CSE541 QUIZ 1 SOLUTIONS Fall 2022 (25pts)

Please take your time and write carefully your solutions. There is no NO PARTIAL CREDIT.
You get $\mathbf{0} \mathbf{p t s}$ for a solution with a formula that is NOT a well formed formula of the given language.

QUESTION 1 (5pts)

Write the following natural language statement:
From the fact that there is a bird that does not fly and $4+4=4$, we deduce the following:
it is not possible that all birds fly OR it is not necessary that $4+4=4$.
in the THREE ways.

1. (1pts) As a formula $A_{1} \in \mathcal{F}_{1}$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Solution Propositional Variables are: a, b, c, d
a denotes statement: there is a bird that does not fly,
b denotes statement: $4+4=4$,
c denotes statement: possible that all birds fly,
d denotes statement: necessary that $4+4=4$.
Formula $A_{1} \in \mathcal{F}_{1}$ is

$$
((a \cap b) \Rightarrow(\neg c \cup \neg d))
$$

2. (1pts) As a formula $A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}}$

Solution Propositional Variables are: a, b, c, d
a denotes statement: there is a bird that does not fly,
b denotes statement: $4+4=4$,
c denotes statement: all birds fly
Formula $A_{2} \in \mathcal{F}_{2}$ is:

$$
((a \cap b) \Rightarrow(\neg \diamond c \cup \neg \square b))
$$

3. (3pts) As a formula $A_{3} \in \mathcal{F}_{3}$ of a PREDICATE LANGUAGE language $\mathcal{L}_{\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{V})$,
i.e. as a formula of the predicate language $\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{V})$ with the set $\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}$ of propositional connectives.

Solution Use the following Predicates, Functions and Constants
$B(x)$ for x is a bird, $F(x)$ for x can fly, $E(x, y)$ for $x=y, f(x, y)$ for + , and c for 4.
(1pts) Restricted domain formula is:

$$
\left(\left(\exists_{B(X)} \neg F(x) \cap E(f(c, c), c)\right) \Rightarrow\left(\neg \diamond \forall_{B(X)} F(x) \cup \neg \square E(f(c, c), c)\right)\right)
$$

(2pts) Formula $A_{3} \in \mathcal{F}_{3}$ is:

$$
((\exists x(B(X) \cap \neg F(x)) \cap E(f(c, c), c)) \Rightarrow(\neg \diamond \forall x(B(X) \Rightarrow F(x)) \cup \neg \square E(f(c, c), c)))
$$

QUESTION 2 (5pts)

1. (2pts) Circle formulas that are propositional tautologies

$$
\mathcal{S}_{1}=\{((\neg c \cap c) \Rightarrow(\neg b \Rightarrow(d \cap e))), \quad((a \Rightarrow b) \cup(a \cap \neg b)), \quad((a \cap \neg b) \Rightarrow((a \cap \neg b) \Rightarrow(\neg d \cup e))), \quad(\neg a \Rightarrow(a \cup \neg b))\}
$$

Solution $\quad \forall(\neg a \Rightarrow(a \cup \neg b))$ and $\not \vDash((a \cap \neg b) \Rightarrow((a \cap \neg b) \Rightarrow(\neg d \cup e)))$, all other formulas are tautologies
2. (3pts) Circle formulas that are predicate tautologies

$$
\begin{aligned}
& \mathcal{S}_{2}=\{(\exists x A(x) \Rightarrow \neg \forall x \neg A(x)), \quad(\forall x(P(x, y) \cap Q(y)) \Rightarrow \neg \exists x \neg(P(x, y) \cap Q(y))), \\
& ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x))), \quad(\forall x(A(x) \Rightarrow B) \Rightarrow(\exists x A(x) \Rightarrow B))\}
\end{aligned}
$$

Solution $\quad \neq((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))$, all other formulas are tautologies

QUESTION 3 (5pts)

Let $A(x), B(x)$ be any formulas with a free variable x . Prove that

$$
\forall x(A(x) \cup B(x)) \quad \not \equiv \quad(\forall x A(x) \cup \forall x B(x))
$$

Solution Distributivity of universal quantifier over disjunction holds only on one direction, namely for any formulas $A(x), B(x)$ with a free variable x , we have that

$$
\vDash_{p}((\forall x A(x) \cup \forall x B(x)) \Rightarrow \forall x(A(x) \cup B(x))) .
$$

The inverse implication is not a predicate tautology

$$
\not \vDash_{p}(\forall x(A(x) \cup B(x)) \Rightarrow(\forall x A(x) \cup \forall x B(x))) .
$$

It means that we have to find a concrete formula $A(x), B(x) \in \mathcal{F}$ and a model structure $\mathbf{M}=(U, I)$ that is a countermodel for a concrete formula F.

Let $A(x), B(x)$ be atomic formulas $Q(x, c), R(x, c)$, we get that

$$
F:(\forall x(Q(x, c) \cup R(x, c)) \Rightarrow(\forall x(Q(x, c) \cup \forall x R(x, c))) .
$$

Take $\mathbf{M}=(R, I)$, where R is the set of real numbers.
We define $Q_{I}: \geq, R_{I}:<, c_{I}: 0$.
The formula F becomes an obviously false mathematical statement

$$
F_{I}:\left(\forall_{x \in R}(x \geq 0 \cup x<0) \Rightarrow\left(\forall_{x \in R} x \geq 0 \cup \forall_{x \in R} x<0\right)\right) .
$$

QUESTION 4 (10 pts)

Let $\mathcal{L}=\mathcal{L}_{\{\neg, \sim, \Rightarrow, \rightarrow\}}$ be a language with one argument connectives \neg, \sim called negation and weak negation, and with two arguments connectives \Rightarrow, \rightarrow called implication and weak implication.

We define a 3 valued extensional semantics \mathbf{M} for the language $\mathcal{L}_{\{\neg, \sim, \Rightarrow, \rightarrow\}}$ by defining the connectives $\neg, \sim, \Rightarrow, \rightarrow$ as functions on a set $\{F, \perp, T\}$ of 3 logical values as follows.

The functions \neg, \Rightarrow restricted to the set $\{F, T\}$ are the same as in classical case.
We extend them to the full set $\{F, \perp, T\}$ for negation as $\neg \perp=F$,
and for implication as

$$
\perp \Rightarrow y=\left\{\begin{array}{cc}
\perp & \text { if } y=\perp \\
T & \text { otherwise }
\end{array}\right.
$$

and $x \Rightarrow \perp=F$ for $x=T, F$.
We define the weak negation $\sim:\{T, \perp, F\} \longrightarrow\{T, \perp, F\}$ as

$$
\sim x= \begin{cases}T & \text { if } x=\perp \\ x & \text { for } x \in\{T, F\}\end{cases}
$$

We define the weak implication $\rightarrow:\{T, \perp, F\} \times\{T, \perp, F\} \longrightarrow\{T, \perp, F\}$ as

$$
x \rightarrow y=\sim(x \Rightarrow y)
$$

for any $x, y \in\{T, \perp, F\}$.

1. (3pts) Fill in the connectives tables

\neg	F	\perp	T
	T	F	F

\Rightarrow	F	\perp	T
F	T	F	T
\perp	T	\perp	T
T	F	F	T

\sim	F	\perp	T
	F	T	T

\rightarrow	F	\perp	T
F	T	F	T
\perp	T	T	T
T	F	F	T

2. $(2 \mathrm{pts})$ Write the following natural language statement:

The fact that 3 is not a number weakly implies that if 3 is weakly not a number then it is not true that $3+0=5$
as a formula A of the language $\mathcal{L}=\mathcal{L}_{\{\neg, \sim, \Rightarrow, \rightarrow\}}$ and show that it has a M model. You can use shorthand notation.

Solution

The formula A is: $\quad(\neg a \rightarrow(\sim a \Rightarrow \neg b))$,
where a denotes statement: 3 is a number, b denotes statement: $3+0=5$.
The M model is any $v: V A R \longrightarrow\{F, \perp, T\}$ such that $v(a)=v(b)=\perp$. We use shorthand notation to evaluate $v^{*}(A)$.
$\left.v^{*}((\neg a \rightarrow(\sim a \Rightarrow \neg b)))=\neg \perp \rightarrow(\sim \perp \Rightarrow \neg \perp)\right)=F \rightarrow(T \Rightarrow F)=F \rightarrow F=T$.
This is not the only model.
3. (3pts) Let \mathbf{T} be a set of classical tautologies and $\mathbf{M T}$ be a set of all \mathbf{M} tautologies.

Prove that $\mathbf{T} \cap \mathbf{M T} \neq \emptyset$.

Solution

Observe, that a formula $A \in \mathbf{T} \cap \mathbf{M T}$ can not conain connectives \sim, \rightarrow, i.e. A must belong to the language $\mathcal{L}_{\{\neg, \Rightarrow\}}$.

There are countably infinitely many candidates to consider. In this situation the best strategy is to start with the simplest, one variable formulas of the language $\mathcal{L}_{\{\neg, \Rightarrow\}}$ that one knowns to be classical tautologies.

For example, lets consider the formulas $(a \Rightarrow a),(\neg \neg a \Rightarrow),(a \Rightarrow \neg \neg a)$.
We have that $\forall_{\mathbf{M}}(a \Rightarrow a)$ because
$[$ any $v: V A R \longrightarrow\{F, \perp, T\}$ such that $v(a)=\perp$ is its counter model as $\perp \Rightarrow \perp=F$.

$\neg \neg \perp \Rightarrow \perp=\neg F \Rightarrow \perp=T \Rightarrow \perp=F$
We have that $\models_{\mathbf{M}}(a \Rightarrow \neg \neg a)$.
We evaluate $\perp \Rightarrow \neg \neg \perp=\perp \Rightarrow \neg F=\perp \Rightarrow T=T$.
4. (2pts) Prove that the semantics \mathbf{M} is well defined

Solution • By definition, semantics \mathbf{M} is well defined if and only if MT $\neq \emptyset$.
This is true as as we proved above that $\mathbf{T} \cap \mathbf{M T} \neq \emptyset$.

