CSE541 EXAMPLE 3: MIDTERM SOLUTIONS

QUESTION 1

L semantics for $L_{\{\neg, \Rightarrow, \cap, \cup\}}$ is defined as follows

Ł Negation

_

Ł Disjunction

7	F	\perp	Т	U	\mathbf{F}	\perp	
	Т	\perp	F	F	F	\perp	1
				1	\perp	\perp	,
					-	-	

Ł Conjunction

٦	F	\perp	Т	
F	F	F	F	
L	F	\perp	\perp	
Г	F	\perp	Т	

г	г	\perp	T
\perp		\perp	Т
Т	Т	Т	Т

Ł-Implication

\Rightarrow	F	\perp	Т
F	Т	Т	Т
\perp		Т	Т
Т	F	\perp	Т

- (1) Use the fact that $v: VAR \longrightarrow \{F, \bot, T\}$ be such that $v^*((a \cap b) \Rightarrow \neg b) = \bot$ under **L** semantics to evaluate $v^*(((b \Rightarrow \neg a) \Rightarrow (a \Rightarrow \neg b)) \cup (a \Rightarrow b))$. Use shorthand notation.
- (1) Solution : $((a \cap b) \Rightarrow \neg b) = \bot$ in two cases.
- **C1** $(a \cap b) = \bot$ and $\neg b = F$.
- **C2** $(a \cap b) = T$ and $\neg b = \bot$.
- **Case C1:** $\neg b = F$, i.e. b = T, and hence $(a \cap T) = \bot$ iff $a = \bot$. We get that v is such that $v(a) = \bot$ and v(b) = T.
- $\begin{array}{ll} \textbf{We evaluate:} & v^*(((b \Rightarrow \neg a) \Rightarrow (a \Rightarrow \neg b)) \cup (a \Rightarrow b)) = (((T \Rightarrow \neg \bot) \Rightarrow (\bot \Rightarrow \neg T)) \cup (\bot \Rightarrow T)) = ((\bot \Rightarrow \bot) \cup T) = T. \end{array}$
- **Case C2:** $\neg b = \bot$, i.e. $b = \bot$, and hence $(a \cap \bot) = T$ what is impossible, hence v from case C1 is the only one.
- (2) Define the Equivalence of Languages and Prove that in classical semantics $\mathcal{L}_{\{\neg,\Rightarrow\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow,\cup\}}.$

Solution

1. We define the EQUIVALENCE of LANGUAGES as follows:

Given two languages: $\mathcal{L}_1 = \mathcal{L}_{CON_1}$ and $\mathcal{L}_2 = \mathcal{L}_{CON_2}$, for $CON_1 \neq CON_2$. We say that they are **logically equivalent**, i.e.

 $\mathcal{L}_1 \equiv \mathcal{L}_2$

if and only if the following conditions C1, C2 hold.

C1: For every formula A of \mathcal{L}_1 , there is a formula B of \mathcal{L}_2 , such that

 $A \equiv B$,

C2: For every formula C of \mathcal{L}_2 , there is a formula D of \mathcal{L}_1 , such that

$$C \equiv D.$$

- 2. Proof of equivalence:
- C1 holds because any formula of $\mathcal{L}_{\{\neg,\Rightarrow\}}$ is a formula of $\mathcal{L}_{\{\neg,\Rightarrow,\cup\}}$.
- C2 holds due to the following definability of connectives equivalence

$$(A \cup B) \equiv (\neg A \Rightarrow B).$$

- (3) Prove that the equivalence defining ∪ in classical logic does not hold under L semantics, but nevertheless L_{¬,⇒} ≡ L_{¬,⇒,∪}.
- **Solution** $(A \cup B) \neq_{\mathbf{L}} (\neg A \Rightarrow B)$ Take $A = B = \bot$. We get $\bot \cup \bot = \bot$ and $\neg \bot \Rightarrow \bot = \bot \Rightarrow \bot = T$.

Proof that $\mathcal{L}_{\{\neg,\Rightarrow\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow,\cup\}}$ holds for **L** semantics.

- C1: holds because any formula of $\mathcal{L}_{\{\neg,\Rightarrow\}}$ is a formula of $\mathcal{L}_{\{\neg,\Rightarrow,\cup\}}$.
- C2: holds because the definability of connectives equivalence

$$(A \cup B) \equiv ((A \Rightarrow B) \Rightarrow B)$$

holds for **L**. Easy to check by verification.

Observe that the equivalence $(A \cup B) \equiv (\neg A \Rightarrow B)$ defining \cup in terms of \neg and \Rightarrow is a valuable candidate for (**L** semantics definability as the definition of all connectives restricted to T, F is the same as in the classical case. Unfortunately it is not a good one for **L** semantics. It does not prove that other definability equivalence does not exist! Observe that the equivalence $(A \cup B) \equiv (A \Rightarrow B) \Rightarrow B)$ provides and alternative proof of **C2** in classical case. **QUESTION 2** Let *H* be the following proof system:

$$H = (\mathcal{L}_{\{\Rightarrow,\neg\}}, \mathcal{F}, AX = \{A1, A2, A3, A4\}, MP)$$

- A1 $(A \Rightarrow (B \Rightarrow A)),$
- **A2** $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$
- **A3** $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)))$
- **A4** $(((A \Rightarrow B) \Rightarrow A) \Rightarrow A)$
- **MP** (Rule of inference)

$$(MP) \ \frac{A \ ; \ (A \Rightarrow B)}{B}$$

- (1) Justify that H is SOUND under classical semantics.
- **Solution** Axioms A1-A3 are axioms of a sound system H_2 , with the same rule MP. So we need only to check if A4 is sound, i.e $\models (((A \Rightarrow B) \Rightarrow A) \Rightarrow A)$. Assume not, i.e. $((A \Rightarrow B) \Rightarrow A) = T$ and A = F. We get $((F \Rightarrow B) \Rightarrow F) = T$. This is impossible, as $(F \Rightarrow B) = T$ for all values of B and $T \Rightarrow F = F$.
- (2) Does Deduction Theorem holds for H? Justify shortly your answer.
- **Solution** Axioms A1-A2 are axioms of system H_1 for which we proved the Deduction Theorem. System H is a (sound) extension of H_1 and hence the Deduction Theorem holds for it as well.
- (3) Justify the fact that *H* is COMPLETE with respect to all classical semantics tautologies.
- **Solution** Axioms A1-A3 are axioms of system H_2 for which we proved the Completeness Theorem. System H is a (sound) extension of H_2 and hence the Completeness Theorem holds for it as well.
- (4) Prove that the system H in NOT COMPLETE under the Lukasiewicz semantics \mathbf{L} .
- **Solution** System *H* is not sound under **L** semantics. For example axiom **A2** is not **L** tautology. $A = \bot, B = \bot, C = F$ evaluates it to \bot . System that is not sound can't be complete.
- (5) All classical tautologies include for example de Morgan Laws

 $(\neg (A \cup B) \Rightarrow (\neg A \cap \neg B)), \ (\neg (A \cap B) \Rightarrow (\neg A \cup \neg B))$

Explain what does it mean that they are provable in H.

Solution Obviously $\mathcal{L}_{\{\Rightarrow,\neg\}}$ does not contain connectives \cup, \cap and hence de Morgan Laws as written above are not formulas in our language. But we have proved that

$$\mathcal{L}_{\{\Rightarrow,\neg\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow,\cup,\cap\}}$$

so the corresponding logically equivalent formulas of $\mathcal{L}_{\{\Rightarrow,\neg\}}$ to

$$(\neg (A \cup B) \Rightarrow (\neg A \cap \neg B)), \quad (\neg (A \cap B) \Rightarrow (\neg A \cup \neg B))$$

are also called de Morgan Laws and are provable in H.

(6) Let H' be a proof system obtained from H by adding an additional axiom

A5 $((A \Rightarrow B) \Rightarrow \neg A)$

Is the system H' complete under classical semantics? Justify your answer.

Solution H' is not SOUND (axiom A5 is not a tautology!) hence can't be complete.

We consider a sound proof system (under classical semantics)

$$S = (\mathcal{L}_{\{\Rightarrow,\neg\}}, \mathcal{AX}, MP),$$

such that the formulas listed below are provable in S.

1. $(A \Rightarrow (B \Rightarrow A)),$ 2. $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$ 3. $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)),$ 4. $(A \Rightarrow A),$ 5. $(B \Rightarrow \neg \neg B),$ 6. $(\neg A \Rightarrow (A \Rightarrow B)),$ 7. $(A \Rightarrow (\neg B \Rightarrow \neg (A \Rightarrow B))),$ 8. $((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B)),$ 9. $((\neg A \Rightarrow A) \Rightarrow A).$

The following Lemma holds in ${\cal S}$

LEMMA For any $A, B, C \in \mathcal{F}$,

(a) $(A \Rightarrow B), (B \Rightarrow C) \vdash_H (A \Rightarrow C),$

(b)
$$(A \Rightarrow (B \Rightarrow C)) \vdash_H (B \Rightarrow (A \Rightarrow C)).$$

QUESTION 3

Complete the proof sequence (in S)

 $B_1, ..., B_9$

of

$$((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$$

by providing comments how each step of the proof was obtained.

Solution

 $B_{1} = (A \Rightarrow B)$ Hypothesis $B_{2} = (\neg \neg A \Rightarrow A)$ Already Proven $B_{3} = (\neg \neg A \Rightarrow B)$ Lemma **a** for $A = \neg \neg A, B = A, C = B$, in B_{1}, B_{2} i.e. $(\neg \neg A \Rightarrow A), (A \Rightarrow B) \vdash (\neg \neg A \Rightarrow B)$ $B_{4} = (B \Rightarrow \neg \neg B)$ Formula 5 $B_{5} = (\neg \neg A \Rightarrow \neg \neg B)$ Lemma **a** on B_{3}, B_{4} for $A = \neg \neg A, B = B, C = \neg \neg B$ $(\neg \neg A \Rightarrow B), (B \Rightarrow \neg \neg B) \vdash (\neg \neg A \Rightarrow \neg \neg B)$ $B_{6} = ((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow (\neg B \Rightarrow \neg A))$

$$B_6 = ((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow (\neg B \Rightarrow \neg A))$$

ALREADY PROVED

 $\begin{array}{l} B_7 = \ (\neg B \Rightarrow \neg A) \\ B_5, B_6 \ \text{and MP on } B_5, B_6 \end{array}$

$$\frac{(\neg \neg A \Rightarrow \neg B); ((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow (\neg B \Rightarrow \neg A))}{(\neg B \Rightarrow \neg A)}$$

 $\begin{array}{l} B_8 = \ (A \Rightarrow B) \vdash (\neg B \Rightarrow \neg A) \\ B_1 - B_7 \end{array}$

 $B_9 = ((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$ Deduction Theorem on B_8

HERE IS the Main Definition and Main Lemma needed for the PROOF 1 of the Completeness Theorem for the system S.

Main Definition

Let A be a formula and $b_1, b_2, ..., b_n$ be all propositional variables that occur in A. Let v be variable assignment $v: VAR \longrightarrow \{T, F\}$. We define, for any $A, b_1, b_2, ..., b_n$ and v a corresponding formulas $A', B_1, B_2, ..., B_n$ as follows:

$$A' = \begin{cases} A & \text{if } v^*(A) = T \\ \neg A & \text{if } v^*(A) = F \end{cases}$$
$$B_i = \begin{cases} b_i & \text{if } v(b_i) = T \\ \neg b_i & \text{if } v(b_i) = F \end{cases}$$

for i = 1, 2, ..., n.

Main Lemma For any formula A and a variable assignment v, if A', B_1 , B_2 , ..., B_n are corresponding formulas defined by the definition stated above, then

$$B_1, B_2, ..., B_n \vdash A'.$$

We write $\vdash A$ for $\vdash_S A$ as the system S is fixed.

QUESTION 5 We know that the formula

$$A = ((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a))$$

is a tautology; i.e. we know that

$$\models ((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)).$$

Use this information and the method developed in the Proof 1 of Completeness Theorem to show the

$$\vdash ((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a))$$

Solution This is a shorter solution than one in the Example in the book; it follows directly the proof 1.

We know that A is a tautology $(\models A)$, so $v^*(A) = T$ for all v and A' = A for all v. A = A(a, b), so by the Lemmma $B_1, B_2 \vdash A$, for B_1, B_2 defined accordingly to v, and v(a), v(b).

Step 1: B_2 elimination. $B_2 = b$ if v(b) = T and $B_2 = \neg b$ if v(b) = F. For any v such that v(b) = T we get

$$B_1, b \vdash A$$

and for any v such that v(b) = F we get

$$B_1, \neg b \vdash A.$$

By Deduction Theorem we get

(1) $B_1 \vdash (b \Rightarrow A)$ and $B_1 \vdash (\neg b \Rightarrow A)$. We have assumed about the proof system S that for ant formulas A, B,

$$\vdash ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$$

so in particular

$$\vdash \ ((b \mathrel{\Rightarrow} A) \mathrel{\Rightarrow} ((\neg b \mathrel{\Rightarrow} A) \mathrel{\Rightarrow} A))$$

and by monotonicity

$$B_1 \vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A)).$$

We apply MP twice to (1) and $B_1 \vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$ we get that

$$B_1 \vdash A$$

Step 2: B_1 elimination. $B_1 = a$ if v(a) = T and $B_1 = \neg a$ if v(a) = F. For any v such that v(a) = T we get

$$a \vdash A$$

and for any v such that v(a) = F we get

$$\neg a \vdash A.$$

By Deduction Theorem we get

(2) $\vdash (a \Rightarrow A)$ and $\vdash (\neg a \Rightarrow A)$ We have assumed about the proof system S that for ant formulas A, B,

$$\vdash ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$$

so in particular

$$\vdash \ ((a \Rightarrow A) \Rightarrow ((\neg a \Rightarrow A) \Rightarrow A))$$

We apply MP twice to (2) and $\vdash ((a \Rightarrow A) \Rightarrow ((\neg a \Rightarrow A) \Rightarrow A))$ we get that

 $\vdash \ A.$