
Chapter 4: Classical Propositional
Semantics

Language :

L{¬,∪,∩,⇒}.

Classical Semantics assumptions:

TWO VALUES: there are only two logical

values: truth (T) and false (F), and

EXTENSIONALITY: the logical value of a

formula depends only on a main connective

and logical values of its sub-formulas.

We define formally a classical semantics for

L in terms of two factors: classical truth

tables and a truth assignment.
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We summarize now here the chapter 2 tables

for L{¬,∪,∩,⇒} in one simplified table as fol-

lows.

A B ¬A (A ∩B) (A ∪B) (A ⇒ B)
T T F T T T
T F F F T F
F T T F T T
F F T F F T

Observe that The first row of the above table

reads:

For any formulas A, B, if the logical value of

A = T and B = T , then logical values of

¬A = T , (A ∩ B) = T , (A ∪ B) = T and

(A ⇒ B) = T .

We read and write the other rows in a similar

manner.

2



Our table indicates that the logical value of

of propositional connectives depends only

on the logical values of its factors; i.e. it

is independent of the formulas A, B.

EXTENSIONAL CONNECTIVES : The log-

ical value of a given connective depend only

of the logical values of its factors.

We write now the last table as the following

equations.

¬T = F, ¬F = T ;

(T ∩ T ) = T, (T ∩ F ) = F, (F ∩ T ) = F, (F ∩ F ) = F ;

(T ∪ T ) = T, (T ∪ F ) = T, (F ∪ T ) = T, (F ∪ F ) = F ;

(T ⇒ T ) = T, (T ⇒ F ) = F, (F ⇒ T ) = T, (F ⇒ F ) = T.
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Observe now that the above equations de-

scribe a set of unary and binary operations

(functions) defined on a set {T, F} and a

set {T, F} × {T, F}, respectively.

Negation ¬ is a function:

¬ : {T, F} −→ {T, F},
such that ¬T = F, ¬F = T .

Conjunction ∩ is a function:

∩ : {T, F} × {T, F} −→ {T, F},
such that

(T ∩ T ) = T, (T ∩ F ) = F,

(F ∩ T ) = F, (F ∩ F ) = F.
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Dissjunction ∪ is a function:

∪ : {T, F} × {T, F} −→ {T, F},
such that
(T ∪ T ) = T, (T ∪ F ) = T,

(F ∪ T ) = T, (F ∪ F ) = F.

Implication ⇒ is a function:

⇒: {T, F} × {T, F} −→ {T, F},
such that
(T ⇒ T ) = T, (T ⇒ F ) = F,

(F ⇒ T ) = T, (F ⇒ F ) = T.

Observe that if we have have a language
L{¬,∪,∩,⇒,⇔} containing also the equivalence
connective ⇔ we define

⇔: {T, F} × {T, F} −→ {T, F},
as a function such that
(T ⇔ T ) = T, (T ⇔ F ) = F,

(F ⇔ T ) = F, (T ⇔ T ) = T.

5



We write these definitions of connectives as

the following tables, usually called the clas-

sical truth tables.

Negation :

¬ T F
F T

Conjunction :

∩ T F
T T F
F F F

Disjunction :

∪ T F
T T T
F T F

Implication :

⇒ T F
T T F
F T T

Equivalence :

⇔ T F
T T F
F F T
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A truth assignment is any function

v : V AR −→ {T, F}.

Observe that the truth assignment is defined

only on variables (atomic formulas).

We define its extension v∗ to the set F of all

formulas of L as follows.

v∗ : F −→ {T, F}

is such that

(i) for any a ∈ V AR,

v∗(a) = v(a);
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(ii) and for any A, B ∈ F,

v∗(¬A) = ¬v∗(A);

v∗(A ∩B) = v∗(A) ∩ v∗(B);

v∗(A ∪B) = v∗(A) ∪ v∗(B);

v∗(A ⇒ B) = v∗(A) ⇒ v∗(B),

v∗(A ⇔ B) = v∗(A) ⇔ v∗(B),

where

the symbols on the left-hand side of the

equations represent connectives in their nat-

ural language meaning and

the symbols on the right-hand side repre-

sent connectives in their logical meaning

given by the classical truth tables.
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Example

Consider a formula

((a ⇒ b) ∪ ¬a))

a truth assignment v such that

v(a) = T, v(b) = F.

We calculate the logical value of the formula

A as follows: v∗(A) = v∗((a ⇒ b) ∪ ¬a)) =

v∗(a ⇒ b)∪v∗(¬a) = (v(a) ⇒ v(b))∪¬v(a) =

(T ⇒ F ) ∪ ¬T = F ∪ F = F .

Observe that we did not need (and usually we

don’t) to specify the v(x) of any x ∈ V AR−
{a, b}, as these values do not influence the

computation of the logical value v∗(A).
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SATISFACTION relation

Definition: Let v : V AR −→ {T, F}. We say
that
v satisfies a formula A ∈ F iff v∗(A) = T

Notation: v |= A.

Definition: We sat that
v does not satisfy a formula A ∈ F iff
v∗(A) 6= T .

Notation: v 6|= A.

REMARK In our classical semantics we have
that
v 6|= A iff v∗(A) = F and we say that v

falsifies the formula A.
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OBSERVE v∗(A) 6= T is is equivalent to the

fact that v∗(A) = F ONLY in 2-valued

logic!

This is why we adopt the following

Definition: For any v,

v does not satisfy a formula A ∈ F iff

v∗(A) 6= T
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Example

A = ((a ⇒ b) ∪ ¬a))

v : V AR −→ {T, F}
such that v(a) = T, v(b) = F .

Calculation of v∗(A) using the short hand no-
tation:

(T ⇒ F ) ∪ ¬T = F ∪ F = F .

v 6|= ((a ⇒ b) ∪ ¬a)).

Observe that we did not need (and usually we
don’t) to specify the v(x) of any x ∈ V AR−
{a, b}, as these values do not influence the
computation of the logical value v∗(A).
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Example

A = ((a ∩ ¬b) ∪ ¬c)

v : V AR −→ {T, F}
such that v(a) = T, v(b) = F, v(c) = T .

Calculation in a short hand notation:

(T ∩ ¬F ) ∪ ¬T = (T ∩ T ) ∪ F = T ∪ F = T .

v |= ((a ∩ ¬b) ∪ ¬c).
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Formula: A = ((a ∩ ¬b) ∪ ¬c).

Consider now v1 : V AR −→ {T, F} such that

v1(a) = T, v1(b) = F, v1(c) = T, and

v1(x) = F , for all x ∈ V AR− {a, b, c},

Observe: v(a) = v1(a), v(b) = v1(b), v(c) =

v1(c), so we get

v1 |= ((a ∩ ¬b) ∪ ¬c).
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Consider v2 : V AR −→ {T, F} such that

v2(a) = T, v2(b) = F, v2(c) = T, v2(d) = T,

and

v2(x) = F , for all x ∈ V AR− {a, b, c, d},

Observe: v(a) = v2(a), v(b) = v2(b), v(c) =

v2(c), so we get

v2 |= ((a ∩ ¬b) ∪ ¬c).
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We are going to prove that there are as many

of such truth assignments as real numbers!

but they are all the same as the first v with

respect to the formula A.

When we ask a question: ”How many truth

assignments satisfy/fasify a formula A?”

we mean to find all assignment that are

different on the formula A, not just differ-

ent on a set V AR of all variables, as all of

our v1, v2’s were.

To address and to answer this question for-

mally we first introduce some notations and

definitions.
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Notation: for any formula A, we denote by

V ARA

a set of all variables that appear in A.

Definition: Given a formula A ∈ F, any func-

tion

w : V ARA −→ {T, F}
is called a truth assignment restricted to

A.
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Example

A = ((a ∩ ¬b) ∪ ¬c)

V ARA = {a, b, c}

Truth assignment restricted to A is any func-

tion:

w : {a, b, c} −→ {T, F}.

We use the following theorem to count all

possible truth assignment restricted to A.

Counting Functions Theorem (1) For any

finite sets A and A, if A has n elements

and B has m elements, then there are mn

possible functions that map A into B.

There are 23 = 8 truth assignment restricted

to A = ((a ⇒ ¬b) ∪ ¬c).
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General case For any A there are

2|V ARA|

possible truth assignments w restricted to

A.



All w restricted to A are listed in the table
below.

A = ((a ∩ ¬b) ∪ ¬c)

w a b c w∗(A) computation w∗(A)
w1 T T T (T ⇒ T ) ∪ ¬T = T ∪ F = T T
w2 T T F (T ⇒ T ) ∪ ¬F = T ∪ T = T T
w3 T F F (T ⇒ F ) ∪ ¬F = F ∪ T = T T
w4 F F T (F ⇒ F ) ∪ ¬T = T ∪ F = T T
w5 F T T (F ⇒ T ) ∪ ¬T = T ∪ F = T T
w6 F T F (F ⇒ T ) ∪ ¬F = T ∪ T = T T
w7 T F T (T ⇒ F ) ∪ ¬T = F ∪ F = F F
w8 F F F (F ⇒ F ) ∪ ¬F = T ∪ T = T T

Model for A is a v such that

v |= A.

w1, w2, w3, w4w5, w6, w8 are models for A.

Counter- Model for A is a v such that

v 6|= A.

w7 is a counter- model for A.
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Tautology :

A is a tautology iff any v is a model
for A, i.e.

∀v (v |= A).

Not a tautology :

A is not a tautology iff there is v :
V AR −→ {T, F}, such that v is a counter-
model for A, i.e.

∃v (v 6|= A).

Tautology Notation |= A

Example

6|= ((a ∩ ¬b) ∪ ¬c)

because the truth assignment w7 is a counter-
model for A.
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Tautology Verification

Truth Table Method: list and evaluate all pos-

sible truth assignments restricted to A.

Example: (a ⇒ (a ∪ b)).

v a b v∗(A) computation v∗(A)
v1 T T (T ⇒ (T ∪ T )) = (T ⇒ T ) = T T
v2 T F (T ⇒ (T ∪ F )) = (T ⇒ T ) = T T
v3 F T (F ⇒ (F ∪ T )) = (F ⇒ T ) = T T
v4 F F (F ⇒ (F ∪ F )) = (F ⇒ F ) = T T

for all v : V AR −→ {T, F}, v |= A, i.e.

|= (a ⇒ (a ∪ b)).
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Proof by Contradiction Method

One works backwards, trying to find a truth

assignment v which makes a formula A false.

If we find one, it means that A is not a tau-

tology,

if we prove that it is impossible ,

it means that the formula is a tautology.

Example A = (a ⇒ (a ∪ b)

Step 1 Assume that 6|= A, i.e. A = F .
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Step 2 Analyze Strep 1:

(a ⇒ (a ∪ b)) = F iff a = T and

a ∪ b = F.

Step 3 Analyze Step 2:

a = T and a ∪ b = F, i.e. T ∪ b = F .

This is impossible by the definition of ∪.

Conclusion:

|= (a ⇒ (a ∪ b)).

Observe that exactly the same reasoning proves

that for any formulas A, B ∈ F,

|= (A ⇒ (A ∪B)).
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Observe that he following formulas are tau-

tologies

((((a ⇒ b) ∩ ¬c) ⇒ ((((a ⇒ b) ∩ ¬c) ∪ ¬d)),

(((a ⇒ b) ∩ ¬C) ∪ d) ∩ ¬e) ⇒

(((a ⇒ b) ∩ ¬C) ∪ d) ∩ ¬e) ∪ ((a ⇒ ¬e)))

because they are of the form

(A ⇒ (A ∪B)).
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Tautologies, Contradictions

T = {A ∈ F : |= A},

C = {A ∈ F : ∀v (v 6|= A)}.
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Theorem 1 For any formula A ∈ F the fol-

lowing conditions are equivalent.

(1) A is a tautology

(2) A ∈ T

(3) ¬A is a contradiction

(4) ¬A ∈ C

(5) ∀v (v∗(A) = T )

(6) ∀v (v |= A)

(7) Every v is a model for A
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Theorem 2 For any formula A ∈ F the fol-

lowing conditions are equivalent.

(1) A is a contradiction

(2) A ∈ C

(3) ¬A is a tautology

(4) ¬A ∈ T

(5) ∀v (v∗(A) = F )

(6) ∀v (v 6|= A)

(7) A does not have a model.
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