Chapter 9: Completeness Theorem: Proof 1

We consider a sound proof system (under classical semantics)

$$S = (\mathcal{L}_{\{\Rightarrow,\neg\}}, \mathcal{AL}, MP),$$

such that the formulas listed below are provable in S.

 $\vdash_{S} (A \Rightarrow (B \Rightarrow A)),$ $\vdash_{S} ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$ $\vdash_{S} (\neg A \Rightarrow (A \Rightarrow B)),$ $\vdash_{S} ((\neg A \Rightarrow A) \Rightarrow A),$ $\vdash_{S} ((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)),$ $\vdash_{S} (A \Rightarrow A),$ $\vdash_{S} (B \Rightarrow \neg \neg B),$ $\vdash_{S} (A \Rightarrow (\neg B \Rightarrow \neg (A \Rightarrow B))),$ $\vdash_{S} ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B)),$

We present here two proofs of the following theorem.

Completeness Theorem For any formula A of S,

 $\models A$ if and only if $\vdash_S A$.

OBSERVATION 1 All the above formulas have proofs in the system H_2 and the system H_2 is sound, hence the Completeness Theorem for the system S implies the completeness of the system H_2 .

OBSERVATION 2 We have assumed that the system S is sound, i.e. that the following theorem holds for S.

Soundness Theorem

For any formula A of S,

if $\vdash_S A$, then $\models A$.

It means that in order to prove the Completeness Theorem we need to prove only the following implication.

For any formula A of S,

If $\models A$, then $\vdash_S A$.

Both proofs of the Completeness Theorem relay strongly of the Deduction Theorem, as discussed and proved in the previous chapter. **Deduction theorem** was proved for the system H_1 that is different that S, but all formulas that were used in its proof are provable in S, so it is valid for S as well, as it was for the system H_2 , i.e. the following theorem holds.

Deduction Theorem for S

For any formulas A, B of S and Γ be any subset of formulas of S,

 Γ , $A \vdash_S B$ if and only if $\Gamma \vdash_S (A \Rightarrow B)$.

- It is possible to prove the Completeness Theorem independently from the Deduction Theorem and we will present two of such a proof in later chapters.
- The first proof presented here is similar in its structure to the proof of the deduction theorem and is due to Kalmar, 1935.
 - It shows how one can use the assumption that a formula *A* is a tautology in order to construct its formal proof. It is hence called **a proof - construction method**.
- The second proof is a proof of the equivalent opposite implication to the Completeness part, i.e. we show how one can deduce that a formula A is not a tautology from the fact that it does not have a proof. It is hence called a counter-model construction method.

Completeness Theorem

A Proof - Construction Method

We first present one definition and to prove one lemma.

We write $\vdash A$ instead of $\vdash_S A$, as the system S is fixed.

- **Definition** Let A be a formula and $b_1, b_2, ..., b_n$ be all propositional variables that occur in A.
 - Let v be variable assignment v : $VAR \longrightarrow \{T, F\}$.

DEFINITION 1

We define, for $A, b_1, b_2, ..., b_n$ and v a corresponding formulas A', $B_1, B_2, ..., B_n$ as follows:

$$A' = \begin{cases} A & \text{if } v^*(A) = T \\ \neg A & \text{if } v^*(A) = F \end{cases}$$
$$B_i = \begin{cases} b_i & \text{if } v(b_i) = T \\ \neg b_i & \text{if } v(b_i) = F \end{cases}$$

for i = 1, 2, ..., n.

Example 1: let *A* be a formula

$$(a \Rightarrow \neg b)$$

Let v be such that

$$v(a) = T, \quad v(b) = F.$$

ł

In this case:
$$b_1 = a$$
, $b_2 = b$, and $v^*(A) = v^*(a \Rightarrow \neg b) = v(a) \Rightarrow \neg v(b) = T \Rightarrow \neg F = T$.

The corresponding A', B_1, B_2 are:

$$A' = A$$
 (as $v^*(A) = T$),

 $B_1 = a \quad (\text{as } v(a) = T),$

9

$$B_2 = \neg b \quad (\text{as } v(b) = F).$$

Example 2

Let A be a formula

$$((\neg a \Rightarrow \neg b) \Rightarrow c)$$

and let v be such that

$$v(a) = T, \quad v(b) = F, v(c) = F.$$

Evaluate A', $B_1, ... B_n$ as defined by the definition 1.

In this case n = 3 and

$$b_1 = a, \ b_2 = b, b_3 = c,$$

and we evaluate

$$v^*(A) = v^*((\neg a \Rightarrow \neg b) \Rightarrow c) =$$
$$((\neg v(a) \Rightarrow \neg v(b)) \Rightarrow v(c)) =$$
$$((\neg T \Rightarrow \neg F) \Rightarrow F) = (T \Rightarrow F) = F.$$

The corresponding A', B_1, B_2, B_2 are:

$$A' = \neg A = \neg((\neg a \Rightarrow \neg b) \Rightarrow c)$$

as
$$v^*(A) = F$$
,
 $B_1 = a$ (as $v(a) = T$),
 $B_2 = \neg b$ (as $v(b) = F$).
 $B_3 = \neg c$ (as $v(c) = F$).

- The lemma stated below describes a method of transforming a semantic notion of a tautology into a syntactic notion of provability. It defines, for any formula *A* and a variable assignment *v* a corresponding deducibility relation.
- **LEMMA** For any formula A and a variable assignment v, if A', B_1 , B_2 , ..., B_n are corresponding formulas defined by our definition, then

$$B_1, B_2, \dots, B_n \vdash A'.$$

Example 3 Let A, v be as defined by the example 1, then the Lemma asserts that

$$a, \neg b \vdash (a \Rightarrow \neg b).$$

Example 4 Let *A*, *v* be as defined in example 2, then the lemma asserts that

$$a, \neg b, \neg c \vdash \neg((\neg a \Rightarrow \neg b) \Rightarrow c)$$

Proof of the LEMMA The proof is by induction on the degree of A i.e. a number n of logical connectives in A.

Case: n = 0

In the case that n = 0 A is atomic and so consists of a single propositional variable, say a.

Clearly, if $v^*(A) = T$ then we A' = A = a, $B_1 = a$.

We obtain that

 $a \vdash a$

by the Deduction Theorem and the fact that $\vdash (A \Rightarrow A)$, i.e. also $\vdash (a \Rightarrow a)$.

In case when $v^*(A) = F$ we have that

$$A' = \neg A = \neg a,$$
$$B_1 = \neg a,.$$

We obtain that

$$\neg a \vdash \neg a$$

also by the Deduction Theorem and assumption $\vdash (A \Rightarrow A)$ in S.

This proves that Lemma holds for n = 0

Now assume that the lemma holds for any A with j < n connectives.

Prove: lemma holds for A with n connectives.

There are several subcases to deal with.

Case: A is $\neg A_1$

If A is of the form $\neg A_1$ then A_1 has less then n connectives.

By the inductive assumption we have the formulas

$$A'_{1}, B_{1}, B_{2}, \dots, B_{n}$$

corresponding to the A_1 and the propositional variables $b_1, b_2, ..., b_n$ in A_1 , such that

$$B_1, B_2, ..., B_n \vdash A'_1$$

- **Observe,** that the formulas A and $\neg A_1$ have the same propositional variables.
- So the corresponding formulas B_1 , B_2 , ..., B_n are the same for both of them.

We are going to show that the inductive assumption allows us to prove that the lemma holds for A, ie. that

 $B_1, B_2, ..., B_n \vdash A'.$

There two cases to consider.

Case: $v^*(A_1) = T$

If $v^*(A_1) = T$ then by definition

$$A_{1}^{\prime} = A_{1}$$

and by the inductive assumption

$$B_1, B_2, \dots, B_n \vdash A_1$$

In this case: $v^*(A) = v^*(\neg A_1) = \neg v^*(T) = F$

So we have that $A' = \neg A = \neg \neg A_1$.

Since we have assumed about S that

$$\vdash (A_1 \Rightarrow \neg \neg A_1)$$

we obtain by the monotonicity that also

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow \neg \neg A_1).$$

By inductive assumption and Modus Ponens we have that also

$$B_1, B_2, \dots, B_n \vdash \neg \neg A_1,$$

that is

$$B_1, B_2, \dots, B_n \vdash \neg A,$$

that is

$$B_1, B_2, ..., B_n \vdash A'.$$

Case:
$$v^*(A_1) = F$$

If $v^*(A_1) = F$ then $A'_1 = \neg A_1$ and $v^*(A) = T$ so
 $A' = A.$

Therefore the inductive assumption we have that $B_1, B_2, ..., B_n \vdash \neg A_1$, that is (as $A = \neg A_1$)

$$B_1, B_2, ..., B_n \vdash A'.$$

Case: A is $(A_1 \Rightarrow A_2)$

If A is of the form $(A_1 \Rightarrow A_2)$ then A_1 and A_2 have less than n connectives and so by the inductive assumption we have $B_1, B_2, ..., B_n \vdash A_1'$ and $B_1, B_2, ..., B_n \vdash$ A_2' , where $B_1, B_2, ..., B_n$ are formulas corresponding to the propositional variables in A. Here we have the following subcases to consider.

Case:
$$v^*(A_1) = v^*(A_2) = T$$

If $v^*(A_1) = T$ then A_1' is A_1 and if $v^*(A_2) = T$ then A_2' is A_2 . We also have $v^*(A_1 \Rightarrow A_2) = T$ and so A' is $(A_1 \Rightarrow A_2)$. By the above and the inductive assumption, therefore, $B_1, B_2, ..., B_n \vdash A_2$ and since we have assumed about S that $\vdash (A_2 \Rightarrow (A_1 \Rightarrow A_2))$, we have by monotonicity and Modus Ponens, that $B_1, B_2, ..., B_n \vdash A'$.

Case: $v^*(A_1) = T, v^*(A_2) = F$

If $v^*(A_1) = T$ then A_1' is A_1 and if $v^*(A_2) = F$ then A_2' is $\neg A_2$. Also we have in this case $v^*(A_1 \Rightarrow A_2) = F$ and so A' is $\neg(A_1 \Rightarrow A_2)$. By the above and the inductive assumption, therefore, $B_1, B_2, ..., B_n \vdash \neg A_2$. Since we have assumed **??** i.e. $\vdash (A_1 \Rightarrow (\neg A_2 \Rightarrow \neg(A_1 \Rightarrow A_2)))$, we have by monotonicity and Modus Ponens twice, that $B_1, B_2, ..., B_n \vdash A'$.

Case: $v^*(A_1) = F$

If $v^*(A_1) = F$ then A_1' is $\neg A_1$ and, whatever value v gives A_2 , we have $v^*(A_1 \Rightarrow A_2) = T$ and so A' is $(A_1 \Rightarrow A_2)$. Therefore, $B_1, B_2, ..., B_n \vdash \neg A_1$ and since by **??** we have $\vdash (\neg A_1 \Rightarrow (A_1 \Rightarrow A_2))$, by monotonicity and Modus Ponens we get that $B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2)$, that is $B_1, B_2, ..., B_n \vdash A'$.

22

With that we have covered all cases and, by induction on *n*, the proof of the lemma is complete.

Proof of the Completeness Theorem

- **Assume** that $\models A$.
- Let $b_1, b_2, ..., b_n$ be all propositional variables that occur in A.
- By the lemma we know that, for any variable assignment v, the corresponding formulas A', B_1 , B_2 , ..., B_n can be found such that

 $B_1, B_2, \ldots, B_n \vdash A'$

- **Note here** that A' of the definition is A for any v since $\models A$.
 - Hence, if v is such that $v(b_n) = T$, then B_n is b_n and

$$B_1, B_2, \dots, b_n \vdash A.$$

If $v(b_n) = F$, then B_n is $\neg b_n$ and by the lemma $B_1, B_2, ..., \neg b_n \vdash A$.

So, by the Deduction Theorem, we have

$$B_1, B_2, ..., B_{n-1} \vdash (b_n \Rightarrow A)$$

and

$$B_1, B_2, ..., B_{n-1} \vdash (\neg b_n \Rightarrow A).$$

By monotonicity and $\vdash_S ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$

we have that

$$B_1, B_2, ..., B_{n-1} \vdash ((b_n \Rightarrow A) \Rightarrow ((\neg b_n \Rightarrow A) \Rightarrow A)).$$

Applying Modus Ponens twice we get that $B_1, B_2, ..., B_{n-1} \vdash A.$

Similarly, $v^*(B_{n-1})$ may be T or F, and, again applying Deduction Theorem, monotonicity, and $\vdash_S ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow$ B)), and Modus Ponens twice we can eliminate B_{n-1} just as we eliminated B_n .

After n steps, we finally obtain $\vdash A$.