
Chapter 9: Completeness
Theorem: Proof 1

We consider a sound proof system (under clas-

sical semantics)

S = ( L{⇒,¬}, AL, MP ),

such that the formulas listed below are prov-

able in S.

`S (A ⇒ (B ⇒ A)),

`S ((A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))),

`S (¬A ⇒ (A ⇒ B)),

`S ((¬A ⇒ A) ⇒ A),

`S ((¬B ⇒ ¬A) ⇒ ((¬B ⇒ A) ⇒ B)),

1



`S (A ⇒ A),

`S (B ⇒ ¬¬B),

`S (A ⇒ (¬B ⇒ ¬(A ⇒ B))),

`S ((A ⇒ B) ⇒ ((¬A ⇒ B) ⇒ B)),

We present here two proofs of the following

theorem.

Completeness Theorem For any formula A

of S,

|= A if and only if `S A.
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OBSERVATION 1 All the above formulas have

proofs in the system H2 and the system

H2 is sound, hence the Completeness The-

orem for the system S implies the com-

pleteness of the system H2.

OBSERVATION 2 We have assumed that

the system S is sound, i.e. that the follow-

ing theorem holds for S.

Soundness Theorem

For any formula A of S,

if `S A, then |= A.
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It means that in order to prove the Com-

pleteness Theorem we need to prove only

the following implication.

For any formula A of S,

If |= A, then `S A.

Both proofs of the Completeness Theorem re-

lay strongly of the Deduction Theorem, as

discussed and proved in the previous chap-

ter.
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Deduction theorem was proved for the sys-

tem H1 that is different that S, but all for-

mulas that were used in its proof are prov-

able in S, so it is valid for S as well, as it

was for the system H2, i.e. the following

theorem holds.

Deduction Theorem for S

For any formulas A, B of S and Γ be any

subset of formulas of S,

Γ, A `S B if and only if Γ `S (A ⇒ B).
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It is possible to prove the Completeness The-
orem independently from the Deduction The-
orem and we will present two of such a
proof in later chapters.

The first proof presented here is similar in its
structure to the proof of the deduction the-
orem and is due to Kalmar, 1935.

It shows how one can use the assumption
that a formula A is a tautology in order
to construct its formal proof. It is hence
called a proof - construction method.

The second proof is a proof of the equiva-
lent opposite implication to the Complete-
ness part, i.e. we show how one can deduce
that a formula A is not a tautology from
the fact that it does not have a proof. It is
hence called a counter-model construc-
tion method.
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Completeness Theorem

A Proof - Construction Method

We first present one definition and to prove

one lemma.

We write ` A instead of `S A, as the sys-

tem S is fixed.

Definition Let A be a formula and b1, b2, ..., bn

be all propositional variables that occur in

A.

Let v be variable assignment v : V AR −→
{T, F}.
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DEFINITION 1

We define, for A, b1, b2, ..., bn and v a corre-

sponding formulas A′, B1, B2, ..., Bn as fol-

lows:

A′ =
{

A if v∗(A) = T
¬A if v∗(A) = F

Bi =

{
bi if v(bi) = T
¬bi if v(bi) = F

for i = 1,2, ..., n.
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Example 1: let A be a formula

(a ⇒ ¬b)

Let v be such that

v(a) = T, v(b) = F.

Ãl

In this case: b1 = a, b2 = b, and v∗(A) =
v∗(a ⇒ ¬b) = v(a) ⇒ ¬v(b)= T ⇒ ¬F = T.

The corresponding A′, B1, B2 are:

A′ = A (as v∗(A) = T ),

B1 = a (as v(a) = T ),
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B2 = ¬b (as v(b) = F ).



Example 2

Let A be a formula

((¬a ⇒ ¬b) ⇒ c)

and let v be such that

v(a) = T, v(b) = F, v(c) = F.

Evaluate A′, B1, ...Bn as defined by the defi-

nition 1.
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In this case n = 3 and

b1 = a, b2 = b, b3 = c,

and we evaluate

v∗(A) = v∗((¬a ⇒ ¬b) ⇒ c) =

((¬v(a) ⇒ ¬v(b)) ⇒ v(c)) =

((¬T ⇒ ¬F ) ⇒ F ) = (T ⇒ F ) = F.
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The corresponding A′, B1, B2, B2 are:

A′ = ¬A = ¬((¬a ⇒ ¬b) ⇒ c)

as v∗(A) = F ,

B1 = a (as v(a) = T ),

B2 = ¬b (as v(b) = F ).

B3 = ¬c (as v(c) = F ).
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The lemma stated below describes a method

of transforming a semantic notion of a tau-

tology into a syntactic notion of provability.

It defines, for any formula A and a variable

assignment v a corresponding deducibility

relation.

LEMMA For any formula A and a variable as-

signment v, if A
′
, B1 , B2, ..., Bn are cor-

responding formulas defined by our defini-

tion, then

B1, B2, ..., Bn ` A′.
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Example 3 Let A, v be as defined by the ex-

ample 1, then the Lemma asserts that

a,¬b ` (a ⇒ ¬b).

Example 4 Let A, v be as defined in example

2, then the lemma asserts that

a,¬b,¬c ` ¬((¬a ⇒ ¬b) ⇒ c)
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Proof of the LEMMA The proof is by in-

duction on the degree of A i.e. a number

n of logical connectives in A.

Case: n = 0

In the case that n = 0 A is atomic and so

consists of a single propositional variable,

say a.

Clearly, if v∗(A) = T then we A′ = A = a,

B1 = a.

We obtain that

a ` a

by the Deduction Theorem and the fact

that ` (A ⇒ A), i.e. also ` (a ⇒ a).
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In case when v∗(A) = F we have that

A′ = ¬A = ¬a,

B1 = ¬a, .

We obtain that

¬a ` ¬a

also by the Deduction Theorem and as-

sumption ` (A ⇒ A) in S.

This proves that Lemma holds for n = 0
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Now assume that the lemma holds for any A

with j < n connectives.

Prove: lemma holds for A with n connectives.

There are several subcases to deal with.
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Case: A is ¬A1

If A is of the form ¬A1 then A1 has less

then n connectives.

By the inductive assumption we have the for-

mulas

A
′
1, B1, B2, ..., Bn

corresponding to the A1 and the proposi-

tional variables b1, b2, ..., bn in A1, such that

B1, B2, ..., Bn ` A
′
1

Observe, that the formulas A and ¬A1 have

the same propositional variables.

So the corresponding formulas B1 , B2, ...,

Bn are the same for both of them.
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We are going to show that the inductive as-

sumption allows us to prove that the lemma

holds for A, ie. that

B1, B2, ..., Bn ` A
′
.

There two cases to consider.

Case: v∗(A1) = T

If v∗(A1) = T then by definition

A
′
1 = A1

and by the inductive assumption

B1, B2, ..., Bn ` A1

.
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In this case: v∗(A) = v∗(¬A1) = ¬v∗(T ) = F

So we have that A
′
= ¬A = ¬¬A1.

Since we have assumed about S that

` (A1 ⇒ ¬¬A1)

we obtain by the monotonicity that also

B1, B2, ..., Bn ` (A1 ⇒ ¬¬A1).

20



By inductive assumption and Modus Ponens

we have that also

B1, B2, ..., Bn ` ¬¬A1,

that is

B1, B2, ..., Bn ` ¬A,

that is

B1, B2, ..., Bn ` A
′
.

Case: v∗(A1) = F

If v∗(A1) = F then A
′
1 = ¬A1 and v∗(A) =

T so

A
′
= A.

Therefore the inductive assumption we have

that B1, B2, ..., Bn ` ¬A1, that is (as A =

¬A1)

B1, B2, ..., Bn ` A
′
.
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Case: A is (A1 ⇒ A2)

If A is of the form (A1 ⇒ A2) then A1
and A2 have less than n connectives and
so by the inductive assumption we have
B1, B2, ..., Bn ` A1

′
and B1, B2, ..., Bn `

A2
′
, where B1, B2, ..., Bn are formulas cor-

responding to the propositional variables in
A. Here we have the following subcases to
consider.

Case: v∗(A1) = v∗(A2) = T

If v∗(A1) = T then A1
′
is A1 and if v∗(A2) =

T then A2
′
is A2. We also have v∗(A1 ⇒

A2) = T and so A
′
is (A1 ⇒ A2). By the

above and the inductive assumption, there-
fore, B1, B2, ..., Bn ` A2 and since we have
assumed about S that ` (A2 ⇒ (A1 ⇒
A2)), we have by monotonicity and Modus
Ponens, that B1, B2, ..., Bn ` (A1 ⇒ A2),
that is B1, B2, ..., Bn ` A

′
.



Case: v∗(A1) = T, v∗(A2) = F

If v∗(A1) = T then A1
′
is A1 and if v∗(A2) =

F then A2
′
is ¬A2. Also we have in this case

v∗(A1 ⇒ A2) = F and so A
′
is ¬(A1 ⇒ A2).

By the above and the inductive assump-
tion, therefore, B1, B2, ..., Bn ` ¬A2. Since
we have assumed ?? i.e. ` (A1 ⇒ (¬A2 ⇒
¬(A1 ⇒ A2))) , we have by monotonicity
and Modus Ponens twice, that B1, B2, ..., Bn `
¬(A1 ⇒ A2), that is B1, B2, ..., Bn ` A

′
.

Case: v∗(A1) = F

If v∗(A1) = F then A1
′
is ¬A1 and, what-

ever value v gives A2, we have v∗(A1 ⇒
A2) = T and so A

′
is (A1 ⇒ A2). There-

fore, B1, B2, ..., Bn ` ¬A1 and since by
?? we have ` (¬A1 ⇒ (A1 ⇒ A2)), by
monotonicity and Modus Ponens we get
that B1, B2, ..., Bn ` (A1 ⇒ A2), that is
B1, B2, ..., Bn ` A

′
.
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With that we have covered all cases and, by

induction on n, the proof of the lemma is

complete.

Proof of the Completeness Theorem

Assume that |= A.

Let b1, b2, ..., bn be all propositional variables

that occur in A.

By the lemma we know that, for any variable

assignment v, the corresponding formulas

A
′
, B1 , B2, ..., Bn can be found such that

B1, B2, ..., Bn ` A
′

.
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Note here that A
′
of the definition is A for

any v since |= A.

Hence, if v is such that v(bn) = T , then Bn

is bn and

B1, B2, ..., bn ` A.

If v(bn) = F , then Bn is ¬bn and by the lemma

B1, B2, ...,¬bn ` A.

So, by the Deduction Theorem, we have

B1, B2, ..., Bn−1 ` (bn ⇒ A)

and

B1, B2, ..., Bn−1 ` (¬bn ⇒ A).
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By monotonicity and `S ((A ⇒ B) ⇒ ((¬A ⇒
B) ⇒ B))

we have that

B1, B2, ..., Bn−1 ` ((bn ⇒ A) ⇒ ((¬bn ⇒
A) ⇒ A)).

Applying Modus Ponens twice we get that

B1, B2, ..., Bn−1 ` A.

Similarly, v∗(Bn−1) may be T or F, and,

again applying Deduction Theorem, mono-

tonicity, and `S ((A ⇒ B) ⇒ ((¬A ⇒ B) ⇒
B)) , and Modus Ponens twice we can elim-

inate Bn−1 just as we eliminated Bn.

After n steps, we finally obtain ` A.
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