Chapter 8: Hilbert Proof Systems and Deduction Theorem

PROOF OF THE DEDUCTION THEOREM

Hilbert System H_1 :

$$H_1 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F} \{A1, A2\} MP)$$

A1 $(A \Rightarrow (B \Rightarrow A)),$

$$A2 \quad ((A \Rightarrow (B \Rightarrow C))) \\ \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$$

MP

$$(MP) \ \frac{A \ ; \ (A \Rightarrow B)}{B},$$

DEDUCTION THEOREM (Herbrand, 1930) For any formulas A, B,

if $A \vdash B$, then $\vdash (A \Rightarrow B)$.

We are going to prove now that for our system H_1 is strong enough to prove the Deduction Theorem for it. In fact we prove a more general version of Herbrand theorem. To formulate it we introduce the following notation.

We write

$$\Gamma, A \vdash B$$

for

$$\Gamma \cup \{A\} \vdash B$$

In general we write

$$\Gamma, A_1, A_2, \dots, A_n \vdash B$$

for

$$\Gamma \cup \{A_1, A_2, ..., A_n\} \vdash B.$$

Deduction Theorem for H_1 For any subset Γ of the set of formulas \mathcal{F} of H_1 and for any formulas $A, B \in \mathcal{F}$,

In particular,

 $A \vdash_{H_1} B$ if and only if $\vdash_{H_1} (A \Rightarrow B)$.

PROOF OF DEDUCTION THEOREM

We use in the proof the symbol \vdash instead of \vdash_{H_1} .

Part 1. We first prove:

If Γ , $A \vdash B$ then $\Gamma \vdash (A \Rightarrow B)$.

Assume that

$$\Gamma, A \vdash B,$$

i.e. that we have a formal proof

$$B_1, B_2, ..., B_n$$

of B from the set of formulas $\Gamma \cup \{A\}$, we have to show that

$$\Gamma \vdash (A \Rightarrow B).$$

In order to prove that

$$\Gamma \vdash (A \Rightarrow B)$$

follows from Γ , $A \vdash B$, we prove that a stronger statement, namely that

$$\Gamma \vdash (A \Rightarrow B_i)$$

for any B_i $(1 \le i \le n)$ in the formal proof $B_1, B_2, ..., B_n$ of B also follows from $\Gamma, A \vdash B$.

Hence in particular case, when i = n, we will obtain that

$$\Gamma \vdash (A \Rightarrow B)$$

follows from Γ , $A \vdash B$, and that will end the proof of Part 1. The proof of Part 1 is conducted by induction on *i* for $1 \le i \le n$.

Step i = 1 (base step).

Observe that when i = 1, it means that the formal proof

 $B_1, B_2, ..., B_n$

contains only one element B_1 .

- By the definition of the formal proof from $\Gamma \cup \{A\}$, we have that
- (1) B_1 is a logical axiom, or $B_1 \in \Gamma$, or

(2) $B_1 = A$.

This means that $B_1 \in \{A1, A2\} \cup \Gamma \cup \{A\}$.

Now we have two cases to consider.

Case 1: $B_1 \in \{A1, A2\} \cup \Gamma$.

Observe that

$$(B_1 \Rightarrow (A \Rightarrow B_1))$$

is the axiom A1 and by assumption

$$B_1 \in \{A1, A2\} \cup \Gamma.$$

We get the required proof of $(A \Rightarrow B_1)$ from Γ by the following application of the Modus Ponens rule

$$(MP) \ \frac{B_1 \ ; \ (B_1 \Rightarrow (A \Rightarrow B_1))}{(A \Rightarrow B_1)}$$

9

Case 2: $B_1 = A$

When $B_1 = A$ then to prove $\Gamma \vdash (A \Rightarrow B)$ means to prove

$$\Gamma \vdash (A \Rightarrow A),$$

what holds by the monotonicity of the consequence and the fact that we have shown that

$$\vdash (A \Rightarrow A).$$

The above cases conclude the proof of

$$\Gamma \vdash (A \Rightarrow B_i)$$

for i = 1.

INDUCTIVE STEP

Assume that

$$\Gamma \vdash (A \Rightarrow B_k)$$

for all k < i,

we will show that using this fact we can conclude that also

$$\Gamma \vdash (A \Rightarrow B_i).$$

Consider a formula B_i in the formal proof $B_1, B_2, ..., B_n$

- By the definition of the formal proof we have the following
- **Case 1** $B_i \in \{A1, A2\} \cup \Gamma \cup \{A\}$ or
- **Case 2:** B_i follows by MP from certain B_j, B_m such that j < m < i.

We have to consider these cases.

Case 1:

- $B_i \in \{A1, A2\} \cup \Gamma \cup \{A\}.$
- **The proof** of $(A \Rightarrow B_i)$ from Γ in this case is obtained from the proof of the **Step** i = 1by replacement B_1 by B_i and will be omitted here as a straightforward repetition.

Case 2:

- B_i is a conclusion of MP.
- If B_i is a conclusion of MP, then we must have two formulas B_j, B_m in the formal proof
- $B_1, B_2, ..., B_n$ such that j < m < i and

$$(MP) \ \frac{B_j \ ; \ B_m}{B_i}.$$

By the inductive assumption,

the formulas B_j, B_m are such that

 $\Gamma \vdash (A \Rightarrow B_j)$

and

$$\Gamma \vdash (A \Rightarrow B_m).$$

Moreover, by the definition of Modus Ponens rule, the formula B_m has to have a form

$$(B_j \Rightarrow B_i),$$

i.e.

$$B_m = (B_j \Rightarrow B_i),$$

and the inductive assumption can be rewritten as follows.

$$\Gamma \vdash (A \Rightarrow (B_j \Rightarrow B_i))$$

, for j < i.

Observe now that the formula

 $((A \Rightarrow (B_j \Rightarrow B_i)) \Rightarrow ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i)))$

is a substitution of the axiom A2 and hence **has a proof** in our system.

By the monotonicity of the consequence, it also has a proof from the set Γ , i.e.

We know that

$$\Gamma \vdash ((A \Rightarrow (B_j \Rightarrow B_i)) \Rightarrow ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i))).$$

Applying the rule MP i.e. performing the following

$$\frac{(A \Rightarrow (B_j \Rightarrow B_i)) ; ((A \Rightarrow (B_j \Rightarrow B_i)) \Rightarrow ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i)))}{((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i))}$$

we get that also

$$\Gamma \vdash ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i)).$$

Applying again the rule MP i.e. performing the following

$$\frac{(A \Rightarrow B_j) ; ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i))}{(A \Rightarrow B_i)})$$

we get that

$$\Gamma \vdash (A \Rightarrow B_i)$$

what ends the proof of the inductive step.

By the mathematical induction principle, we hence have proved that

 $\Gamma \vdash (A \Rightarrow B_i)$ for all *i* such that $1 \le i \le n$.

In particular it is true for i = n, what means for $B_n = B$.

This ends the proof of the fact that

if $\Gamma, A \vdash B$, then $\Gamma \vdash (A \Rightarrow B)$.

The proof of the inverse implication:

 $If \Gamma \vdash_{H_1} (A \Rightarrow B), \quad then \quad \Gamma, \ A \vdash_{H_1} B$

is straightforward and goes as follows.

Assume that

 $\Gamma \vdash (A \Rightarrow B).$

- By the monotonicity of the consequence we have also that
 - $\Gamma, A \vdash (A \Rightarrow B).$

Obviously

 $\Gamma, A \vdash A.$

Applying Modus Ponens to the above, we get the proof of *B* from $\{\Gamma, A\}$ i.e.

we have proved that

 $\Gamma, A \vdash B.$

- **THIS ENDS** the proof of the deduction theorem for any set $\Gamma \subseteq \mathcal{F}$ and any formulas $A, B \in \mathcal{F}$.
- The particular case of the theorem is obtained from the above by assuming that the set Γ is empty.