CSE541 EXAMPLE 2: PRACTICE MIDTERM SOLUTIONS submitted by a student

QUESTION 1

Write the following natural language statement:
One likes to play bridge, or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes not to play bridge
as a formula of 2 different languages

1. Formula $A_{1} \in \mathcal{F}_{1}$ of a language $\mathcal{L}_{\{\neg, L, \cup, \Rightarrow\}}$, where LA represents statement "one likes A", "A is liked".
2. Formula $A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$.

Solution. 1. We translate the statement into a formula $A_{1} \in \mathcal{F}$ of $\mathcal{L}_{\{\neg, \mathcal{L}, \cup, \Rightarrow\}}$ as follows:
Propositional variables: a, b where

- a denotes the statement: play bridge
- b denotes the statement: the weather is good.

Propositional model connectives: $L, \neg, \cup, \Rightarrow$ where

- \neg denotes the statement: not
- L denotes the statement: one likes, it is liked
- \cup denotes the statement: and
- \Rightarrow denotes the statement: from the fact ... we conclude ...

Now A_{1} becomes

$$
\begin{equation*}
A_{1}=(L a \cup(b \Rightarrow(\neg L a \cup L \neg a))) \tag{1}
\end{equation*}
$$

2. We translate the statement into a formula $A_{2} \in \mathcal{F}$ of $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$ as follows:
Propositional variables: a, b, c where

- a denotes that one likes to play bridge
- b denotes that one likes not to play bridge
- c denotes that the weather is good

Propositional model connectives: \neg, \cup, \Rightarrow where

- \neg denotes not
- \cup denotes and
- \Rightarrow denotes from the fact of \ldots we conclude that \ldots

Then

$$
\begin{equation*}
A_{2}=(a \cup(c \Rightarrow(\neg a \cup b))) \tag{2}
\end{equation*}
$$

QUESTION 2

Write the formal definition of the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ and give examples of its formulas of the degrees $0,1,2,3$, and 4 .

Solution. 1. We give the definition of language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ in following steps.

- $\mathcal{L}_{\{\neg, \mathcal{L}, \cup, \Rightarrow\}}=\{\mathcal{A}, \mathcal{F}\}$ where $\mathcal{A}=V A R \cup C O N \cup P A R$ and \mathcal{F} is the set of formulae. $C O N=\{\neg, L\} \cup\{\cup, \Rightarrow\}$. VAR, PAR are defined the same as in classical semantics and \mathcal{F} is defined to be the smallest set such that
(a) $V A R \subseteq \mathcal{F}$,
(b) For all $A \in \mathcal{F}, \neg A \in \mathcal{F}$ and $L A \in \mathcal{F}$,
(c) For all $A \in \mathcal{F}$ and $B \in \mathcal{F},(A \cup B) \in \mathcal{F}$ and $(A \Rightarrow B) \in \mathcal{F}$.

To define a notion of tautology tautology for $\mathcal{L}_{\{\neg, \mathcal{L}, \cup, \Rightarrow\}}$ in the following steps.

- Given the nonempty set of logical values V, we can define a mapping $v: V A R \rightarrow V$, which is called a truth assignment. Now we define the extension $v^{*}: \mathcal{F} \rightarrow V$ of v by
(a) for any $a \in V A R$,

$$
\begin{equation*}
v^{*}(a)=v(a) \tag{3}
\end{equation*}
$$

(b) for any $A, B \in \mathcal{F}$,

$$
\begin{align*}
v^{*}(\neg A) & =\neg v^{*}(A) \\
v^{*}(L A) & =L v^{*}(A) \tag{4}\\
v^{*}((A \cup B)) & =\cup\left(v^{*}(A), v^{*}(B)\right) \\
v^{*}((A \Rightarrow B)) & =\Rightarrow\left(v^{*}(A), v^{*}(B)\right)
\end{align*}
$$

- Since the set V is nonempty, we can pick one and denote it as T, the value of True. Given a truth assignment $v: V A R \rightarrow V$ and a formula $A \in \mathcal{F}$, if $v^{*}(A)=T$ then we say v satisfies A, denoted as $v \neq A$. And if $v^{*}(A) \neq T$ then we say v does not satisfy A. In addition, if v satisfies A we say v is a model for A, and if v does not satisfy A then v is a counter-model for A.
- Given $A \in \mathcal{F}$, we say it is a tautology if for all truth assignment v,

$$
\begin{equation*}
v \models A . \tag{5}
\end{equation*}
$$

And we denote this by $\models A$.
2. To write formulae of degree $0,1,2,3,4$ we can set $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}$ as follows: Suppose $a \in V A R$,
(a) $A_{0}=a$
(b) $A_{1}=\neg a$
(c) $A_{2}=\neg \neg a$
(d) $A_{3}=\neg \neg \neg a$
(e) $A_{4}=\neg \neg \neg \neg a$
are five formulae that satisfy the desired property.

QUESTION 3

Define formally your OWN 3 valued extensional semantics \mathbf{M} for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ under the following assumptions

1. Assume that the third value is intermediate between truth and falsity, i.e. the set of logical values is ordered and we have the following

Assumption $1 \quad F<\perp<T$
Assumption $2 T$ is the designated value
2. Model the situation in which one "likes" only truth; i.e. in which $\mathbf{L} T=T$ and $\mathbf{L} \perp=F, \mathbf{L} F=F$
3. The connectives \neg, \cup, \Rightarrow can be defined as you wish, but you have to define them in such a way to make sure that

$$
\models_{\mathbf{M}}(\mathbf{L} A \cup \neg \mathbf{L} A)
$$

REMINDER

Formal definition of many valued extensional semantics follows the pattern of the classical case and consists of giving definitions of the following main components:

1. Logical Connectives
2. Truth Assignment
3. Satisfaction Relation, Model, Counter-Model
4. Tautology

Solution. $\mathcal{L}_{\{\neg, \mathcal{L}, \cup, \Rightarrow\}}=\{\mathcal{A}, \mathcal{F}\}$ where $\mathcal{A}=V A R \cup C O N \cup P A R$ and \mathcal{F} is the set of formulae. $C O N=\{\neg, L\} \cup\{\cup, \Rightarrow\}, V A R, P A R$ are defined same as the classical semantics and \mathcal{F} is defined to be the smallest set such that

1. $V A R \subseteq \mathcal{F}$,
2. For all $A \in \mathcal{F}, \neg A \in \mathcal{F}$ and $L A \in \mathcal{F}$,
3. For all $A \in \mathcal{F}$ and $B \in \mathcal{F},(A \cup B) \in \mathcal{F}$ and $(A \Rightarrow B) \in \mathcal{F}$.

Given the nonempty set of logical values V, we can define a mapping $v: V A R \rightarrow V$, which is called a truth assignment. Now we define the extension $v^{*}: \mathcal{F} \rightarrow V$ of v by

1. for any $a \in V A R$,

$$
\begin{equation*}
v^{*}(a)=v(a) \tag{6}
\end{equation*}
$$

2. for any $A, B \in \mathcal{F}$,

$$
\begin{align*}
v^{*}(\neg A) & =\neg v^{*}(A) \\
v^{*}(L A) & =L v^{*}(A) \\
v^{*}((A \cup B)) & =\cup\left(v^{*}(A), v^{*}(B)\right) \tag{7}\\
v^{*}((A \Rightarrow B)) & =\Rightarrow\left(v^{*}(A), v^{*}(B)\right)
\end{align*}
$$

where on the right-hand side \neg and L are mappings $V \rightarrow V$ and \cup, \Rightarrow are mappings $V \times V \rightarrow V$.
In particular if x, y are two arbitrary elements in V we define

$$
\begin{gathered}
\neg F=T, \neg \perp=T, \neg T=F \\
L T=T, L \perp=F, L F=F \\
x \cup y=T \\
x \Rightarrow y=T \quad \text { if } x \leq y \\
x \Rightarrow y=F \quad \text { if } x>y
\end{gathered}
$$

Since the set V is nonempty, we can pick one and denote it T, the value of true. Given a truth assignment $v: V A R \rightarrow V$ and a formula $A \in \mathcal{F}$, if $v^{*}(A)=T$ then we say v satisfies A, denoted as $v \not \models_{M} A$. Similarly if $v^{*}(A) \neq T$ then we say v does not satisfy A. In addition, we say that if v satisfies A then v is a model for A, and if v does not satisfy A then v is a counter-model for A. Given $A \in \mathcal{F}$, we say it is a tautology if for all truth assignment v,

$$
\begin{equation*}
v \models_{M} A . \tag{8}
\end{equation*}
$$

And we denote this by $\models_{M} A$. From the above definition we can see the three valued semantics M for $\mathcal{L}_{\{\neg, \mathcal{L}, \cup, \Rightarrow\}}$ satisfies the requirement in the questions, especially

$$
\models_{M}(L A \cup \neg L A)
$$

since no matter what values $v^{*}(L A)$ and $v^{*}(\neg L A)$ are, the combination of them by \cup will always be T.

QUESTION 4

1. Verify whether the formulas A_{1} and A_{2} from the QUESTION 1 have a model/ counter model under your semantics \mathbf{M}. You can use shorthand notation
2. Verify whether the following set \mathbf{G} is \mathbf{M}-consistent. You can use shorthand notation

$$
\mathbf{G}=\{\mathbf{L} a, \quad(a \cup \neg \mathbf{L} b), \quad(a \Rightarrow b), b\}
$$

3. Give an example on an infinite, \mathbf{M} - consistent set of formulas of the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$

Solution. 1. Recall that

$$
\begin{equation*}
A_{1}=(L a \cup(b \Rightarrow(\neg L a \cup L \neg a))) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}=(a \cup(c \Rightarrow(\neg a \cup b))) \tag{10}
\end{equation*}
$$

In A_{1} if we set (using shorthand notation) $a=T, b=T$ then

$$
\begin{equation*}
A_{1}=(L T \cup(T \Rightarrow(\neg L T \cup L \neg T)))=(L T \cup(T \Rightarrow T))=(T \cup T)=T \tag{11}
\end{equation*}
$$

Thus A_{1} has a model. Similarly in A_{2}

$$
\begin{equation*}
v^{*}\left(A_{2}\right)=v^{*}(a \cup(c \Rightarrow(\neg a \cup b)))=v^{*}(a) \cup v^{*}(c \Rightarrow(\neg a \cup b))=T \tag{12}
\end{equation*}
$$

since no matter what values $v^{*}(a)$ and $v^{*}(c \Rightarrow(\neg a \cup b))$ take the result of their \cup is always T under M.
2. This set has a model if we set $v^{*}(a)=T$ and $v^{*}(b)=T$. Actually (using shorthand notation)

$$
\begin{align*}
L a & =L T=T \\
(a \cup \neg L b) & =T \cup F=T \\
(a \Rightarrow b) & =T \Rightarrow T=T \tag{13}\\
b & =T .
\end{align*}
$$

3. Consider the set \mathbf{G} of formulae

$$
\mathbf{G}=\{(a \cup b): \quad a, b \in V A R\}
$$

It is \mathbf{M} - consistent since whatever logical value a and b takes, $v^{*}(a \cup b)=v^{*}(a) \cup v^{*}(b)=T$ by the definition of \cup. Also this set is infinite since the set $V A R$ is infinite.

QUESTION 5

Let S be the following proof system

$$
S=\left(\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}, \mathcal{F}, \quad\{\mathbf{A} \mathbf{1}, \mathbf{A} \mathbf{2}\}, \quad\{r 1, r 2\}\right)
$$

for the logical axioms and rules of inference defined for any formulas $A, B \in \mathcal{F}$ as follows

Logical Axioms

A1 $\quad(\mathbf{L} A \cup \neg \mathbf{L} A)$
A2 $(A \Rightarrow \mathbf{L} A)$
Rules of inference:

$$
(r 1) \frac{A ; B}{(A \cup B)}, \quad \quad(r 2) \frac{A}{\mathbf{L}(A \Rightarrow B)}
$$

1. Write a proof in S with 2 applications of rule (r1) and one application of rule (r2)

You must write comments how each step pot the proof was obtained
2. Show, by constructing a formal proof that

$$
\left.\vdash_{S}((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b))\right)
$$

3. Verify whether the inference rules r1, r2 are M-sound. You can use shorthand notation
4. Verify whether the system S is \mathbf{M}-sound. You can use shorthand notation

EXTRA QUESTION

If the system S is not sound under your semantics \mathbf{M} then re-define the connectives in a way that such obtained new semantics \mathbf{N} would make S sound.

You can use shorthand notation
Here are the solutions

1. Write a proof in S with 2 applications of rule (r1) and one application of rule (r2)

You must write comments how each step pot the proof was obtained

Solution. 1. Below we present a proof $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4$ with two application of rule (r1) and one application of rule (r2), where $A \in \mathcal{F}$ is a formula.
S1: $\quad(A \Rightarrow L A)$
Axiom A1
S2: $\quad((A \Rightarrow L A) \cup(A \Rightarrow L A))$
Application of rule (r1) to S1 and S1
S3: $\quad(L((A \Rightarrow L A) \cup(A \Rightarrow L A)) \Rightarrow(A \Rightarrow L A))$
Application rule (r2) to S 2 and $\mathrm{B}=\mathrm{S} 1$
S4: $\quad((L((A \Rightarrow L A) \cup(A \Rightarrow L A)) \Rightarrow(A \Rightarrow L A)) \cup(L A \cup \neg L A))$
Application of rule (r1) to S3 and S1
2. Show, by constructing a formal proof that

$$
\left.\vdash_{S}((\mathbf{L} b \cup \neg \mathbf{L} b) \cup \mathbf{L}((\mathbf{L} a \cup \neg \mathbf{L} a) \Rightarrow b))\right)
$$

We construct a proof $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4$ as follows:
S1: $\quad(L b \cup \neg L b)$
Axiom A1 for $A=b$
S2: $\quad(L a \cup \neg L a)$
Axiom A1 for $A=a$
S3: $\quad L((L a \cup \neg L a) \Rightarrow b)$
Application of rule (r2) to S 2 and S 2 for $\mathrm{B}=\mathrm{b}$
S4: $\quad((L b \cup \neg L b) \cup L((L a \cup \neg L a) \Rightarrow b))$
Application of rule (r1) to S1 and S3
3. Verify whether the inference rules r1, r2 are M-sound. You can use shorthand notation

To verify (r1) is sound we first assume all its premises, i.e $A=T$ and $B=T$ and observe that

$$
(A \cup B)=T \cup T=T
$$

To prove (r2) is not sound, first we assume its premises, $A=T$, but also assume $B=F$, then we have

$$
L(A \Rightarrow B)=L(T \Rightarrow F)=L F=F
$$

which means although we assume all its premises true, the conclusion of it could still not be true.
2. If the system S is M-sound then all its axioms must be tautologies and all its rules must be sound. In previous question we have seen that rule (r2) is not sound. Thus S is not sound.

EXTRA Credit We redefine the binary connective " \Rightarrow " to be a mapping

$$
V \times V \rightarrow V
$$

such that for any $x, y \in V$

$$
x \Rightarrow y=T
$$

Now we can verify both axioms A1 and A2 are tautologies and both rules (r1) and (r2) are sound. For A1 we see that

$$
(L A \cup \neg L A)=T
$$

by the definition of \cup. For A2 we see that

$$
(A \Rightarrow L A)=T
$$

by the definition of \Rightarrow. For (r1) we have

$$
A \cup B=T
$$

and for (r2) we have

$$
L(A \Rightarrow B)=L T=T
$$

Therefore under this new definition, system S is a sound system.

