CSE541 MIDTERM SOLUTIONS Fall 2022
 (75pts + 15extra credit)

Please take your time and write carefully your solutions. There is no NO PARTIAL CREDIT.
You get $\mathbf{0} \mathbf{p t s}$ for a solution with a formula that is NOT a well formed formula of the given language.

QUESTION 1 (15pts)

T1 (5pts) Write the following natural language statement:
One likes to eat apples, or from the fact that the apples are expensive we conclude the following: one does not like eat apples or one likes not to eat apples
as a formula $A_{1} \in \mathcal{F}_{\infty}$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$, where $\mathbf{L} A$ represents statement "one likes A", "A is liked".
Solution Propositional Variables are: (use a, b, \ldots and you must write which variables denote which sentences) a denotes statement: eat apples, b denotes a statement: the apples are expensive

Translation $\quad A_{1}=(\mathbf{L} a \cup(b \Rightarrow(\neg \mathbf{L} a \cup \mathbf{L} \neg a)))$
$\mathbf{T 2}$ (10 pts)
Here is a mathematical statement \mathbf{S} :
For all rational numbers $x \in Q$ the following holds: If $x \neq 0$, then there is a natural number $n \in N$, such that $x+n \neq 0$

1. (2pts). Re-write \mathbf{S} as a symbolic mathematical statement $\mathbf{S M}$ that only uses mathematical and logical symbols.

Solution \mathbf{S} becomes a symbolic mathematical statement

$$
\text { SM : } \quad \forall_{x \in Q}\left(x \neq 0 \Rightarrow \exists_{n \in N} x+n \neq 0\right)
$$

2. (5pts) Translate the symbolic statement $\mathbf{S M}$ into to a corresponding formula of the predicate language \mathcal{L} with restricted quantifiers. Use SYMBOLS: $\mathrm{Q}(\mathrm{x})$ for $x \in Q, \mathrm{~N}(\mathrm{y})$ for $y \in N, c$ for the number 0 . Use $E \in \mathbf{P}$ to denote the relation $=$ and use symbol $f \in \mathbf{F}$ to denote the function +

Solution

The statement $x \neq 0$ becomes a formula $\neg E(x, c)$. The statement $x+n \neq 0$ becomes a formula $\neg E(f(x, y), c)$.
The symbolic mathematical statement SM becomes a restricted quantifiers formula

$$
\forall_{Q(x)}\left(\neg E(x, c) \Rightarrow \exists_{N(y)} \neg E(f(x, y), c)\right)
$$

3. (3pts) Translate your restricted domain quantifiers logical formula into a correct formula A of \mathcal{L}.

Solution We apply now the transformation rules and get a corresponding formula $A \in \mathcal{F}$:

$$
\forall x(Q(x) \Rightarrow(\neg E(x, c) \Rightarrow \exists y(N(y) \cap \neg E(f(x, y), c))))
$$

QUESTION 2 (20 pts)

We define a 3 valued extensional semantics \mathbf{M} for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ by defining the connectives $\neg, \mathbf{L} \cup, \Rightarrow$ on a set $\{F, \perp, T\}$ of logical values as the following functions.

L Connective

$$
\begin{array}{l|lll}
\mathbf{L} & \mathrm{F} & \perp & \mathrm{~T} \\
\hline & \mathrm{~F} & F & \mathrm{~T} \\
& & &
\end{array}
$$

Implication

\Rightarrow	F	\perp	T
F	T	T	T
\perp	T	\perp	T
T	F	F	T

Negation :

$$
\begin{array}{c|ccc}
\neg & \mathrm{F} & \perp & \mathrm{~T} \\
\hline & \mathrm{~T} & F & \mathrm{~F}
\end{array}
$$

Disjunction :

\cup	F	\perp	T
F	F	\perp	T
\perp	\perp	T	T
T	T	T	T

1. (5pts) Verify whether $\vDash_{\mathbf{M}}(\mathbf{L} A \cup \neg \mathbf{L} A)$. Use shorthand notation.

Solution

We verify
$\mathbf{L} T \cup \neg \mathbf{L} T=T \cup F=T, \quad \mathbf{L} \perp \cup \neg \mathbf{L} \perp=F \cup \neg F=F \cup T=T, \quad \mathbf{L} F \cup \neg \mathbf{L} F=F \cup \neg F=T$
2. (5pts) Verify whether set $\mathbf{G}=\{\mathbf{L} a,(a \cup \neg \mathbf{L} b),(a \Rightarrow b), b\}$ is M-consistent. Use shorthand notation

Solution

Any v, such that $v(a)=T, v(b)=T$ is a \mathbf{M} model for \mathbf{G} as
$\mathbf{L} T=T, \quad(T \cup \neg \mathbf{L} T)=T, \quad(T \Rightarrow T)=T, \quad b=T$

We define: a formula $A \in \mathcal{F}$ is called \mathbf{M} - independent from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if the sets $\mathcal{G} \cup\{A\}$ and $\mathcal{G} \cup\{\neg A\}$ are both M-consistent. I.e. when there are truth assignments v_{1}, v_{2} such that $v_{1} \models_{\mathbf{M}} \mathcal{G} \cup\{A\}$ and $v_{2} \models_{\mathbf{M}} \mathcal{G} \cup\{\neg A\}$.
3. (5pts) FIND a formula A that is \mathbf{M} - independent of a set \mathbf{G}. Use shorthand notation to prove it.

Solution

This is the simplest solution. You can have a different solution- but the idea must be similar.
Remark: always look for the simples example possible!
Let A be any atomic formula $c \in V A R-\{a, b\}$.
Any v , such that $\mathrm{a}=\mathrm{T}, \mathrm{b}=\mathrm{T}$, and $\mathrm{c}=\mathrm{T}$ is a model for $\mathcal{G} \cup\{d\}$.
Any v , such that $\mathrm{a}=\mathrm{T}, \mathrm{b}=\mathrm{T}$, and $\mathrm{c}=\mathrm{F}$ is a model for $\mathcal{G} \cup\{\neg d\}$.
4. (5pts) Find infinitely many formulas that are M- independent of a set G. Justify your answer

Solution

This is a generalization of solution above. You can have a different solution- but the idea must be similar.
Remark: always look for the simples example possible!
Let A be any atomic formula $d \in V A R-\{a, b\}$.
Any v , such that $\mathrm{a}=\mathrm{T}, \mathrm{b}=\mathrm{T}$, and $\mathrm{d}=\mathrm{T}$ is a model for $\mathcal{G} \cup\{d\}$.
Any v , such that $\mathrm{a}=\mathrm{T}, \mathrm{b}=\mathrm{T}$, and $\mathrm{d}=\mathrm{F}$ is a model for $\mathcal{G} \cup\{\neg d\}$.
There is countably infinitely many atomic formulas $\mathrm{A}=\mathrm{d}$, where $d \in \operatorname{VAR}-\{a, b\}$.

QUESTION 3 (15pts)

Let S be the following proof system $S=\left(\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}, \mathcal{F},\{\mathbf{A 1}, \mathbf{A} \mathbf{2}\},\{r 1, r 2\}\right)$
for the logical axioms and rules of inference defined for any formulas $A, B \in \mathcal{F}$ as follows

Logical Axioms

A1 $(\mathbf{L} A \cup \neg \mathbf{L} A), \quad \mathbf{A 2}(A \Rightarrow \mathbf{L} A)$
Rules of inference:

$$
(r 1) \frac{A ; B}{(A \cup B)}, \quad(r 2) \frac{A}{\mathbf{L}(A \Rightarrow B)}
$$

1. (10pts) Show, by constructing a proper formal proof that

$$
\left.\vdash_{S}((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b))\right)
$$

Write all steps of the formal proof with comments how each step was obtained.

Solution

Here is the proof $\quad B_{1}, B_{2}, B_{3}, B_{4}$
$B_{1}: \quad(\mathbf{L} a \cup \neg \mathbf{L} a) \quad$ Axiom A_{1} for $\mathrm{A}=\mathrm{a}$
$B_{2}: \quad \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b) \quad$ rule r 2 for $\mathrm{B}=\mathrm{b}$ applied to B_{1}
$B_{3}: \quad(\mathbf{L} b \cup \neg \mathbf{L} b) \quad$ Axiom A_{1} for $\mathrm{A}=\mathrm{b}$
$B_{4}: \quad((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b)) \quad \mathrm{r} 1$ applied to B_{3} and B_{2}
2. (5pts) Does the above point 1. PROVE that $\left.\vDash_{\mathbf{M}}((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b))\right)$? for the semantics \mathbf{M} defined in QUESTION 2 JUSTIFY your answer.

Solution

No, it doesn't because the system S is not sound.
Rule 2 is not sound because when $A=T$ and $B=F$ (or $B=\perp$) we get $\mathbf{L}(A \Rightarrow B)=\mathbf{L}(T \Rightarrow F)=\mathbf{L} F=F$ or $\mathbf{L}(T \Rightarrow \perp)=\mathbf{L} \perp=F$

Observe that both logical axioms of S are M tautologies
$\mathbf{A 1}$ is \mathbf{M} tautology as we proved in $\mathbf{1}$., $\mathbf{A} \mathbf{2}$ is \mathbf{M} tautology by direct evaluation.

Rule $r 1$ is sound because when $A=T$ and $B=T$ we get $A \cup B=T \cup T=T$

PROBLEM 4 (15pts)

Consider the Hilbert system $H 1=\left(\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F},\{A 1, A 2\},(M P) \frac{A ;(A \Rightarrow B)}{B}\right)$ where for any $A, B \in \mathcal{F}$
$A 1 ; \quad(A \Rightarrow(B \Rightarrow A)), \quad A 2: \quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$.

1. $(5 \mathrm{pts})$ The Deduction Theorem holds for $H 1$. Use the Deduction Theorem to show that

$$
(A \Rightarrow(C \Rightarrow B)) \vdash_{H 1}(C \Rightarrow(A \Rightarrow B))
$$

Solution

We apply the Deduction Theorem twice, i.e. we get
$(A \Rightarrow(C \Rightarrow B)) \vdash_{H}(C \Rightarrow(A \Rightarrow B))$ if and only if
$(A \Rightarrow(C \Rightarrow B)), C \vdash_{H}(A \Rightarrow B)$ if and only if
$(A \Rightarrow(C \Rightarrow B)), C, A \vdash_{H} B$
We now construct a proof of $(A \Rightarrow(C \Rightarrow B)), C, A \vdash_{H} B$ as follows
$B_{1}: \quad(A \Rightarrow(C \Rightarrow B)) \quad$ hypothesis
B_{2} : C hypothesis
$B_{3}: A$ hypothesis
$B_{4}: \quad(C \Rightarrow B) \quad B_{1}, B_{3}$ and (MP)
$B_{5}: \quad B \quad B_{2}, B_{4}$ and (MP)
2. (5pts) Explain why 1. proves that $(\neg a \Rightarrow((b \Rightarrow \neg a) \Rightarrow b)) \vdash_{H 1}((b \Rightarrow \neg a) \Rightarrow(\neg a \Rightarrow b))$.

Solution This is 1. for $A=\neg a, C=(b \Rightarrow \neg a)$, and $B=b$.
3. (5pts) Let $H 2$ be the proof system obtained from the system $H 1$ by extending the language to contain the negation \neg and adding one additional axiom:

A3 $((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B)))$.
We know that $H 2$ is complete. Let $H 3$ be the proof system obtained from the system $H 2$ adding additional axiom
A4 $(\neg(A \Rightarrow B) \Rightarrow \neg(A \Rightarrow \neg B))$
Does Completeness Theorem hold for H3? JUSTIFY.

Solution

No, it doesn't. The system H3 is not sound. Axiom A4 is not a tautology.
Any v such that $\mathrm{A}=\mathrm{T}$ and $\mathrm{B}=\mathrm{F}$ is a counter model for $(\neg(A \Rightarrow B) \Rightarrow \neg(A \Rightarrow \neg B))$.

QUESTION 5 (15pts)

Remark This question is designed to check if you understand the notion of completeness, monotonicity, application of Deduction Theorem and use of some basic tautologies.

Consider any proof system $S=\left(\mathcal{L}_{\{\mathrm{\cap}, \mathrm{U}, \Rightarrow, \neg\}}, \mathcal{F}, L A,(M P) \frac{A,(A \Rightarrow B)}{B}\right)$
We assume that S complete under classical semantics and Deduction Theorem holds in S.
Given any $\Gamma \subseteq F$, we define $C n(\Gamma)=\left\{A \in F: \Gamma \vdash_{S} A\right\}$.
Prove that for any $A, B \in F, \quad C n(\{A, B\}) \subseteq C n(\{(A \cap B)\})$
Hint: Use Deduction Theorem and Completeness of S and the fact that $\vDash(((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C)))$

Solution

Assume $C \in C n(\{A, B\})$.
This means $A, B \vdash_{S} C$. We apply Deduction Theorem and we get

$$
\vdash_{S}(A \Rightarrow(B \Rightarrow C))
$$

By the completeness of S and the fact that the formula $(((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C)))$ is a tautology, we get that

$$
\vdash_{S}(((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C)))
$$

Applying Modus Ponens to the above we get

$$
\vdash_{S}((A \cap B) \Rightarrow C)
$$

This is equivalent to $(A \cap B) \vdash_{S} C$ by Deduction Theorem and we hence have proved that

$$
C \in C n(\{(A \cap B)\}) .
$$

QUESTION 6 (10pts)

1. For any formula $A=A\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and any truth assignment v we define, a corresponding formulas $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ as follows:

$$
A^{\prime}=\left\{\begin{array}{lll}
A & \text { if } & v^{*}(A)=T \\
\neg A & \text { if } & v^{*}(A)=F
\end{array} \quad B_{i}= \begin{cases}b_{i} & \text { if } v\left(b_{i}\right)=T \\
\neg b_{i} & \text { if } v\left(b_{i}\right)=F\end{cases}\right.
$$

We proved the following Lemma for H_{2}.

Main Lemma

For any formula $A=A\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and any truth assignment v, if $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ are corresponding formulas defined above, then $B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}$.

1. (2pts) Let A be a formula $((\neg a \Rightarrow \neg b) \Rightarrow(b \Rightarrow a))$.

Write what Main Lemma asserts for the formula A and v such that $\mathrm{v}(\mathrm{a})=\mathrm{T}, \mathrm{v}(\mathrm{b})=\mathrm{F}$.

Solution

Observe that the formula A is a basic tautology, hence $A^{\prime}=A$.
$\mathrm{A}=\mathrm{A}(\mathrm{a}, \mathrm{b})$ and we get $B_{1}=a, B_{2}=\neg b$ and Main Lemma asserts

$$
a, \neg b \vdash((\neg a \Rightarrow \neg b) \Rightarrow(b \Rightarrow a)) .
$$

2. The proof of Completeness Theorem for H_{2} defines a method of efficiently combining $v \in V A R$ and the

Main Lemma to describe a construction of the proof of any tautology in H_{2}.

Here are the steps of the Proof as applied to the basic tautology

$$
A(a, b)=((\neg a \Rightarrow \neg b) \Rightarrow(b \Rightarrow a))
$$

s1. By the Main Lemma and the assumption that $\vDash A(a, b)$ any $v \in V_{A}$ defines formulas B_{a}, B_{b} such that

$$
B_{a}, B_{b} \vdash A
$$

The proof is based on a method of elimination of B_{a}, B_{b} to obtain $\vdash A$ by the use of Deduction Theorem, monotonicity of consequence, and provability of the formula

$$
(*):((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))
$$

$\mathbf{s 2}$ (8pts) Perform the elimination of B_{a}, B_{b} to construct the proof of A.

Solution

We know that any $v \in V_{A}$ defines formulas B_{a}, B_{b} such that

$$
B_{a}, B_{b} \vdash A
$$

We construct the proof of A as follows.

Elimination of B_{b}.

We have to cases: $v(b)=T$ or $v(b)=F$.
Let $v(b)=T$, so $B_{a}, b \vdash A$, and by Deduction Theorem we get $B_{a} \vdash(b \Rightarrow A)$.
Let $v(b)=F$, so $B_{a}, \neg b \vdash A$, and by Deduction Theorem we get $B_{a} \vdash(\neg b \Rightarrow A)$.
By the provability of the formula ($*$) for $A=b, B=A$ and monotonicity

$$
B_{a} \vdash((b \Rightarrow A) \Rightarrow((\neg b \Rightarrow A) \Rightarrow A))
$$

By MP applied twice twice we eliminated B_{b} and got $\quad B_{a} \vdash A$.
Elimination of B_{a}.
We consider $\quad B_{a} \vdash A$.
We have to cases: $v(a)=T$ or $v(a)=F$.
Let $v(a)=T$, so $a \vdash A$, and by Deduction Theorem we get $\vdash(a \Rightarrow A)$.
Let $v(a)=F$, so $\neg a \vdash A$, and by Deduction Theorem we get $\vdash(\neg a \Rightarrow A)$.
By the provability of the formula ($*$) for $A=a, B=A$

$$
\vdash((a \Rightarrow A) \Rightarrow((\neg a \Rightarrow A) \Rightarrow A))
$$

By MP applied twice twice and get

$$
\vdash A
$$

i.e. we eliminated B_{a} and got the proof of A.

