ for \mathcal{G} so we have to check now if it is **possible** that $\mathbf{v} \models A$ and $\mathbf{v} \models \neg A$

We have to evaluate
$$v^*(A)$$
 and $v^*(\neg A)$ for $v(a) = F$, and $v(b) = T$ $v^*(A) = v^*((\neg a \cap b) = \neg v(a) \cap v(b) = \neg F \cap T = T \cap T = T$ and so $v \models A$ $v^*(\neg A) = \neg v^*(A) = \neg T = F$ and so $v \not\models \neg A$

This ends the proof that A is not independent of G

Question 7

Find an infinite number of formulas that are independent of

$$G = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$$

This **my solution** - there are many others, but this one seemed to me to be the **simplest**

Solution

We just proved that any v such that v(a) = F, v(b) = T is **the only** model restricted to the set of variables $\{a, b\}$ and so all other possible models for G must be **extensions** of v

We **define** a countably infinite set of formulas (and their negations) and corresponding **extensions** of \mathbf{v} (restricted to to the set of variables $\{a, b\}$) such that $\mathbf{v} \models \mathcal{G}$ as follows

Observe that **all extensions** of v restricted to to the set of variables $\{a, b\}$ have as domain the infinitely countable set

$$VAR - \{a, b\} = \{a_1, a_2, ..., a_n, ...\}$$

We take as a set of formulas (to be proved to be independent) the set of atomic formulas

$$\mathcal{F}_0 = VAR - \{a, b\} = \{a_1, a_2, \dots, a_n, \dots\}$$

proof of independence of any formula of \mathcal{F}_0 Let $c \in \mathcal{F}_0$ We define truth assignments $v_1, v_2: VAR \longrightarrow \{T, F\}$ such that $v_1 \models G \cup \{c\}$ and $v_2 \models G \cup \{\neg c\}$ as follows $v_1(a) = v(a) = F$, $v_1(b) = v(b) = T$ and $v_1(c) = T$ for all $c \in \mathcal{F}_0$ $v_2(a) = v(a) = F$, $v_2(b) = v(b) = T$ and $v_2(c) = F$ for all $c \in \mathcal{F}_0$

CHAPTER 3 Some Extensional Many Valued Semantics

Question 8

We **define** a 4 valued H₄ logic semantics as follows

The language is
$$\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$$

The logical connectives \neg , \Rightarrow , \cup , \cap of \mathbf{H}_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$ and are defined as follows

Conjunction ∩ is a function

$$\cap: \ \ \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \ \bot_1, \bot_2, T\},$$
 such that for any $\ \ x, y \in \{F, \bot_1, \bot_2, T\}$

$$x \cap y = min\{x, y\}$$

Disjunction ∪ is a function

$$\cup: \ \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\},$$
 such that for any $x, y \in \{F, \bot_1, \bot_2, T\}$

$$x \cup y = max\{x, y\}$$

Implication ⇒ is a function

⇒:
$$\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$$
, such that for any $x, y \in \{F, \bot_1, \bot_2, T\}$,

$$x \Rightarrow y = \begin{cases} T & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$$

Negation: for any $x, y \in \{F, \bot_1, \bot_2, T\}$

$$\neg x = x \Rightarrow F$$

Part 1 Write Truth Tables for IMPLICATION and NEGATION in H₄

Solution

H₄ Implication

H₄ Negation

Part 2 Verify whether

$$\models_{\mathsf{H}_4}((a\Rightarrow b)\Rightarrow (\neg a\cup b))$$

Solution

Take any v such that

$$v(a) = \bot_1 \quad v(b) = \bot_2$$

Evaluate

$$v*((a\Rightarrow b)\Rightarrow (\neg a\cup b))=(\bot_1\Rightarrow \bot_2)\Rightarrow (\neg \bot_1\cup \bot_2)=T\Rightarrow (F\cup \bot_2))=T\Rightarrow \bot_2=\bot_2$$

This proves that our *v* is a **counter-model** and hence

$$\not\models_{\mathsf{H}_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b))$$

Question 9

Show that (can't use TTables!)

$$\models ((\neg a \cup b) \Rightarrow (((c \cap d) \Rightarrow \neg d) \Rightarrow (\neg a \cup b)))$$

Solution

Denote
$$A = (\neg a \cup b)$$
, and $B = ((c \cap d) \Rightarrow \neg d)$

Our formula becomes a substitution of a basic tautology

$$(A \Rightarrow (B \Rightarrow A))$$

and hence is a tautology

Chapter 3: Challenge Exercise

1. Define your own propositional language \mathcal{L}_{CON} that contains also **different connectives** that the standard connectives \neg , \cup , \cap , \Rightarrow

Your language \mathcal{L}_{CON} does not need to include all (if any!) of the standard connectives \neg , \cup , \cap , \Rightarrow

- **2. Describe** intuitive meaning of the new connectives of your language
- 3. Give some motivation for your own semantic
- **4. Define** formally your own extensional semantics **M** for your language \mathcal{L}_{CON} it means write carefully all **Steps 1- 4** of the definition of your **M**

Question 10

Definition

Let S_3 be a 3-valued semantics for $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$ defined as follows:

 $V = \{F, U, T\}$ is the set of logical values with the distinguished value T

$$x \Rightarrow y = \neg x \cup y$$
 for any $x, y \in \{F, U, T\}$

$$\neg F = T$$
, $\neg U = F$, $\neg T = U$

and

Part 1

Consider the following classical tautologies:

$$A_1 = (a \cup \neg a), \quad A_2 = (a \Rightarrow (b \Rightarrow a))$$

Find S_3 counter-models for A_1 , A_2 , if exist You can't use shorthand notation

Solution

Any v such that v(a) = v(b) = U is a **counter-model** for both A_1 and A_2 , as

$$v^*(a \cup \neg a) = v^*(a) \cup \neg v^*(b) = U \cup \neg U = U \cup F = \bigcup \ne T$$

 $v^*(a \Rightarrow (b \Rightarrow a)) = v^*(a) \Rightarrow (v^*(b) \Rightarrow v^*(a)) = U \Rightarrow (U \Rightarrow U) = U \Rightarrow U = \neg U \cup U = F \cup U = \bigcup \ne T$

Part 2

Consider the following classical tautologies:

$$A_1 = (a \cup \neg a), \quad A_2 = (a \Rightarrow (b \Rightarrow a))$$

Define your own 2-valued semantics S_2 for \mathcal{L} , such that none of A_1, A_2 is a S_2 tautology

Verify your results. You can use shorthand notation.

Solution

This is not the only solution, but it is the simplest and most obvious I could think of! Here it is.

We define S_2 connectives as follows

$$\neg x = F, \ x \Rightarrow y = F, \ x \cup y = F \text{ for all } x, y \in \{F, T\}$$

Obviously, for any v,

$$v^*(a \cup \neg a) = F$$
 and $v^*(a \Rightarrow (b \Rightarrow a)) = F$

Question 11

Prove using proper **classical** logical equivalences (list them at each step) that for any formulas A, B of language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$

$$\neg(A \Leftrightarrow B) \equiv ((A \cap \neg B) \cup (\neg A \cap B))$$

Solution

$$\frac{\neg(A \Leftrightarrow B)}{\neg(A \Leftrightarrow B)} \equiv^{def} \neg((A \Rightarrow B) \cap (B \Rightarrow A))$$

$$\equiv^{deMorgan} (\neg(A \Rightarrow B) \cup \neg(B \Rightarrow A))$$

$$\equiv^{negimpl} ((A \cap \neg B) \cup (B \cap \neg A)) \equiv^{commut} ((A \cap \neg B) \cup (\neg A \cap B))$$

Question 12

Prove using proper **classical** logical equivalences (list them at each step) that for any formulas A, B of language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$

$$((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv ((B \Rightarrow C) \cup (A \Rightarrow B))$$

Solution

$$\begin{split} &((B \cap \neg C) \Rightarrow (\neg A \cup B)) \\ &\equiv^{impl} (\neg (B \cap \neg C) \cup (\neg A \cup B)) \\ &\equiv^{deMorgan} ((\neg B \cup \neg \neg C) \cup (\neg A \cup B)) \\ &\equiv^{dneg} ((\neg B \cup C) \cup (\neg A \cup B)) \equiv^{impl} ((B \Rightarrow C) \cup (A \Rightarrow B)) \end{split}$$

Question 13

We **define** \not connectives for $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$ as follows \not **Negation** \neg is a **function**:

$$\neg: \{T, \bot, F\} \longrightarrow \{T, \bot, F\}$$

such that $\neg \perp = \perp$, $\neg T = F$, $\neg F = T$

$$\cap: \{T, \bot, F\} \times \{T, \bot, F\} \longrightarrow \{T, \bot, F\}$$

such that $x \cap y = min\{x, y\}$ for all $x, y \in \{T, \bot, F\}$

Remember that we assumed: $F < \bot < T$

$$\Rightarrow: \{T, \bot, F\} \times \{T, \bot, F\} \longrightarrow \{T, \bot, F\}$$

such that

$$x \Rightarrow y = \begin{cases} \neg x \cup y & \text{if } x > y \\ T & \text{otherwise} \end{cases}$$

Given a formula $((a \cap b) \Rightarrow \neg b) \in \mathcal{F}$ of $\mathcal{L}_{\{\neg, \ \cup, \ \Rightarrow\}}$ **Use the fact** that $v: VAR \longrightarrow \{F, \bot, T\}$ is such that $v^*(((a \cap b) \Rightarrow \neg b)) = \bot$ under \bot semantics **to evaluate** $v^*(((b \Rightarrow \neg a) \Rightarrow (a \Rightarrow \neg b)) \cup (a \Rightarrow b))$

You can use shorthand notation

Question 13 Solution

Solution

The formula $((a \cap b) \Rightarrow \neg b) = \bot$ in \bot connectives semantics in

two cases written is the shorthand notation as

C1
$$(a \cap b) = \bot$$
 and $\neg b = F$

C2
$$(a \cap b) = T$$
 and $\neg b = \bot$.

Consider case C1

$$\neg b = F$$
, so $v(b) = T$, and hence $(a \cap T) = v(a) \cap T = \bot$ if and only if $v(a) = \bot$

It means that
$$v^*(((a \cap b) \Rightarrow \neg b)) = \bot$$
 for any v , is such that $v(a) = \bot$ and $v(b) = T$

Question 13 Solution

We now **evaluate** (in shorthand notation)

$$v^*(((b \Rightarrow \neg a) \Rightarrow (a \Rightarrow \neg b)) \cup (a \Rightarrow b))$$

= $(((T \Rightarrow \neg \bot) \Rightarrow (\bot \Rightarrow \neg T)) \cup (\bot \Rightarrow T)) = ((\bot \Rightarrow \bot) \cup T) = T$

Consider now Case C2

 $\neg b = \bot$, i.e. $b = \bot$, and hence $(a \cap \bot) = T$ what is **impossible**, hence v from the **Case C1** is the only one

Question 14

Use the **Definability of Conjunction** in terms of disjunction and negation **Equivalence**

$$(A \cap B) \equiv \neg(\neg A \cup \neg B)$$

to transform a formula

$$A = \neg(\neg(\neg a \cap \neg b) \cap a)$$

of the language $\mathcal{L}_{\{\cap,\neg\}}$ into a logically equivalent formula B of the language $\mathcal{L}_{\{\cup,\neg\}}$

Solution

$$\neg(\neg(\neg a \cap \neg b) \cap a) \equiv \neg \neg(\neg \neg(\neg a \cap \neg b) \cup \neg a)$$

$$\equiv ((\neg a \cap \neg b) \cup \neg a) \equiv (\neg(\neg \neg a \cup \neg \neg b) \cup \neg a)$$

$$\equiv \neg(a \cup b) \cup \neg a)$$

The formula B of $\mathcal{L}_{\{\cup,\neg\}}$ equivalent to A is

$$B = (\neg(a \cup b) \cup \neg a)$$

Equivalence of Languages Definition

Definition

Given two languages: $\mathcal{L}_1 = \mathcal{L}_{CON_1}$ and $\mathcal{L}_2 = \mathcal{L}_{CON_2}$, for $CON_1 \neq CON_2$

We say that they are **logically equivalent**, i.e.

$$\mathcal{L}_1 \equiv \mathcal{L}_2$$

if and only if the following conditions C1, C2 hold.

C1: for any formula A of \mathcal{L}_1 , there is a formula B of \mathcal{L}_2 , such that $A \equiv B$

C2: for any formula C of \mathcal{L}_2 , there is a formula D of \mathcal{L}_1 , such that $C \equiv D$

Question 14

Prove the logical equivalence of the languages

$$\mathcal{L}_{\{\neg,\cup\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow\}}$$

Solution

We need two definability equivalences:

implication in terms of disjunction and negation

$$(A \Rightarrow B) \equiv (\neg A \cup B)$$

and disjunction in terms of implication negation,

$$(A \cup B) \equiv (\neg A \Rightarrow B)$$

and the Substitution Theorem

Question 15

Prove the logical equivalence of the languages

$$\mathcal{L}_{\{\neg,\cap,\cup,\Rightarrow\}}\equiv\mathcal{L}_{\{\neg,\cap,\cup\}}$$

Solution

We need only the **definability of implication** in terms of disjunction and negation equivalence

$$(A \Rightarrow B) \equiv (\neg A \cup B)$$

as the **Substitution Theorem** for any formula A of $\mathcal{L}_{\{\neg,\cap,\cup,\Rightarrow\}}$ **there is** a formula B of $\mathcal{L}_{\{\neg,\cap,\cup\}}$ such that $A \equiv B$ and the condition C1 holds

Observe that any formula A of language $\mathcal{L}_{\{\neg,\cap,\cup\}}$ is also a formula of the language $\mathcal{L}_{\{\neg,\cap,\cup,\Rightarrow\}}$ and of course $A \equiv A$ so the condition **C2** also holds

Question 16

Prove that

$$\mathcal{L}_{\{\neg,\cap\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow\}}$$

Solution

The equivalence of languages holds due to the following two **definability of connectives equivalences**, respectively

$$(A \cap B) \equiv \neg (A \Rightarrow \neg B), \qquad (A \Rightarrow B) \equiv \neg (A \cap \neg B)$$

and Substitution Theorem

Question 17

Prove that in classical semantics

$$\mathcal{L}_{\{\neg,\Rightarrow\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow,\cup\}}$$

Solution

OBSERVE that the condition **C1** holds because any formula of $\mathcal{L}_{\{\neg, \Rightarrow\}}$ is also a formula of $\mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$

Condition **C2** holds due to the following definability of connectives equivalence

$$(A \cup B) \equiv (\neg A \Rightarrow B)$$

and Substitution Theorem

Question 18

Prove that the equivalence defining ∪ in terms of negation and implication in classical logic **does not hold** under Ł semantics, i.e. that

$$(A \cup B) \not\equiv_{\mathbf{L}} (\neg A \Rightarrow B)$$

but nevertheless

$$\mathcal{L}_{\{\neg,\Rightarrow\}}\equiv_{\textbf{L}}\mathcal{L}_{\{\neg,\Rightarrow,\cup\}}$$

Solution

We prove

$$\mathcal{L}_{\{\neg,\Rightarrow\}} \equiv_{\mathsf{L}} \mathcal{L}_{\{\neg,\Rightarrow,\cup\}}$$

as follows

Condition **C2** holds because the definability of connectives equivalence

$$(A \cup B) \equiv_{\mathsf{L}} ((A \Rightarrow B) \Rightarrow B)$$

Check it by verification as an exercise

C1 holds because any formula of $\mathcal{L}_{\{\neg,\Rightarrow,\cup\}}$ is a formula of $\mathcal{L}_{\{\neg,\Rightarrow,\cup\}}$

Observe that the equivalence $(A \cup B) \equiv (A \Rightarrow B) \Rightarrow B)$ provides also an alternative proof of **C2** in classical case

