Chapter 9

Completeness Theorem (Part 1) Proof 1 and Examples

We consider a sound proof system (under classical semantics)

 $S = (\mathcal{L}_{\{\Rightarrow,\neg\}}, \mathcal{AL}, MP),$

such that the formulas listed below are provable in S.

1.
$$(A \Rightarrow (B \Rightarrow A)),$$

2. $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$

3. $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)),$

4.
$$(A \Rightarrow A),$$

5.
$$(B \Rightarrow \neg \neg B),$$

6.
$$(\neg A \Rightarrow (A \Rightarrow B)),$$

7.
$$(A \Rightarrow (\neg B \Rightarrow \neg (A \Rightarrow B))),$$

8.
$$((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B)),$$

9.
$$((\neg A \Rightarrow A) \Rightarrow A),$$

Deduction Theorem for \boldsymbol{S}

For any formulas A, B of S and Γ be any subset of formulas of S,

 Γ , $A \vdash_S B$ if and only if $\Gamma \vdash_S (A \Rightarrow B)$.

Completeness Theorem for \boldsymbol{S}

For any formula A of S,

 $\models A$ if and only if $\vdash_S A$.

MAIN DEFINITION for Proof 1

We define, for any $A(b_1, b_2, ..., b_n)$ and any va corresponding formulas A', $B_1, B_2, ..., B_n$ as follows:

$$A' = \begin{cases} A & \text{if } v^*(A) = T \\ \neg A & \text{if } v^*(A) = F \end{cases}$$
$$B_i = \begin{cases} b_i & \text{if } v(b_i) = T \\ \neg b_i & \text{if } v(b_i) = F \end{cases}$$

for i = 1, 2, ..., n.

MAIN LEMMA for Proof 1

For any formula A and a truth assignment v, if A', B_1 , B_2 , ..., B_n are corresponding formulas defined by the Main Definition, then

$$B_1, B_2, \dots, B_n \vdash A'.$$

PROOF 1 of the Completeness Theorem

Assume that $\models A$.

- Let $b_1, b_2, ..., b_n$ be all propositional variables that occur in A, i.e. $A = A(b_1, b_2, ..., b_n)$.
- By Main Lemma we know that, for any variable assignment v, the corresponding formulas A', B_1 , B_2 , ..., B_n can be found such that

$$B_1, B_2, \ldots, B_n \vdash A'$$

Note here that A' of the Main Definition is A for any v, since $\models A$, i.e.

$$B_1, B_2, \dots, B_n \vdash A.$$

The proof is based on a method of constructive elimination of all hypothesis $B_1, B_2, ..., B_n$ to finally show that A has a proof in S without them, i.e. $\vdash A$.

Step 1: elimination of B_n .

We have 2 cases to consider.

Case 1: let v be such that $v(b_n) = T$. Then $B_n = b_n$ and we have that

 $B_1, B_2, \dots, b_n \vdash A.$

By Deduction Theorem, we have that

$$B_1, B_2, ..., B_{n-1} \vdash (b_n \Rightarrow A).$$

Case 2: let be such that $v(b_n) = F$. Then $B_n = \neg b_n$ and by the lemma

 $B_1, B_2, \ldots, \neg b_n \vdash A.$

By the Deduction Theorem, we have that

$$B_1, B_2, ..., B_{n-1} \vdash (\neg b_n \Rightarrow A).$$

By the assumed formula 9

$$\vdash ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$$

for $A = b_n, B = A$ and monotonicity we have

 $B_1, B_2, ..., B_{n-1} \vdash ((b_n \Rightarrow A) \Rightarrow ((\neg b_n \Rightarrow A) \Rightarrow A)).$

Applying Modus Ponens twice to the above and Case 1, Case 2 we get that

 $B_1, B_2, ..., B_{n-1} \vdash A.$

End of B_n elimination.

Step 2: elimination of B_{n-1} .

We repeat the Step 1. As before, $v^*(B_{n-1})$ may be T or F, and, applying Main Lemma, Deduction Theorem, monotonicity, proper substitutions of assumed formula $9 \vdash ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$, and Modus Ponens twice we can eliminate B_{n-1} just as we eliminated B_n .

After n steps, we finally obtain that

 $\vdash A.$

- **Observe** that our proof of the fact that $\vdash A$ is a constructive one. Moreover, we have used in it only Main Lemma and Deduction Theorem which both have a constructive proofs.
 - We can hence reconstruct proofs in each case when we apply these theorems back to the original axioms A1 - A3 of H_2 . The same applies to the proofs in H_2 of all formulas 1 -9 of the system S.
 - It means that for any A, such that $\models A$, each v restricted to A provides us the method of a construction of the formal proof of A in H_2 , or in any system S in which formulas 1 -9 are provable.

EXAMPLE As an example of how the Completeness Theorem proof works, we consider the case in which *A* is a tautology

$$(a \Rightarrow (\neg a \Rightarrow b))$$

and show how the construction described in the Proof 1 works; i.e how we construct the proof of A.

- **Step 1.** We apply Main Lemma to all different variable assignments for A. We have 4 cases to consider. As $\models A$ in all cases we have that A' = A.
- **Case 1:** v(a) = T, v(b) = T. In this case $B_1 = a, B_2 = b$ and, as in all cases A' = A.

By the Main Lemma,

$$a,b \vdash (a \Rightarrow (\neg a \Rightarrow b)).$$

Case 2: v(a) = T, v(b) = F.

In this case $B_1 = a, B_2 = \neg b, A' = A$ and by the Main Lemma,

$$a, \neg b \vdash (a \Rightarrow (\neg a \Rightarrow b)).$$

Case 3: v(a) = F, v(b) = T. In this case $B_1 = \neg a, B_2 = b, A' = A$ and by the Main Lemma,

$$\neg a, b \vdash (a \Rightarrow (\neg a \Rightarrow b)).$$

Case 4: v(a) = F, v(b) = F. In this case $B_1 = \neg a, B_2 = \neg b, A' = A$ and by the Main Lemma,

$$\neg a, \neg b \vdash (a \Rightarrow (\neg a \Rightarrow b)).$$

12

- We apply Deduction Theorem on formulas $b, \neg b$ to all the cases 1-3. This is the case of B_n elimination in the Proof 1.
- **D1** (Cases 1 and 2)

$$a \vdash (b \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))),$$

 $a \vdash (\neg b \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))),$

D2 (Cases 2 and 3)

$$\neg a \vdash (b \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))),$$

 $\neg a \vdash (\neg b \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))).$

By the monotonicity and proper substitution
of the formula 9 we have that
$$a \vdash ((b \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))))$$

 $\Rightarrow ((\neg b \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))) \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))),$

$$\neg a \vdash ((b \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))) \Rightarrow ((\neg b \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))) \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))).$$

Applying Modus Ponens twice to **D1**, **D2** and these above, respectively, gives us

$$a \vdash (a \Rightarrow (\neg a \Rightarrow b))$$
 and
 $\neg a \vdash (a \Rightarrow (\neg a \Rightarrow b)).$

Applying the Deduction Theorem to the above we obtain

D3 \vdash $(a \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))) and$

$$\mathbf{D4} \vdash (\neg a \Rightarrow (\neg a \Rightarrow b))).$$

Applying Modus Ponens twice to **D3** and **D4** and the following form of formula 9,

$$\vdash ((a \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))) \Rightarrow ((\neg a \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))) \Rightarrow (a \Rightarrow (\neg a \Rightarrow b))))$$

we get finally that

$$\vdash (a \Rightarrow (\neg a \Rightarrow b)).$$