CSE541 MIDTERM SOLUTIONS Fall 2022 (75pts + 15extra credit)

Please take your time and write carefully your solutions. There is no NO PARTIAL CREDIT.

You get 0 pts for a solution with a formula that is NOT a well formed formula of the given language.

QUESTION 1 (15pts)

T1 (5pts) Write the following natural language statement:

One likes to eat apples, or from the fact that the apples are expensive we conclude the following: one does not like eat apples or one likes not to eat apples

as a formula $A_1 \in \mathcal{F}_{\infty}$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$, where **L**A represents statement "one likes A", "A is liked".

Solution Propositional Variables are: (use a, b, ... and you must write which variables denote which sentences) *a* denotes statement: *eat apples*, *b* denotes a statement: *the apples are expensive*

 $A_1 = (\mathbf{L}a \cup (b \Rightarrow (\neg \mathbf{L}a \cup \mathbf{L}\neg a)))$

Translation T2 (10 pts)

Here is a mathematical statement S:

For all rational numbers $x \in Q$ the following holds: If $x \neq 0$, then there is a natural number $n \in N$, such that $x + n \neq 0$

1. (2pts). Re-write S as a symbolic mathematical statement SM that only uses mathematical and logical symbols.

Solution S becomes a symbolic mathematical statement

SM :
$$\forall_{x \in O} (x \neq 0 \Rightarrow \exists_{n \in N} x + n \neq 0)$$

2. (5pts) Translate the symbolic statement SM into to a corresponding formula of the predicate language \mathcal{L} with restricted quantifiers. Use SYMBOLS: Q(x) for $x \in Q$, N(y) for $y \in N$, c for the number 0. Use $E \in \mathbf{P}$ to denote the relation = and use symbol $f \in \mathbf{F}$ to denote the function +.

Solution

The statement $x \neq 0$ becomes a formula $\neg E(x, c)$. The statement $x + n \neq 0$ becomes a formula $\neg E(f(x, y), c)$.

The symbolic mathematical statement SM becomes a restricted quantifiers formula

$$\forall_{O(x)}(\neg E(x,c) \Rightarrow \exists_{N(y)} \neg E(f(x,y),c))$$

3. (3pts) Translate your **restricted domain** quantifiers logical formula into a correct formula A of \mathcal{L} .

Solution We apply now the **transformation rules** and get a corresponding formula $A \in \mathcal{F}$:

$$\forall x \left(Q(x) \Rightarrow (\neg E(x,c) \Rightarrow \exists y \left(N(y) \cap \neg E(f(x,y),c) \right) \right)$$

QUESTION 2 (20 pts)

We define a 3 valued extensional semantics **M** for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ by **defining the connectives** \neg , $\mathbf{L} \cup$, \Rightarrow on a set $\{F, \bot, T\}$ of logical values as the following functions.

L Connective

Negation :

1	F	\perp	Т	<u> </u>	•	F	\perp	
	F	F	Т			Т	F	_

Implication

Disjunction :

\Rightarrow	F	\perp	Т	U	F	\perp	Т
F	Т	Т	Т	F	F	\perp	Т
\perp	T	\perp	Т	⊥	1	Т	Т
Т	F	F	Т	Т	T	Т	Т

1. (5pts) Verify whether $\models_{\mathbf{M}} (\mathbf{L}A \cup \neg \mathbf{L}A)$. Use shorthand notation.

Solution

We verify

 $\mathbf{L}T \cup \neg \mathbf{L}T = T \cup F = T, \quad \mathbf{L} \perp \cup \neg \mathbf{L} \perp = F \cup \neg F = F \cup T = T, \quad \mathbf{L}F \cup \neg \mathbf{L}F = F \cup \neg F = T$

2. (5pts) Verify whether set $\mathbf{G} = \{ \mathbf{L}a, (a \cup \neg \mathbf{L}b), (a \Rightarrow b), b \}$ is M-consistent. Use shorthand notation

Solution

Any v, such that v(a) = T, v(b) = T is a **M model** for **G** as

 $\mathbf{L}T = T$, $(T \cup \neg \mathbf{L}T) = T$, $(T \Rightarrow T) = T$, b = T

We define: a formula $A \in \mathcal{F}$ is called **M- independent** from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if

the sets $\mathcal{G} \cup \{A\}$ and $\mathcal{G} \cup \{\neg A\}$ are both **M-consistent**. I.e. when there are truth assignments v_1 , v_2 such that $v_1 \models_{\mathbf{M}} \mathcal{G} \cup \{A\}$ and $v_2 \models_{\mathbf{M}} \mathcal{G} \cup \{\neg A\}$.

3. (5pts) FIND a formula A that is M- independent of a set G. Use shorthand notation to prove it.

Solution

This is the simplest solution. You can have a different solution- but the idea must be similar.

Remark: always look for the simples example possible!

Let A be any atomic formula $c \in VAR - \{a, b\}$.

Any v, such that a=T, b= T, and c = T is a model for $\mathcal{G} \cup \{d\}$.

Any v, such that a=T, b= T, and c = F is a model for $\mathcal{G} \cup \{\neg d\}$.

4. (5pts) Find infinitely many formulas that are M- independent of a set G. Justify your answer

Solution

This is a generalization of solution above. You can have a different solution- but the idea must be similar.

Remark: always look for the simples example possible!

Let A be any atomic formula $d \in VAR - \{a, b\}$.

Any v, such that a=T, b= T, and d= T is a model for $\mathcal{G} \cup \{d\}$.

Any v, such that a=T, b= T, and d= F is a model for $\mathcal{G} \cup \{\neg d\}$.

There is countably infinitely many atomic formulas A=d, where $d \in VAR - \{a, b\}$.

QUESTION 3 (15pts)

Let *S* be the following **proof system** $S = (\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}, \mathcal{F}, \{\mathbf{A1}, \mathbf{A2}\}, \{r1, r2\})$

for the logical axioms and rules of inference defined for any formulas $A, B \in \mathcal{F}$ as follows

Logical Axioms

A1 (L $A \cup \neg LA$), A2 ($A \Rightarrow LA$)

Rules of inference:

$$(r1) \frac{A; B}{(A \cup B)}, \qquad (r2) \frac{A}{\mathbf{L}(A \Rightarrow B)}$$

1. (10pts) Show, by constructing a proper formal proof that

$$\vdash_{S} ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$$

Write all steps of the **formal proof** with **comments** how each step was obtained.

Solution

Here is the proof B_1, B_2, B_3, B_4

- B_1 : (L $a \cup \neg$ La) Axiom A_1 for A= a
- B_2 : L((La $\cup \neg$ La) \Rightarrow b) rule r2 for B=b applied to B_1
- B_3 : (**L** $b \cup \neg$ **L**b) Axiom A_1 for A=b
- B_4 : $((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b))$ r1 applied to B_3 and B_2
- 2. (5pts) Does the above point 1. PROVE that $\models_{\mathbf{M}} ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$? for the semantics **M** defined in QUESTION 2 JUSTIFY your answer.

Solution

No, it doesn't because the system S is not sound.

Rule 2 is **not sound** because when A = T and B = F (or $B = \bot$) we get $L(A \Rightarrow B) = L(T \Rightarrow F) = LF = F$ or $L(T \Rightarrow \bot) = L \perp = F$

Observe that both logical axioms of S are **M tautologies**

A1 is M tautology as we proved in 1., A2 is M tautology by direct evaluation.

Rule r1 is sound because when A = T and B = T we get $A \cup B = T \cup T = T$

PROBLEM 4 (15pts)

Consider the Hilbert system $H1 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \xrightarrow{A ; (A \Rightarrow B)}{B})$ where for any $A, B \in \mathcal{F}$ A1; $(A \Rightarrow (B \Rightarrow A)), A2 : ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))).$

1. (5pts) The Deduction Theorem holds for H1. Use the Deduction Theorem to show that

$$(A \Rightarrow (C \Rightarrow B)) \vdash_{H1} (C \Rightarrow (A \Rightarrow B))$$

Solution

We apply the **Deduction Theorem** twice, i.e. we get

 $(A \Rightarrow (C \Rightarrow B)) \vdash_H (C \Rightarrow (A \Rightarrow B))$ if and only if

 $(A \Rightarrow (C \Rightarrow B)), C \vdash_H (A \Rightarrow B)$ if and only if

 $(A \Rightarrow (C \Rightarrow B)), C, A \vdash_H B$

We now construct a proof of $(A \Rightarrow (C \Rightarrow B)), C, A \vdash_H B$ as follows

- $B_1: (A \Rightarrow (C \Rightarrow B))$ hypothesis
- B_2 : C hypothesis
- B_3 : A hypothesis
- $B_4: (C \Rightarrow B) \quad B_1, B_3 \text{ and } (MP)$
- B_5 : B B_2 , B_4 and (MP)

2. (5pts) Explain why **1.** proves that $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)) \vdash_{H1} ((b \Rightarrow \neg a) \Rightarrow (\neg a \Rightarrow b))$.

Solution This is **1.** for $A = \neg a$, $C = (b \Rightarrow \neg a)$, and B = b.

3. (5pts) Let H2 be the proof system obtained from the system H1 by extending the language to contain the negation \neg and adding one additional axiom:

A3 $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))).$

We know that H_2 is complete. Let H_3 be the proof system obtained from the system H_2 adding additional axiom

A4 $(\neg(A \Rightarrow B) \Rightarrow \neg(A \Rightarrow \neg B))$

Does Completeness Theorem hold for H3? JUSTIFY.

Solution

No, it doesn't. The system H3 is not sound. Axiom A4 is not a tautology.

Any v such that A=T and B=F is a **counter model** for $(\neg(A \Rightarrow B) \Rightarrow \neg(A \Rightarrow \neg B))$.

QUESTION 5 (15pts)

Remark This question is designed to check if you understand the notion of completeness, monotonicity, application of Deduction Theorem and use of some basic tautologies.

Consider any proof system $S = (\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}, \mathcal{F}, LA, (MP) \frac{A, (A \Rightarrow B)}{B})$

We assume that S complete under classical semantics and Deduction Theorem holds in S.

Given any $\Gamma \subseteq F$, we define $Cn(\Gamma) = \{A \in F : \Gamma \vdash_S A\}$.

Prove that for any $A, B \in F$, $Cn(\{A, B\}) \subseteq Cn(\{(A \cap B)\})$

Hint: Use Deduction Theorem and Completeness of *S* and the fact that $\models (((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \cap B) \Rightarrow C)))$

Solution

Assume $C \in Cn(\{A, B\})$.

This means A, $B \vdash_S C$. We apply Deduction Theorem and we get

$$\vdash_{S} (A \Rightarrow (B \Rightarrow C)).$$

By the completeness of *S* and the fact that the formula $(((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \cap B) \Rightarrow C)))$ is a tautology, we get that

$$\vdash_{S} (((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \cap B) \Rightarrow C))).$$

Applying Modus Ponens to the above we get

$$\vdash_{\mathcal{S}} ((A \cap B) \Longrightarrow C).$$

This is equivalent to $(A \cap B) \vdash_S C$ by Deduction Theorem and we hence have proved that

$$C \in Cn(\{(A \cap B)\}).$$

QUESTION 6 (10pts)

1. For any formula $A = A(b_1, b_2, ..., b_n)$ and any truth assignment *v* we define, a corresponding formulas A', $B_1, B_2, ..., B_n$ as follows:

$$A' = \begin{cases} A & \text{if } v^*(A) = T \\ \neg A & \text{if } v^*(A) = F \end{cases} \qquad B_i = \begin{cases} b_i & \text{if } v(b_i) = T \\ \neg b_i & \text{if } v(b_i) = F \end{cases}$$

We proved the following Lemma for H_2 .

Main Lemma

For any formula $A = A(b_1, b_2, ..., b_n)$ and any truth assignment v, if $A', B_1, B_2, ..., B_n$ are corresponding formulas defined above, then $B_1, B_2, ..., B_n \vdash A'$.

1. (2pts) Let *A* be a formula $((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a))$.

Write what Main Lemma asserts for the formula A and v such that v(a) = T, v(b) = F.

Solution

Observe that the formula A is a basic tautology, hence A' = A.

A = A(a, b) and we get $B_1 = a$, $B_2 = \neg b$ and Main Lemma asserts

$$a, \neg b \vdash ((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a)).$$

2. The proof of **Completeness Theorem** for H_2 defines a **method** of efficiently combining $v \in VAR$ and the

Main Lemma to describe a construction of the proof of any tautology in H_2 .

Here are the steps of the **Proof** as applied to the basic tautology

$$A(a,b) = ((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a))$$

s1. By the Main Lemma and the assumption that $\models A(a, b)$ any $v \in V_A$ defines formulas B_a , B_b such that

 $B_a, B_b \vdash A.$

The proof is based on a method of **elimination** of B_a , B_b to obtain $\vdash A$ by the use of Deduction Theorem, monotonicity of consequence, and provability of the formula

$$(*): ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B)).$$

s2 (8pts) **Perform** the elimination of B_a , B_b to construct the proof of A.

Solution

We know that **any** $v \in V_A$ **defines** formulas B_a , B_b such that

$$B_a, B_b \vdash A$$

We construct the proof of A as follows.

Elimination of B_b .

We have to cases: v(b) = T or v(b) = F.

Let v(b) = T, so B_a , $b \vdash A$, and by Deduction Theorem we get $B_a \vdash (b \Rightarrow A)$. Let v(b) = F, so B_a , $\neg b \vdash A$, and by Deduction Theorem we get $B_a \vdash (\neg b \Rightarrow A)$.

By the provability of the formula (*) for A = b, B = A and monotonicity

 $B_a \vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$

By MP applied twice twice we eliminated B_b and got $B_a \vdash A$.

Elimination of B_a.

We consider $B_a \vdash A$.

We have to cases: v(a) = T or v(a) = F.

Let v(a) = T, so $a \vdash A$, and by Deduction Theorem we get $\vdash (a \Rightarrow A)$. Let v(a) = F, so $\neg a \vdash A$, and by Deduction Theorem we get $\vdash (\neg a \Rightarrow A)$.

By the provability of the formula (*) for A = a, B = A

$$\vdash ((a \Rightarrow A) \Rightarrow ((\neg a \Rightarrow A) \Rightarrow A))$$

By MP applied twice twice and get

 $\vdash A$,

i.e. we eliminated B_a and got the proof of A.