Chapter 9

Completeness Theorem (Part 1) Proof 1 and Examples

We consider a sound proof system (under classical semantics)

$$
S=\left(\begin{array}{lll}
\mathcal{L}_{\{\Rightarrow, \neg\}}, & \mathcal{A L}, & M P
\end{array}\right)
$$

such that the formulas listed below are provable in S.

1. $(A \Rightarrow(B \Rightarrow A))$,
2. $((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$,
3. $((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B))$,

$$
\text { 4. }(A \Rightarrow A) \text {, }
$$

5. $(B \Rightarrow \neg \neg B)$,
6. $(\neg A \Rightarrow(A \Rightarrow B))$,
7. $(A \Rightarrow(\neg B \Rightarrow \neg(A \Rightarrow B)))$,
8. $((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$,
9. $((\neg A \Rightarrow A) \Rightarrow A)$,

Deduction Theorem for S
For any formulas A, B of S and Γ be any subset of formulas of S,

$$
\Gamma, A \vdash_{S} B \text { if and only if } \Gamma \vdash_{S}(A \Rightarrow B) .
$$

Completeness Theorem for S
For any formula A of S,
$\vDash A$ if and only if $\vdash_{S} A$.

MAIN DEFINITION for Proof 1

We define, for any $A\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and any v a corresponding formulas $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ as follows:

$$
\begin{aligned}
& A^{\prime}= \begin{cases}A & \text { if } v^{*}(A)=T \\
\neg A & \text { if } v^{*}(A)=F\end{cases} \\
& B_{i}= \begin{cases}b_{i} & \text { if } v\left(b_{i}\right)=T \\
\neg b_{i} & \text { if } v\left(b_{i}\right)=F\end{cases}
\end{aligned}
$$

for $i=1,2, \ldots, n$.

MAIN LEMMA for Proof 1
For any formula A and a truth assignment v, if $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ are corresponding formulas defined by the Main Definition, then

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime} .
$$

PROOF 1 of the Completeness Theorem

Assume that $\vDash A$.

Let $b_{1}, b_{2}, \ldots, b_{n}$ be all propositional variables that occur in A, i.e. $A=A\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.

By Main Lemma we know that, for any variable assignment v, the corresponding formulas $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ can be found such that

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

Note here that A^{\prime} of the Main Definition is A for any v, since $\vDash A$, i.e.

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A .
$$

The proof is based on a method of constructive elimination of all hypothesis $B_{1}, B_{2}, \ldots, B_{n}$ to finally show that A has a proof in S without them, i.e. $\vdash A$.

Step 1: elimination of B_{n}.

We have 2 cases to consider.

Case 1: let v be such that $v\left(b_{n}\right)=T$.
Then $B_{n}=b_{n}$ and we have that

$$
B_{1}, B_{2}, \ldots, b_{n} \vdash A
$$

By Deduction Theorem, we have that

$$
B_{1}, B_{2}, \ldots, B_{n-1} \vdash\left(b_{n} \Rightarrow A\right) .
$$

Case 2: let be such that $v\left(b_{n}\right)=F$.
Then $B_{n}=\neg b_{n}$ and by the Iemma

$$
B_{1}, B_{2}, \ldots, \neg b_{n} \vdash A .
$$

By the Deduction Theorem, we have that

$$
B_{1}, B_{2}, \ldots, B_{n-1} \vdash\left(\neg b_{n} \Rightarrow A\right) .
$$

By the assumed formula 9

$$
\vdash((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))
$$

for $A=b_{n}, B=A$ and monotonicity we have
$B_{1}, B_{2}, \ldots, B_{n-1} \vdash\left(\left(b_{n} \Rightarrow A\right) \Rightarrow\left(\left(\neg b_{n} \Rightarrow A\right) \Rightarrow A\right)\right)$.

Applying Modus Ponens twice to the above and Case 1, Case 2 we get that

$$
B_{1}, B_{2}, \ldots, B_{n-1} \vdash A .
$$

End of B_{n} elimination.

Step 2: elimination of B_{n-1}.

We repeat the Step 1. As before, $v^{*}\left(B_{n-1}\right)$ may be T or F, and, applying Main Lemma, Deduction Theorem, monotonicity, proper substitutions of assumed formula $9 \vdash((A \Rightarrow$ $B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$, and Modus Ponens twice we can eliminate B_{n-1} just as we eliminated B_{n}.

After n steps, we finally obtain that

$$
\vdash A .
$$

Observe that our proof of the fact that $\vdash A$ is a constructive one. Moreover, we have used in it only Main Lemma and Deduction Theorem which both have a constructive proofs.

We can hence reconstruct proofs in each case when we apply these theorems back to the original axioms $A 1-A 3$ of H_{2}. The same applies to the proofs in H_{2} of all formulas $1-9$ of the system S.

It means that for any A, such that $\models A$, each v restricted to A provides us the method of a construction of the formal proof of A in H_{2}, or in any system S in which formulas 1-9 are provable.

EXAMPLE As an example of how the Completeness Theorem proof works, we consider the case in which A is a tautology

$$
(a \Rightarrow(\neg a \Rightarrow b))
$$

and show how the construction described in the Proof 1 works; i.e how we construct the proof of A.

Step 1. We apply Main Lemma to all different variable assignments for A. We have 4 cases to consider. As $\vDash A$ in all cases we have that $A^{\prime}=A$.

Case 1: $\quad v(a)=T, v(b)=T$.
In this case $B_{1}=a, B_{2}=b$ and, as in all cases $A^{\prime}=A$.

By the Main Lemma,

$$
a, b \vdash(a \Rightarrow(\neg a \Rightarrow b)) .
$$

Case 2: $\quad v(a)=T, v(b)=F$.
In this case $B_{1}=a, B_{2}=\neg b, A^{\prime}=A$ and by the Main Lemma,

$$
a, \neg b \vdash(a \Rightarrow(\neg a \Rightarrow b))
$$

Case 3: $\quad v(a)=F, v(b)=T$.
In this case $B_{1}=\neg a, B_{2}=b, A^{\prime}=A$ and by the Main Lemma,

$$
\neg a, b \vdash(a \Rightarrow(\neg a \Rightarrow b))
$$

Case 4: $\quad v(a)=F, v(b)=F$.
In this case $B_{1}=\neg a, B_{2}=\neg b, A^{\prime}=A$ and by the Main Lemma,

$$
\neg a, \neg b \vdash(a \Rightarrow(\neg a \Rightarrow b))
$$

We apply Deduction Theorem on formulas $b, \neg b$ to all the cases $1-3$. This is the case of B_{n} elimination in the Proof 1.

D1 (Cases 1 and 2)

$$
\begin{gathered}
a \vdash(b \Rightarrow(a \Rightarrow(\neg a \Rightarrow b))), \\
a \vdash(\neg b \Rightarrow(a \Rightarrow(\neg a \Rightarrow b))),
\end{gathered}
$$

D2 (Cases 2 and 3)

$$
\begin{gathered}
\neg a \vdash(b \Rightarrow(a \Rightarrow(\neg a \Rightarrow b))), \\
\neg a \vdash(\neg b \Rightarrow(a \Rightarrow(\neg a \Rightarrow b))) .
\end{gathered}
$$

By the monotonicity and proper substitution of the formula 9 we have that
$a \vdash((b \Rightarrow(a \Rightarrow(\neg a \Rightarrow b)))$
$\Rightarrow((\neg b \Rightarrow(a \Rightarrow(\neg a \Rightarrow b))) \Rightarrow(a \Rightarrow(\neg a \Rightarrow$ b))),
$\neg a \vdash((b \Rightarrow(a \Rightarrow(\neg a \Rightarrow b)))$
$\Rightarrow((\neg b \Rightarrow(a \Rightarrow(\neg a \Rightarrow b))) \Rightarrow(a \Rightarrow(\neg a \Rightarrow$
b))).

Applying Nodus Ponens twice to D1, D2 and these above, respectively, gives us

$$
\begin{gathered}
a \vdash(a \Rightarrow(\neg a \Rightarrow b)) \text { and } \\
\quad \neg a \vdash(a \Rightarrow(\neg a \Rightarrow b)) .
\end{gathered}
$$

Applying the Deduction Theorem to the above we obtain

D3 $\vdash(a \Rightarrow(a \Rightarrow(\neg a \Rightarrow b)))$ and

D4 $\quad \vdash(\neg a \Rightarrow(a \Rightarrow(\neg a \Rightarrow b)))$.

Applying Modus Ponens twice to D3 and D4 and the following form of formula 9 ,

$$
\begin{aligned}
& \vdash((a \Rightarrow(a \Rightarrow(\neg a \Rightarrow b))) \\
& \Rightarrow((\neg a \Rightarrow(a \Rightarrow(\neg a \Rightarrow b))) \Rightarrow(a \Rightarrow(\neg a \Rightarrow \\
& b))))
\end{aligned}
$$

we get finally that

$$
\vdash(a \Rightarrow(\neg a \Rightarrow b)) .
$$

