CSE541 EXAMPLE 3: MIDTERM SOLUTIONS

QUESTION 1

\mathbf{L} semantics for $\mathrm{E}_{\{\neg, \Rightarrow, \cap, \cup\}}$ is defined as follows

Ł Negation

\neg	F	\perp	T
	T	\perp	F

Ł Conjunction

\cap	F	\perp	T
F	F	F	F
\perp	F	\perp	\perp
T	F	\perp	T

£ Disjunction

\cup	F	\perp	T
F	F	\perp	T
\perp	\perp	\perp	T
T	T	T	T

L-Implication

\Rightarrow	F	\perp	T
F	T	T	T
\perp	\perp	T	T
T	F	\perp	T

(1) Use the fact that $v: V A R \longrightarrow\{F, \perp, T\}$ be such that
$v^{*}((a \cap b) \Rightarrow \neg b)=\perp$
under $\mathbf{£}$ semantics to evaluate $v^{*}(((b \Rightarrow \neg a) \Rightarrow(a \Rightarrow \neg b)) \cup(a \Rightarrow b))$.
Use shorthand notation.
(1) Solution : $((a \cap b) \Rightarrow \neg b)=\perp$ in two cases.

C1 $\quad(a \cap b)=\perp \quad$ and $\quad \neg b=F$.
C2 $\quad(a \cap b)=T \quad$ and $\quad \neg b=\perp$.
Case C1: $\neg b=F$, i.e. $b=T$, and hence $(a \cap T)=\perp$ iff $a=\perp$. We get that v is such that $v(a)=\perp$ and $v(b)=T$.

We evaluate: $\quad v^{*}(((b \Rightarrow \neg a) \Rightarrow(a \Rightarrow \neg b)) \cup(a \Rightarrow b))=(((T \Rightarrow \neg \perp) \Rightarrow(\perp \Rightarrow$ $\neg T)) \cup(\perp \Rightarrow T))=((\perp \Rightarrow \perp) \cup T)=T$.

Case C2: $\neg b=\perp$, i.e. $b=\perp$, and hence $(a \cap \perp)=T$ what is impossible, hence v from case C1 is the only one.
(2) Define the Equivalence of Languages and Prove that in classical semantics $\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$.

Solution

1. We define the EQUIVALENCE of LANGUAGES as follows:

Given two languages:
$\mathcal{L}_{1}=\mathcal{L}_{C O N_{1}}$ and $\mathcal{L}_{2}=\mathcal{L}_{C O N_{2}}$, for $C O N_{1} \neq C O N_{2}$.
We say that they are logically equivalent, i.e.

$$
\mathcal{L}_{1} \equiv \mathcal{L}_{2}
$$

if and only if the following conditions $\mathbf{C 1}, \mathbf{C} 2$ hold.
C1: For every formula A of \mathcal{L}_{1}, there is a formula B of \mathcal{L}_{2}, such that

$$
A \equiv B
$$

C2: \quad For every formula C of \mathcal{L}_{2}, there is a formula D of \mathcal{L}_{1}, such that

$$
C \equiv D
$$

2. Proof of equivalence:

C1 holds because any formula of $\mathcal{L}_{\{\neg, \Rightarrow\}}$ is a formula of $\mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$.
C2 holds due to the following definability of connectives equivalence

$$
(A \cup B) \equiv(\neg A \Rightarrow B)
$$

(3) Prove that the equivalence defining \cup in classical logic does not hold under $\mathbf{\lfloor}$ semantics, but nevertheless $\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$.

Solution $(A \cup B) \not \equiv_{\mathrm{L}}(\neg A \Rightarrow B)$ Take $A=B=\perp$. We get $\perp \cup \perp=\perp$ and $\neg \perp \Rightarrow \perp=\perp \Rightarrow \perp=T$.

Proof that $\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$ holds for $\mathbf{£}$ semantics.
$\mathbf{C 1}$: holds because any formula of $\mathcal{L}_{\{\neg, \Rightarrow\}}$ is a formula of $\mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$.
C2: holds because the definability of connectives equivalence

$$
(A \cup B) \equiv((A \Rightarrow B) \Rightarrow B)
$$

holds for $\mathbf{£}$. Easy to check by verification.
Observe that the equivalence $(A \cup B) \equiv(\neg A \Rightarrow B)$ defining \cup in terms of \neg and \Rightarrow is a valuable candidate for (\mathbf{L} semantics definability as the definition of all connectives restricted to T, F is the same as in the classical case. Unfortunately it is not a good one for \mathbf{L} semantics. It does not prove that other definability equivalence does not exist! Observe that the equivalence $(A \cup B) \equiv(A \Rightarrow B) \Rightarrow B)$ provides and alternative proof of $\mathbf{C} 2$ in classical case.

QUESTION 2 Let H be the following proof system:

$$
H=\left(\mathcal{L}_{\{\Rightarrow, \neg\}}, \mathcal{F}, A X=\{A 1, A 2, A 3, A 4\}, \quad M P\right)
$$

A1 $(A \Rightarrow(B \Rightarrow A))$,
A2 $((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$,
A3 $\quad((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B)))$
A4 $\quad(((A \Rightarrow B) \Rightarrow A) \Rightarrow A)$
MP (Rule of inference)

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

(1) Justify that H is SOUND under classical semantics.

Solution Axioms A1-A3 are axioms of a sound system H_{2}, with the same rule MP. So we need only to check if $\mathbf{A} 4$ is sound, i.e $\vDash(((A \Rightarrow B) \Rightarrow$ $A) \Rightarrow A)$. Assume not, i.e. $\quad((A \Rightarrow B) \Rightarrow A)=T$ and $A=F$. We get $((F \Rightarrow B) \Rightarrow F)=T$. This is impossible, as $(F \Rightarrow B)=T$ for all values of B and $T \Rightarrow F=F$.
(2) Does Deduction Theorem holds for H? Justify shortly your answer.

Solution Axioms A1-A2 are axioms of system H_{1} for which we proved the Deduction Theorem. System H is a (sound) extension of H_{1} and hence the Deduction Theorem holds for it as well.
(3) Justify the fact that H is COMPLETE with respect to all classical semantics tautologies.

Solution Axioms A1-A3 are axioms of system H_{2} for which we proved the Completeness Theorem. System H is a (sound) extension of H_{2} and hence the Completeness Theorem holds for it as well.
(4) Prove that the system H in NOT COMPLETE under the Lukasiewicz semantics \mathbf{L}.

Solution System H is not sound under $\mathbf{£}$ semantics. For example axiom A2 is not \mathbf{L} tautology. $A=\perp, B=\perp, C=F$ evaluates it to \perp. System that is not sound can't be complete.
(5) All classical tautologies include for example de Morgan Laws

$$
(\neg(A \cup B) \Rightarrow(\neg A \cap \neg B)), \quad(\neg(A \cap B) \Rightarrow(\neg A \cup \neg B))
$$

Explain what does it mean that they are provable in H.
Solution Obviously $\mathcal{L}_{\{\Rightarrow, \neg\}}$ does not contain connectives \cup, \cap and hence de Morgan Laws as written above are not formulas in our language. But we have proved that

$$
\mathcal{L}_{\{\Rightarrow, \neg\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}
$$

so the corresponding logically equivalent formulas of $\mathcal{L}_{\{\Rightarrow, \neg\}}$ to

$$
(\neg(A \cup B) \Rightarrow(\neg A \cap \neg B)), \quad(\neg(A \cap B) \Rightarrow(\neg A \cup \neg B))
$$

are also called de Morgan Laws and are provable in H.
(6) Let H^{\prime} be a proof system obtained from H by adding an additional axiom

A5 $\quad((A \Rightarrow B) \Rightarrow \neg A)$
Is the system H^{\prime} complete under classical semantics? Justify your answer.
Solution H^{\prime} is not SOUND (axiom A5 is not a tautology!) hence can't be complete.

We consider a sound proof system (under classical semantics)

$$
S=\left(\begin{array}{lll}
\mathcal{L}_{\{\Rightarrow, \neg\}}, & \mathcal{A} \mathcal{X}, & M P
\end{array}\right)
$$

such that the formulas listed below are provable in S.

1. $(A \Rightarrow(B \Rightarrow A))$,
2. $((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$,
3. $((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B))$,
4. $(A \Rightarrow A)$,
5. $(B \Rightarrow \neg \neg B)$,
6. $(\neg A \Rightarrow(A \Rightarrow B))$,
7. $(A \Rightarrow(\neg B \Rightarrow \neg(A \Rightarrow B)))$,
8. $((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$,
9. $((\neg A \Rightarrow A) \Rightarrow A)$.

The following Lemma holds in S
LEMMA For any $A, B, C \in \mathcal{F}$,
(a) $(A \Rightarrow B),(B \Rightarrow C) \vdash_{H}(A \Rightarrow C)$,
(b) $\quad(A \Rightarrow(B \Rightarrow C)) \vdash_{H}(B \Rightarrow(A \Rightarrow C))$.

QUESTION 3

Complete the proof sequence (in S)

$$
B_{1}, \ldots, B_{9}
$$

of

$$
((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))
$$

by providing comments how each step of the proof was obtained.

Solution

$$
\begin{aligned}
B_{1}= & (A \Rightarrow B) \\
& \text { Hypothesis } \\
B_{2}= & (\neg \neg A \Rightarrow A) \\
& \text { Already Proven } \\
B_{3}= & (\neg \neg A \Rightarrow B)
\end{aligned}
$$

Lemma a for $A=\neg \neg A, B=A, C=B$, in B_{1}, B_{2} i.e.
$(\neg \neg A \Rightarrow A),(A \Rightarrow B) \vdash(\neg \neg A \Rightarrow B)$
$B_{4}=(B \Rightarrow \neg \neg B)$
Formula 5

$$
\begin{aligned}
B_{5}= & (\neg \neg A \Rightarrow \neg \neg B) \\
& \text { Lemma a on } B_{3}, B_{4} \text { for } A=\neg \neg A, B=B, C=\neg \neg B
\end{aligned}
$$

$(\neg \neg A \Rightarrow B),(B \Rightarrow \neg \neg B) \vdash(\neg \neg A \Rightarrow \neg \neg B)$ $B_{6}=((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow(\neg B \Rightarrow \neg A))$

ALREADY PROVED
$B_{7}=(\neg B \Rightarrow \neg A)$
B_{5}, B_{6} and MP on B_{5}, B_{6}

$$
\frac{(\neg \neg A \Rightarrow \neg \neg B) ;((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow(\neg B \Rightarrow \neg A))}{(\neg B \Rightarrow \neg A)}
$$

$$
\begin{aligned}
B_{8}= & (A \Rightarrow B) \vdash(\neg B \Rightarrow \neg A) \\
& B_{1}-B_{7}
\end{aligned}
$$

$B_{9}=((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$
Deduction Theorem on B_{8}
HERE IS the Main Definition and Main Lemma needed for the PROOF 1 of the Completeness Theorem for the system S.

Main Definition

Let A be a formula and $b_{1}, b_{2}, \ldots, b_{n}$ be all propositional variables that occur in A. Let v be variable assignment $v: V A R \longrightarrow\{T, F\}$. We define, for any $A, b_{1}, b_{2}, \ldots, b_{n}$ and v a corresponding formulas $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ as follows:

$$
\begin{aligned}
& A^{\prime}= \begin{cases}A & \text { if } v^{*}(A)=T \\
\neg A & \text { if } v^{*}(A)=F\end{cases} \\
& B_{i}= \begin{cases}b_{i} & \text { if } v\left(b_{i}\right)=T \\
\neg b_{i} & \text { if } v\left(b_{i}\right)=F\end{cases}
\end{aligned}
$$

for $i=1,2, \ldots, n$.
Main Lemma For any formula A and a variable assignment v, if A^{\prime}, B_{1}, B_{2}, \ldots, B_{n} are corresponding formulas defined by the definition stated above, then

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

We write $\vdash A$ for $\vdash_{S} A$ as the system S is fixed.

QUESTION 5 We know that the formula

$$
A=((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a))
$$

is a tautology; i.e. we know that

$$
\vDash((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a))
$$

Use this information and the method developed in the Proof 1 of Completeness Theorem to show the

$$
\vdash((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a))
$$

Solution This is a shorter solution than one in the Example in the book; it follows directly the proof 1 .

We know that A ia a tautology $(\models A)$, so $v^{*}(A)=T$ for all v and $A^{\prime}=A$ for all v. $A=A(a, b)$, so by the Lemmma $B_{1}, B_{2} \vdash A$, for B_{1}, B_{2} defined accordingly to v, and $v(a), v(b)$.

Step 1: B_{2} elimination. $B_{2}=b$ if $v(b)=T$ and $B_{2}=\neg b$ if $v(b)=F$.
For any v such that $v(b)=T$ we get

$$
B_{1}, b \vdash A
$$

and for any v such that $v(b)=F$ we get

$$
B_{1}, \neg b \vdash A
$$

By Deduction Theorem we get
(1) $B_{1} \vdash(b \Rightarrow A)$ and $B_{1} \vdash(\neg b \Rightarrow A$.) We have assumed about the proof system S that for ant formulas A, B,

$$
\vdash((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))
$$

so in particular

$$
\vdash((b \Rightarrow A) \Rightarrow((\neg b \Rightarrow A) \Rightarrow A))
$$

and by monotonicity

$$
B_{1} \vdash((b \Rightarrow A) \Rightarrow((\neg b \Rightarrow A) \Rightarrow A))
$$

We apply MP twice to (1) and $B_{1} \vdash((b \Rightarrow A) \Rightarrow((\neg b \Rightarrow A) \Rightarrow A))$ we get that

$$
B_{1} \vdash A
$$

Step 2: B_{1} elimination. $B_{1}=a$ if $v(a)=T$ and $B_{1}=\neg a$ if $v(a)=F$.
For any v such that $v(a)=T$ we get

$$
a \vdash A
$$

and for any v such that $v(a)=F$ we get

$$
\neg a \vdash A
$$

By Deduction Theorem we get
(2) $\vdash(a \Rightarrow A)$ and $\vdash(\neg a \Rightarrow A$.) We have assumed about the proof system S that for ant formulas A, B,

$$
\vdash((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))
$$

so in particular

$$
\vdash((a \Rightarrow A) \Rightarrow((\neg a \Rightarrow A) \Rightarrow A))
$$

We apply MP twice to (2) and $\vdash((a \Rightarrow A) \Rightarrow((\neg a \Rightarrow A) \Rightarrow A))$ we get that

$$
\vdash A
$$

