Chapter 4: Classical Propositional Semantics

Language :

$$\mathcal{L}_{\{\neg,\cup,\cap,\Rightarrow\}}.$$

Classical Semantics assumptions:

TWO VALUES: there are only two logical values: truth (T) and false (F), and

EXTENSIONALITY: the logical value of a formula depends only on a main connective and logical values of its sub-formulas.

We define formally a classical semantics for \mathcal{L} in terms of two factors: classical truth tables and a truth assignment.

We summarize now here the chapter 2 tables for $\mathcal{L}_{\{\neg,\cup,\cap,\Rightarrow\}}$ in one simplified table as follows.

A	B	$\neg A$	$(A \cap B)$	$(A \cup B)$	$(A \Rightarrow B)$
Т	Т	F	Т	Т	Т
Т	F	F	F	Т	F
F	Т	Ť	F	Т	Т
F	F	Т	F	F	Т

Observe that The first row of the above table reads:

For any formulas A, B, if the logical value of A = T and B = T, then logical values of $\neg A = T$, $(A \cap B) = T$, $(A \cup B) = T$ and $(A \Rightarrow B) = T$.

We read and write the other rows in a similar manner.

Our table indicates that the logical value of of propositional connectives depends **only** on the logical values of its factors; i.e. it is **independent of the formulas** A, B.

EXTENSIONAL CONNECTIVES : The logical value of a given connective depend only of the logical values of its factors.

We write now the last table as the following equations.

 $\neg T = F, \quad \neg F = T;$ $(T \cap T) = T, \quad (T \cap F) = F, \quad (F \cap T) = F, \quad (F \cap F) = F;$ $(T \cup T) = T, \quad (T \cup F) = T, \quad (F \cup T) = T, \quad (F \cup F) = F;$ $(T \Rightarrow T) = T, \quad (T \Rightarrow F) = F, \quad (F \Rightarrow T) = T, \quad (F \Rightarrow F) = T.$ **Observe now** that the above equations describe a set of unary and binary operations (functions) defined on a set $\{T, F\}$ and a set $\{T, F\} \times \{T, F\}$, respectively.

Negation \neg is a function:

$$\neg : \{T, F\} \longrightarrow \{T, F\}$$

such that $\neg T = F, \ \neg F = T.$

Conjunction \cap is a function:

 $\cap : \{T, F\} \times \{T, F\} \longrightarrow \{T, F\},$ such that $(T \cap T) = T, \quad (T \cap F) = F,$ $(F \cap T) = F, \quad (F \cap F) = F.$

,

Dissjunction \cup is a function:

 $\cup: \{T, F\} \times \{T, F\} \longrightarrow \{T, F\},$ such that $(T \cup T) = T, \quad (T \cup F) = T,$ $(F \cup T) = T, \quad (F \cup F) = F.$

Implication \Rightarrow is a function:

 $\Rightarrow : \{T, F\} \times \{T, F\} \longrightarrow \{T, F\},$ such that $(T \Rightarrow T) = T, \quad (T \Rightarrow F) = F,$ $(F \Rightarrow T) = T, \quad (F \Rightarrow F) = T.$

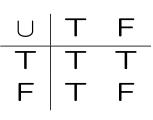
Observe that if we have have a language $\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow, \Leftrightarrow\}}$ containing also the equivalence connective \Leftrightarrow we define

 $\Leftrightarrow : \{T, F\} \times \{T, F\} \longrightarrow \{T, F\},$ as a function such that $(T \Leftrightarrow T) = T, \quad (T \Leftrightarrow F) = F,$ $(F \Leftrightarrow T) = F, \quad (T \Leftrightarrow T) = T.$

5

We write these definitions of connectives as the following tables, usually called the classical truth tables.

Negation : Disjunction :



Conjunction : **Implication** :

\cap	Т	F	
Т	Т	F	
F	F	F	

\Rightarrow	Т	F
Т	Т	F
F	T	Т

Equivalence :

$$\begin{array}{c|c} \Leftrightarrow & T & F \\ \hline T & T & F \\ F & F & T \end{array}$$

A truth assignment is any function $v: VAR \longrightarrow \{T, F\}.$

Observe that the truth assignment is defined only on variables (atomic formulas).

We define its extension v^* to the set \mathcal{F} of all formulas of \mathcal{L} as follows.

$$v^*: \mathcal{F} \longrightarrow \{T, F\}$$

is such that

(i) for any $a \in VAR$,

$$v^*(a) = v(a);$$

7

(ii) and for any $A, B \in \mathcal{F}$, $v^*(\neg A) = \neg v^*(A);$ $v^*(A \cap B) = v^*(A) \cap v^*(B);$ $v^*(A \cup B) = v^*(A) \cup v^*(B);$ $v^*(A \Rightarrow B) = v^*(A) \Rightarrow v^*(B),$ $v^*(A \Leftrightarrow B) = v^*(A) \Leftrightarrow v^*(B),$

where

- the symbols on the **left-hand side** of the equations represent connectives in their **natural language meaning** and
- the symbols on the **right-hand side** represent connectives in their **logical meaning** given by the classical truth tables.

Example

Consider a formula

$$((a \Rightarrow b) \cup \neg a))$$

a truth assignment v such that

$$v(a) = T, v(b) = F.$$

We calculate the logical value of the formula A as follows: $v^*(A) = v^*((a \Rightarrow b) \cup \neg a)) =$ $v^*(a \Rightarrow b) \cup v^*(\neg a) = (v(a) \Rightarrow v(b)) \cup \neg v(a) =$ $(T \Rightarrow F) \cup \neg T = F \cup F = F.$

Observe that we did not need (and usually we don't) to specify the v(x) of any $x \in VAR - \{a, b\}$, as these values do not influence the computation of the logical value $v^*(A)$.

SATISFACTION relation

Definition: Let $v : VAR \longrightarrow \{T, F\}$. We say that v satisfies a formula $A \in \mathcal{F}$ iff $v^*(A) = T$

Notation: $v \models A$.

- **Definition:** We sat that v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$.
- Notation: $v \not\models A$.
- **REMARK** In our classical semantics we have that $v \not\models A$ iff $v^*(A) = F$ and we say that vfalsifies the formula A.

OBSERVE $v^*(A) \neq T$ is is equivalent to the fact that $v^*(A) = F$ ONLY in 2-valued logic!

This is why we adopt the following

Definition: For any v,

v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$

Example

$$A = ((a \Rightarrow b) \cup \neg a))$$

$$v: VAR \longrightarrow \{T, F\}$$

such that $v(a) = T, v(b) = F$.

Calculation of $v^*(A)$ using the short hand notation:

$$(T \Rightarrow F) \cup \neg T = F \cup F = F.$$

$$v \not\models ((a \Rightarrow b) \cup \neg a)).$$

Observe that we did not need (and usually we don't) to specify the v(x) of any $x \in VAR - \{a, b\}$, as these values do not influence the computation of the logical value $v^*(A)$.

Example

$$A = ((a \cap \neg b) \cup \neg c)$$
$$v : VAR \longrightarrow \{T, F\}$$
such that $v(a) = T, v(b) = F, v(c) = T.$

Calculation in a short hand notation:

$$(T \cap \neg F) \cup \neg T = (T \cap T) \cup F = T \cup F = T.$$

$$v \models ((a \cap \neg b) \cup \neg c).$$

Formula: $A = ((a \cap \neg b) \cup \neg c).$

Consider now
$$v_1 : VAR \longrightarrow \{T, F\}$$
 such that
 $v_1(a) = T, v_1(b) = F, v_1(c) = T$, and
 $v_1(x) = F$, for all $x \in VAR - \{a, b, c\}$,

Observe: $v(a) = v_1(a), v(b) = v_1(b), v(c) = v_1(c)$, so we get

$$v_1 \models ((a \cap \neg b) \cup \neg c).$$

Consider $v_2 : VAR \longrightarrow \{T, F\}$ such that $v_2(a) = T, v_2(b) = F, v_2(c) = T, v_2(d) = T,$ and $v_2(x) = F,$ for all $x \in VAR - \{a, b, c, d\},$

Observe:
$$v(a) = v_2(a), v(b) = v_2(b), v(c) = v_2(c)$$
, so we get

$$v_2 \models ((a \cap \neg b) \cup \neg c).$$

- We are going to prove that there are as many of such truth assignments as real numbers! but they are all *the same* as the first v with respect to the formula A.
- When we ask a question: "How many truth assignments satisfy/fasify a formula A?" we mean to find all assignment that are different on the formula A, not just different on a set VAR of all variables, as all of our v_1, v_2 's were.
- To address and to answer this question formally we first introduce some notations and definitions.

Notation: for any formula A, we denote by

VAR_A

a set of all variables that appear in A.

Definition: Given a formula $A \in \mathcal{F}$, any function

$$w: VAR_A \longrightarrow \{T, F\}$$

is called a **truth assignment restricted** to *A*.

Example

$$A = ((a \cap \neg b) \cup \neg c)$$
$$VAR_A = \{a, b, c\}$$

Truth assignment restricted to *A* is any function:

$$w: \{a, b, c\} \longrightarrow \{T, F\}.$$

We use the following theorem to count all possible truth assignment restricted to A.

- Counting Functions Theorem (1) For any finite sets A and A, if A has \mathbf{n} elements and B has \mathbf{m} elements, then there are $\mathbf{m}^{\mathbf{n}}$ possible functions that map A into B.
- **There are** $2^3 = 8$ truth assignment restricted to $A = ((a \Rightarrow \neg b) \cup \neg c).$

General case For any A there are

$2^{|VAR_A|}$

possible truth assignments w restricted to A.

All *w* **restricted to** *A* are listed in the table below.

$$A = \left(\left(a \cap \neg b \right) \cup \neg c \right)$$

$$\underbrace{w \ a \ b \ c} \qquad \underbrace{w^*(A) \ computation} \qquad \underbrace{w^*(A)}_{1}$$

$$\underbrace{w_1 \ T \ T \ T \ T} \qquad (T \Rightarrow T) \cup \neg T = T \cup F = T \qquad T$$

$$\underbrace{w_2 \ T \ T \ F}_{1} \qquad (T \Rightarrow T) \cup \neg F = T \cup T = T \qquad T$$

$$\underbrace{w_3 \ T \ F \ F}_{1} \qquad (T \Rightarrow F) \cup \neg F = F \cup T = T \qquad T$$

$$\underbrace{w_4 \ F \ F \ T}_{1} \qquad (F \Rightarrow F) \cup \neg T = T \cup F = T \qquad T$$

$$\underbrace{w_5 \ F \ T \ T}_{1} \qquad (F \Rightarrow T) \cup \neg T = T \cup F = T \qquad T$$

$$\underbrace{w_6 \ F \ T \ F}_{1} \qquad (F \Rightarrow T) \cup \neg T = T \cup F = T \qquad T$$

$$\underbrace{w_7 \ T \ F \ T}_{1} \qquad (T \Rightarrow F) \cup \neg T = T \cup T = T \qquad T$$

$$\underbrace{w_8 \ F \ F \ F}_{1} \qquad (F \Rightarrow F) \cup \neg F = T \cup T = T \qquad T$$

Model for A is a v such that

$v \models A$.

 $w_1, w_2, w_3, w_4w_5, w_6, w_8$ are **models** for A.

Counter- Model for A is a v such that

$$v \not\models A.$$

 w_7 is a counter- model for A.

Tautology :

A is a tautology iff any v is a model for A, i.e.

$$\forall v \ (v \models A).$$

Not a tautology :

A is **not a tautology** iff there is v: $VAR \longrightarrow \{T, F\}$, such that v is **a countermodel** for A, i.e.

$$\exists v \ (v \not\models A).$$

Tautology Notation $\models A$

Example

$$\not\models ((a \cap \neg b) \cup \neg c)$$

because the truth assignment w_7 is a countermodel for A.

Tautology Verification

Truth Table Method: list and evaluate all possible truth assignments restricted to *A*.

Example: $(a \Rightarrow (a \cup b))$.

v	a	b	$v^*(A)$ computation	$v^*(A)$
v_1	Т	Т	$(T \Rightarrow (T \cup T)) = (T \Rightarrow T) = T$	Т
v_2	Т	F	$(T \Rightarrow (T \cup F)) = (T \Rightarrow T) = T$	Т
v_3	F	Т	$(F \Rightarrow (F \cup T)) = (F \Rightarrow T) = T$	Т
v_4	F	F	$(F \Rightarrow (F \cup F)) = (F \Rightarrow F) = T$	Т

for all $v: VAR \longrightarrow \{T, F\}, v \models A$, i.e. $\models (a \Rightarrow (a \cup b)).$

Proof by Contradiction Method

- **One works** backwards, trying to find a truth assignment *v* which makes a formula *A* false.
- If we find one, it means that A is not a tautology,
 - if we prove that it is impossible ,
- it means that the formula is a tautology.
 - **Example** $A = (a \Rightarrow (a \cup b))$
- **Step 1** Assume that $\not\models A$, i.e. A = F.

Step 2 Analyze Strep 1:

 $(a \Rightarrow (a \cup b)) = F$ iff a = T and $a \cup b = F$.

Step 3 Analyze Step 2: a = T and $a \cup b = F$, i.e. $T \cup b = F$.

This is impossible by the definition of \cup .

Conclusion:

$$\models (a \Rightarrow (a \cup b)).$$

Observe that exactly the same reasoning proves that for any formulas $A, B \in \mathcal{F}$,

$$\models (A \Rightarrow (A \cup B)).$$

Observe that he following formulas are tautologies

$$((((a \Rightarrow b) \cap \neg c) \Rightarrow ((((a \Rightarrow b) \cap \neg c) \cup \neg d)),$$
$$(((a \Rightarrow b) \cap \neg C) \cup d) \cap \neg e) \Rightarrow$$
$$((((a \Rightarrow b) \cap \neg C) \cup d) \cap \neg e) \cup ((a \Rightarrow \neg e)))$$

because they are of the form

 $(A \Rightarrow (A \cup B)).$

Tautologies, Contradictions

$$\mathbf{T} = \{ A \in \mathcal{F} : \models A \},\$$
$$\mathbf{C} = \{ A \in \mathcal{F} : \forall v \ (v \not\models A) \}.$$

Theorem 1 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.

- (1) A is a tautology
- **(2)** *A* ∈ **T**
- (3) $\neg A$ is a contradiction
- (4) $\neg A \in \mathbf{C}$
- (5) $\forall v \ (v^*(A) = T)$
- (6) $\forall v \ (v \models A)$
- (7) Every v is a model for A

- **Theorem 2** For any formula $A \in \mathcal{F}$ the following conditions are equivalent.
- (1) A is a contradiction
- **(2)** *A* ∈ **C**
- (3) $\neg A$ is a tautology
- (4) $\neg A \in \mathbf{T}$
- (5) $\forall v \ (v^*(A) = F)$
- (6) $\forall v \ (v \not\models A)$
- (7) A does not have a model.