LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

Chapter 11
 Formal Theories and Gödel Theorems

CHAPTER 11 SLIDES

Chapter 11
 Formal Theories and Gödel Theorems

Slides Set 1

PART 1: Formal Theories: Definition and Examples
PART 2: PA: Formal Theory of Natural Numbers

Slides Set 2
PART 3: Consistency, Completeness, Gödel Theorems
PART 4: Proof of the Gödel Incompleteness Theorems

Chapter 11
 Formal Theories and Gödel Theorems

Slides Set 1

PART 1: Formal Theories: Definition and Examples

Inroduction

Formal theories play crucial role in mathematics
They were historically defined for classical predicate and also for other first and higher order logics, classical and non-classical

The idea of formalism in mathematics, which resulted in the concept of formal theories, or formalized theories, as they are also called

The concept of formal theories was developed in connection with the Hilbert Program

Introduction

Hilbert Program

One of the main objectives of the Hilbert program was to construct a formal theory that would cover the whole mathematics and to prove its consistency by employing the simplest of logical means

We say that a formal theory is consistent if no formal proof can be carried in that theory for a formula A and at the same time for its negation $\neg A$

This part of the program is called the Consistency Program .

Introduction

In 1930, while still in his twenties Kurt Gödel made a historic announcement:

Hilbert Consistency Program could not be carried out
He justified his claim by proving his Inconsistency Theorem

The Gödel Inconsistency Theorem is called also
Second Incompleteness Theorem

Introduction

Gödel Inconsistency Theorem

Roughly speaking the theorem states that
a proof of the consistency of every formal theory that contains arithmetic of natural numbers can be carried out only in mathematical theory which is more comprehensive than the one whose consistency is to be proved

Introduction

In particular,
Gödel Inconsistency Theorem states that
a proof of the consistency of formal (elementary, first order)
arithmetic can be carried out only in mathematical theory
which contains the whole arithmetic and also other theorems
that do not belong to arithmetic

It applies to a formal theory that would cover the whole mathematics because it would obviously contain the arithmetic of natural numbers

Hence the Hilbert Consistency Program fails

Introduction

Gödel's result concerning the proofs of the consistency of formal mathematical theories has had a decisive impact on research in properties of formal theories

Instead of looking for direct proofs of inconsistency of mathematical theories, mathematicians concentrated largely on relative proofs that demonstrate that a theory under consideration is consistent if a certain other theory, for example a formal theory of natural numbers, is consistent

Introduction

All those relative proofs are rooted in a deep conviction that even though it cannot be proved that the theory of natural numbers is free of inconsistencies, it is consistent

This conviction is confirmed by centuries of development of mathematics and experiences of mathematicians

Introduction

We say that formal theory is called complete
if for every sentence (formula without free variables) of the language of that theory there is a formal proof of it or of its negation

A a formal theory is incomplete if there is a sentence A of the language of that theory, such that neither A nor $\neg A$ are provable in it

Such sentences are called undecidable or independent of the theory

Introduction

It might seem that one should be able to formalize a formal theory of natural numbers in a way to make it complete i.e. free of undecidable (independent) sentences

Gödel proved that it is not the case in the following

Incompleteness Theorem
Every consistent formal theory which contains the arithmetic of natural numbers is incomplete

Introduction

The Inconsistency Theorem follows from the Incompleteness Theorem

This is why the Incompleteness and Inconsistency
Theorems are now called

Gödel First Incompleteness Theorem and
Gödel Second Incompleteness Theorem, respectively

Introduction

The third part of the Hilbert Program posed and was concerned with the problem of decidability of formal mathematical theories

A formal theory is called decidable if there is a method of [determining, in a finite number of steps, whether any given formula in that theory is its theorem or not

Most of mathematical theories are undecidable

Gödel proved in 1931 that the arithmetic of natural numbers is undecidable

Formal Theories: Definition and Examples

Formal Theories: Definition and Examples

We define here a notion of a formal theory based on a predicate (first order) language

Formal theories are also routinely called first order or elementary theories, or formal axiomatic theories, or theories, when it is clear from the context that they are formal theories

We will often use the term theory for simplicity.

Formal Theories: Definition and Examples

We consider here only formal theories based on a complete classical Hilbert style proof system

$$
H=(\mathcal{L}, \mathcal{F}, L A, \mathcal{R})
$$

with a predicate (first order) language

$$
\mathcal{L}=\mathcal{L}_{\{ \urcorner, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

where the sets P, F, C are infinitely enumerable.

A formal theory based on H is a proof system obtained from H by adding a special set $S A$ of axioms to it, called the set of specific axioms

Formal Theories: Definition and Examples

Let $S A$ be a certain set of formulas of \mathcal{L} of H, such that

$$
S A \subseteq \mathcal{F} \quad \text { and } \quad \mathbf{T}_{\mathcal{L}} \cap S A=\emptyset
$$

where $\mathrm{T}_{\mathcal{L}}$ denotes the set of formulas of \mathcal{L} that are classical tautologies

We call the set SA a set of specific axioms of a formal theory based on H

Formal Theories: Definition and Examples

The specific axioms are characteristic descriptions of the universe of the formal theory

The specific axioms $S A$ are to be true only in a certain structure as opposed to logical axioms $L A$ that are true in all structures i.e. that are tautologies

Formal Theories: Definition and Examples

Language $\mathcal{L}_{S A}$
Given a proof system $H=(\mathcal{L}, \mathcal{F}, L A, \mathcal{R})$ and a non-empty set $S A$ of specific axioms
We define a language

$$
\mathcal{L}_{S A} \subseteq \mathcal{L}
$$

determined by the specific axioms $S A$ by restricting the sets $\mathrm{P}, \mathrm{F}, \mathrm{C}$ of predicate, functional, and constant symbols of \mathcal{L} to predicate, functional, and constant symbols appearing in the set $S A$ of specific axioms

Both languages $\mathcal{L}_{S A}$ and \mathcal{L} share the same set of propositional connectives

Formal Theories: Definition and Examples

Formal Theory

Given a proof system $H=(\mathcal{L}, \mathcal{F}, L A, \mathcal{R})$ and a non-empty set $S A$ of specific axioms

A proof system $\quad T=(\mathcal{L}, \mathcal{F}, L A, S A, \mathcal{R})$
is called a formal theory based on H, with its set $S A$ of specific axioms

The language

$$
\mathcal{L}_{S A} \subseteq \mathcal{L}
$$

determined by the set $S A$ is called the language of the formal theory T

Formal Theories: Definition and Examples

Given a theory $T=(\mathcal{L}, \mathcal{F}, L A, S A, \mathcal{R})$
We denote by

$$
\mathcal{F}_{S A}
$$

the set of formulas of the language $\mathcal{L}_{S A}$ of the theory T

We denote by T the set all provable formulas in T, i.e.

$$
\mathbf{T}=\left\{B \in \mathcal{F}_{S A}: \quad S A \vdash B\right\}
$$

We also write $\vdash_{T} B$ to denote that $B \in \mathbf{T}$

LE- Logic with Equality

Definition

A proof system

$$
H=(\mathcal{L}, \mathcal{F}, L A, \mathcal{R})
$$

is called a Logic with Equality LE if and only if the language \mathcal{L} has as one of its predicates, a two argument
predicate P which we denote by $=$, and the following axioms are provable in H

LE- Logic with Equality

Equality Axioms LE

For any any free variable or constant of \mathcal{L}, i.e for any
$u, w, u_{i}, w_{i} \in(V A R \cup \mathbf{C})$, and any $R \in \mathbf{P}$, and $t \in \mathbf{T}_{\mathcal{L}}$, where
$\mathrm{T}_{\mathcal{L}}$ is set of all terms of \mathcal{L}, the following properties hold

E1 $u=u$

E2 $\quad(u=w \Rightarrow w=u)$

E3 $\quad\left(\left(u_{1}=u_{2} \cap u_{2}=u_{3}\right) \Rightarrow u_{1}=u_{3}\right)$

LE- Logic with Equality

E4
$\left(\left(u_{1}=w_{1} \cap \ldots \cap u_{n}=w_{n}\right) \Rightarrow\left(R\left(u_{1}, \ldots, u_{n}\right) \Rightarrow R\left(w_{1}, \ldots, w_{n}\right)\right)\right)$
E5
$\left(\left(u_{1}=w_{1} \cap \ldots \cap u_{n}=w_{n}\right) \Rightarrow\left(t\left(u_{1}, \ldots, u_{n}\right) \Rightarrow t\left(w_{1}, \ldots, w_{n}\right)\right)\right)$

Directly from above definition we have the following
Fact
The Hilbert style proof system H defined in chapter 9 is a logic with equality with the set of specific axioms $S A=\emptyset$

Formal Theories: Some Examples

Formal Theories: Some Examples

Formal theories are abstract models of real mathematical theories we develop using laws of logic

Hence the theories we present here are based on a complete proof system H for classical predicate logic with a language

$$
\mathcal{L}=\left(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})\right.
$$

The classical, first order (predicate) formal theories are also called first order elementary theories

Formal Theories: Some Examples

T1. Theory of Equality

Language

$$
\mathcal{L}_{T 1}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\mathbf{P}=\{P\}, \mathbf{F}=\emptyset, \mathbf{C}=\emptyset)
$$

where \# $\mathrm{P}=2$, i.e. P is a two argument predicate

The intended interpretation of P is equality, so we use the equality symbol $=$ instead of P

We write $x=y$ instead $=(x, y)$
We write the language of $T 1$ as

$$
\mathcal{L}_{T 1}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\{=\}, \emptyset, \emptyset)
$$

Formal Theories: Some Examples

$T 1$. Specific Axioms
e1 $x=x$
e2 $\quad(x=y \Rightarrow y=x)$
e3 $\quad(x=y \Rightarrow(y=z \Rightarrow x=z))$
for any $x, y, z \in V A R$
Observation
We have chosen to write the $T 1$. specific axioms as open formulas. Sometimes it is more convenient to write them as closed formulas (sentences)
In this case new axioms will be closures of axioms that were open formulas

Formal Theories: Some Examples

T2. Theory of Equality (2)
We adopt a closure of the axioms e1,e2, e3, i.e. the following new set of axioms.

Specific Axioms

(e1) $\forall x(x=x)$
(e2) $\forall x \forall y(x=y \Rightarrow y=x)$
(e3) $\forall x \forall y \forall z(x=y \Rightarrow(y=z \Rightarrow x=z))$

Formal Theories: Some Examples

T3. Theory of Partial Order

Partial order relation is also called order relation.
Language

$$
\mathcal{L}_{T 3}=\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}(\mathbf{P}=\{P, Q\}, \mathbf{F}=\emptyset, \mathbf{C}=\emptyset)
$$

where P is a two argument predicate
The intended interpretation of P is equality, so we use the equality symbol $=$ instead of P
Q is a two argument predicate
The intended interpretation of Q is partial order
We use the order symbol \leq instead of Q and write $x \leq y$ instead $\leq(x, y)$
We write the language of T3 as

$$
\mathcal{L}_{T 3}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\{=, \leq\}, \emptyset, \emptyset)
$$

Formal Theories: Some Examples

T3. Specific Axioms

There are two groups of axioms: Equality and Order We adopt the LE (logic with equality) axioms to the language $\mathcal{L}_{\text {T3 }}$ as follows

Equality Axioms

For any $x, y, z, x_{1}, x_{2}, y_{1}, y_{2} \in \operatorname{VAR}$
e1 $x=x$
e2 $\quad(x=y \Rightarrow y=x)$
e3 $\quad((x=y \cap y=z) \Rightarrow x=z)$
e4 $\quad\left(\left(x_{1}=y_{1} \cap x_{2}=y_{2}\right) \Rightarrow\left(x_{1} \leq x_{2} \Rightarrow y_{1} \leq y_{2}\right)\right)$

Formal Theories: Some Examples

Partial Order Axioms

$01 x \leq x \quad$ (reflexivity)
o2 $\quad((x \leq y \cap y \leq x) \Rightarrow x=y) \quad$ (antisymmetry)
03 $\quad((x \leq y \cap y \leq z) \Rightarrow x \leq z) \quad$ (trasitivity)
where $x, y, z \in V A R$

The model of T3 is called a partially ordered structure

Formal Theories: Some Examples

T4. Theory of Partial Order (2)

Here is another formalization for partial order
Language

$$
\mathcal{L}_{T 4}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\mathbf{P}=\{P\}, \mathbf{F}=\emptyset, \mathbf{C}=\emptyset)
$$

where \# $P=2$ i.e. P is a two argument predicate

The intended interpretation of $P(x, y)$ is $x<y$, so we use the "less" symbol $<$ instead of P

We write $x \nless y$ for $\neg(x<y)$, i.e. for $\neg<(x, y)$

Formal Theories: Some Examples

We write the language of $T 4$ as

$$
\mathcal{L}_{T 4}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\{<\}, \emptyset, \emptyset)
$$

Specific Axioms

For any $x, y, z \in V A R$
p1 $x \nless x \quad$ (irreflexivity)
p2 $\quad((x \leq y \cap y \leq z) \Rightarrow x \leq z) . \quad$ (trasitivity)

Formal Theories: Some Examples

T5. Theory of Linear Order

Linear order relation is also called total order relation
Language

$$
\mathcal{L}_{T 5}=\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}(\{=, \leq\}, \emptyset, \emptyset)
$$

Specific Axioms

We adopt all axioms of theory T3 of partial order and add the following additional axiom
o4 $(x \leq y) \cup(y \leq x)$.

This axiom says that in linearly ordered sets each two elements are comparable

Formal Theories: Some Examples

T6. Theory of Dense Order

Language

$$
\mathcal{L}_{T 6}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\{=, \leq\}, \emptyset, \emptyset)
$$

We write $x \neq y$ for $\neg(x=y)$, i.e. for the formula $\neg=(x, y)$

Specific Axioms

We adopt all axioms of theory T5 of linear order and add the following additional axiom
o5
$((x \leq y \cap x \neq y) \Rightarrow \exists z((x \leq z \cap x \neq z) \cap(z \leq y \cap z \neq y)))$

This axiom says that in linearly ordered sets between any two different elements there is a third element between them, respective to the order

Formal Theories: Some Examples

T7. Lattice Theory
Language

$$
\mathcal{L}_{T 7}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\mathbf{P}=\{P, Q\}, \mathbf{F}=\{f, g\}, \mathbf{C}=\emptyset)
$$

where P is a two argument predicate symbol
The intended interpretation of P is equality, so we use the equality symbol $=$ instead of P
Q is a two argument predicate symbol
The intended interpretation of Q is partial order, so we use the order symbol \leq instead of Q

Formal Theories: Some Examples

f, g are a two argument functional symbols
The intended interpretation of f, g is the lattice intersection \wedge and union \vee, respectively
We write $(x \wedge y)$ for $\wedge(x, y)$ and $(x \vee y)$ for $\vee(x, y)$
$(x \cap y),(x \cup y)$ are atomic formulas of $\mathcal{L}_{T 7}$ and $(x \wedge y)$ and $(x \vee y)$ are terms of $\mathcal{L}_{T 7}$

We write the language of T7. as

$$
\mathcal{L}_{T 7}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\{=, \leq\},\{\wedge, \vee\}, \emptyset)
$$

Formal Theories: Some Examples

Specific Axioms

There are three groups of axioms: equality axioms, order axioms, and lattice axioms

Equality Axioms

We adopt the LE (logic with equality) axioms to the language $\mathcal{L}_{T 7}$ as follows
e1 $x=x$
e2 $\quad(x=y \Rightarrow y=x)$
e3 $\quad((x=y \cap y=z) \Rightarrow x=z)$
e4 $\quad\left(\left(x_{1}=y_{1} \cap x_{2}=y_{2}\right) \Rightarrow\left(x_{1} \leq x_{2} \Rightarrow y_{1} \leq y_{2}\right)\right)$

Formal Theories: Some Examples

e5 $\quad\left(\left(x_{1}=y_{1} \cap x_{2}=y_{2}\right) \Rightarrow\left(x_{1} \wedge x_{2} \Rightarrow y_{1} \wedge y_{2}\right)\right)$
e6 $\quad\left(\left(x_{1}=y_{1} \cap x_{2}=y_{2}\right) \Rightarrow\left(x_{1} \vee x_{2} \Rightarrow y_{1} \vee y_{2}\right)\right)$
where $x, y, z, x_{1}, x_{2}, y_{1}, y_{2} \in \operatorname{VAR}$

Remark

We use the symbol \wedge for the lattice set intersection
functional symbol in order to better distinguish it from the conjunction symbol \cap
The same applies to the axiom that involves lattice set union functional symbol \vee and the disjunction symbol \cup

Formal Theories: Some Examples

Partial Order Axioms

For any $x, y, z \in V A R$
$01 x \leq x \quad$ (reflexivity)
o2 $\quad((x \leq y \cap y \leq x) \Rightarrow x=y) \quad$ (antisymmetry)
o3 $\quad((x \leq y \cap y \leq z) \Rightarrow x \leq z) \quad$ (trasitivity)

Lattice Axioms

For any $x, y, z \in V A R$
b1 $\quad(x \wedge y)=(y \wedge x), \quad(x \vee y)=(x \vee y)$,
b2 $\quad(x \wedge(y \wedge z))=((x \wedge y) \wedge z),(x \vee(y \vee z))=((x \vee y) \vee z)$
b3 $\quad(((x \wedge y) \vee y)=y), \quad((x \wedge(x \vee y))=x)$.

Formal Theories: Some Examples

T8. Theory of Distributive Lattices
Language

$$
\mathcal{L}_{T 8}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\{=, \leq\},\{\wedge, \vee\}, \emptyset)
$$

Specific Axioms

We adopt all axioms of the lattice theory T7 and the following additional axiom
b4 $\quad(x \wedge(y \vee z))=((x \wedge y) \vee(x \wedge z))$

Formal Theories: Some Examples

T9. Theory of Boolean Algebras
Language

$$
\mathcal{L}_{T 9}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}(\{=, \leq\},\{\wedge, \vee,-\}, \emptyset)
$$

where - is one argument function symbol representing algebra complement
Specific Axioms
We adopt all axioms of distributive lattices theory T8 and add the following axiom that characterizes the algebra complement -

$$
\text { b5 } \quad(((x \wedge-x) \vee y)=y), \quad(((x \vee-x) \wedge y)=y)
$$

Formal Theories: Some Examples

T10. Theory of Groups
Language

$$
\mathcal{L}_{T 10}=\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \mathrm{\cap}\}}(\mathbf{P}=\{P\}, \mathbf{F}=\{f, g\}, \mathbf{C}=\{c\})
$$

where P is a two argument predicate symbol
The intended interpretation of P is equality and we use the equality symbol $=$ instead of P
f is a two argument functional symbol
The intended interpretation of f is group operation \circ
We write $(x \circ y)$ for the term $\circ(x, y)$

Formal Theories: Some Examples

g is a one argument functional symbol
$g(x)$ represents a group inverse element to a given x
usually denoted it by x^{-1}
We hence use a symbol ${ }^{-1}$ for g
c is a constant symbol representing group unit element e Hence we use a symbol efor c
We write the language of T10. as

$$
\mathcal{L}_{T 10}=\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}\left(\{=\},\left\{0,{ }^{-1}\right\},\{e\}\right)
$$

Formal Theories: Some Examples

Specific Axioms

There are two groups of axioms: equality and group axioms

Equality Axioms
We adopt the TE (theory with equality) axioms to the language $\mathcal{L}_{T 10}$ as follows
For any $x, y, z, x_{1}, x_{2}, y_{1}, y_{2}, \in \operatorname{VAR}$
e1 $x=x$
e2 $\quad(x=y \Rightarrow y=x)$
e3 $\quad((x=y \cap y=z) \Rightarrow x=z)$
e4 $\quad\left(x=y \Rightarrow x^{-1}=y^{-1}\right)$
e5 $\quad\left(\left(x_{1}=y_{1} \cap x_{2}=y_{2}\right) \Rightarrow\left(x_{1} \circ x_{2} \Rightarrow y_{1} \circ y_{2}\right)\right)$

Formal Theories: Some Examples

Group Axioms

g1 $\quad(x \circ(y \circ z))=((x \circ y) \circ z)$
g2 $\quad(x \circ e)=x$
g3 $\quad\left(x \circ x^{-1}\right)=e$

T11. Theory of Abelian Groups

Language is the same as $\mathcal{L}_{T 10}$, i.e.

$$
\mathcal{L}_{T 11}=\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}\left(\{=\},\left\{0,{ }^{-1}\right\},\{e\}\right)
$$

We adopt all axioms of theory $T 10$ of groups and add the following axiom
g4 $\quad(x \circ y)=(y \circ x)$

Elementary Theories

Elementary Theories

Observe that all what we can prove in the formal axiomatic theories defined and presented here represents only small fragments of corresponding axiomatic theories developed in mathematics

For example, Groups Theory, Lattices or Boolean Algebras Theories are whole, often large fields in mathematics

Elementary Theories

The theorems developed in the axiomatic theories in mathematics like for example the Representation Theorem for Boolean algebras, can not be even expressed, not to mention to be proved in the languages of respective formal theories

This is a reason why we also call the formal axiomatic theories elementary theories

For example, we say Elementary Group Theory to distinguish it from the Group Theory as a much lager and complicated field of mathematics

Chapter 11
 Formal Theories and Gödel Theorems

Slides Set 1

PART 2: PA: Formal Theory of Natural Numbers

Peano Arithmetic PA

Next to geometry, the theory of natural numbers is the most intuitive and intuitively known of all branches of mathematics

This is why the first attempts to formalize mathematics begin with arithmetic of natural numbers.

The first attempt of axiomatic formalization was given by Dedekind in 1879 and by Peano in 1889

The Peano formalization became known as
Peano Postulates and can be written as follows.

Peano Arithmetic PA

Peano Postulates

p1 0 is a natural number
p2 If n is a natural number, there is another number which we denote by n^{\prime}
We call the number n^{\prime} a successor of n and the intuitive meaning of n^{\prime} is $n+1$
p3 $0 \neq n^{\prime}$, for any natural number n
p4 If $n^{\prime}=m^{\prime}$, then $n=m$, for any natural numbers n, m

Peano Arithmetic PA

p5 If W is is a property that may or may not hold for natural numbers, and
if (i) 0 has the property W and
(ii) whenever a natural number n has the property W , then n^{\prime} has the property W ,
then all natural numbers have the property W

The postulate p5 is called Principle of Induction

Peano Arithmetic PA

The Peano Postulates together with certain amount of set theory are sufficient to develop not only theory of natural numbers, but also theory of rational and even real numbers

But Peano Postulates can't act as a fully formal theory as they include intuitive notions like "property" and
"has a property"
A formal theory of natural numbers based on the Peano
Postulates is referred in literature as Peano Arithmetic, or simply PA

We present here formalization by Mendelson (1973)
It is included and worked out in the smallest details in his book Intoduction to Mathematical Logic (1987) We refer the reader to this excellent book for details and further reading

Peano Arithmetic PA

We assume, as we did for all other formal theories, that the Peano Arithmetic PA is based on a complete Hilbert style proof system

$$
H=(\mathcal{L}, \mathcal{F}, L A, \mathcal{R})
$$

for classical predicate logic with a language

$$
\mathcal{L}=\left(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})\right.
$$

We additionally assume that the system H has as one of the inference rules a generalization rule

$$
\text { (G) } \frac{A(x)}{\forall x A(x)}
$$

We do so to facilitate the use of the Mendelson's book as a supplementary reading to the material included here and for additional reading for material not covered here

Peano Arithmetic PA

PA Peano Arithmetic

Language is

$$
\mathcal{L}_{P A}=\mathcal{L}(\mathbf{P}=\{P\}, \mathbf{F}=\{f, g, h\}, \mathbf{C}=\{c\})
$$

where the predicate P represents the equality $=$ and we write $x \neq y$ for the formula $\neg(x=y)$
the functional symbol f represents the successor ' the functional symbols g, h represent addition + and the multiplication •, respectively
c is a constant symbol representing zero and we use a symbol 0 to denote c
We write the language of PA as

$$
\mathcal{L}_{P A}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}\left(\{=\},\left\{{ }^{\prime},+, \cdot\right\},\{0\}\right)
$$

Peano Arithmetic PA

Specific Axioms

P1 $(x=y \Rightarrow(x=z \Rightarrow y=z))$,
P2 $\left(x=y \Rightarrow x^{\prime}=y^{\prime}\right)$,
P3 $0 \neq x^{\prime}$,
P4 $\left(x^{\prime}=y^{\prime} \Rightarrow x=y\right)$,
P5 $x+0=x$,
P6 $x+y^{\prime}=(x+y)^{\prime}$
P7 $x \cdot 0=0$,
P8 $x \cdot y^{\prime}=(x \cdot y)+x$,
P9 $\quad\left(A(0) \Rightarrow\left(\forall x\left(A(x) \Rightarrow A\left(x^{\prime}\right) \Rightarrow \forall x A(x)\right)\right)\right)$,
for all formulas $A(x)$ of $\mathcal{L}_{P A}$ and all $x, y, z \in \operatorname{VAR}$

Peano Arithmetic PA

The axiom P9 is called Principle of Mathematical Induction It does not fully corresponds to Peano Postulate p5 which refers intuitively to all (uncountably many) possible properties of natural numbers

The axiom P7 applies only to properties defined by infinitely countably many formulas of $A(x)$ of $\mathcal{L}_{P A}$

Axioms P3, P4 correspond to Peano Postulates p3, p4
The Peano Postulates p1, p2 are taken care of by presence of 0 and successor function

Peano Arithmetic PA

Axioms P1, P2 deal with some needed properties of equality that were probably assumed as intuitively obvious by Peano and Dedekind

Axioms P5-P8 are the recursion equations for addition and multiplication

They are not stated in the Peano Postulates as Dedekind and Peano allowed the use of intuitive set theory within which the existence of addition and multiplication and their properties P5-P8 can be proved (Mendelson, 1973)

Peano Arithmetic PA

Observe that while axioms P1-P9 of Peano Arithmetic PA are particular formulas of $\mathcal{L}_{P A}$ and the axiom P 9 is an axiom schema providing an infinite number of axioms

This means that the set of axioms P1-P9 do not provide a finite axiomatization for Peano Arithmetic

The following was proved formally by Czeslaw Ryll-Nardzewski in 1952 and again by Rabin in 1961

Peano Arithmetic PA

Ryll-Nardzewski Theorem

Peano Arithmetic is is not finitely axiomatizable
That is there is no theory K having only a finite number of proper axioms, whose theorems are the same as those of $P A$

Observe that the theory PA is one of many formalizations of the Peano Arithmetic

We denoted by \mathbf{T} the set all provable formulas in T
In particular, PA denotes the set of all formulas provable in theory PA and we adopt the following definition

Peano Arithmetic PA

Definition

Any theory T such that $T=P A$ is called a Peano Arithmetic

For example, taking closure of axioms P1-P8 of $T 14$ we obtain new theory CPA
The axiom P9 is a sentence (closed formula) already

Peano Arithmetic CPA

Theory CPA
Language is $\mathcal{L}_{C P A}=\mathcal{L}_{P A}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}\left(\{=\},\left\{^{\prime},+, \cdot\right\},\{0\}\right)$
Specific Axioms
C1 $\forall x \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z))$
C2 $\forall x \forall y\left(x=y \Rightarrow x^{\prime}=y^{\prime}\right)$
C3 $\forall x\left(0 \neq x^{\prime}\right)$
C4 $\forall x \forall y\left(x^{\prime}=y^{\prime} \Rightarrow x=y\right)$
C5 $\forall x(x+0=x)$
C6 $\forall x \forall y\left(x+y^{\prime}=(x+y)^{\prime}\right)$
C7 $\forall x(x \cdot 0=0)$
C8 $\forall x \forall y\left(x \cdot y^{\prime}=(x \cdot y)+x\right)$
C9 $\quad\left(A(0) \Rightarrow\left(\forall x\left(A(x) \Rightarrow A\left(x^{\prime}\right)\right) \Rightarrow \forall x A(x)\right)\right)$
for all formulas $A(x)$ of $\mathcal{L}_{\text {CPA }}$

Peano Arithmetic CPA

Fact 1

Theory CPA is a Peano Arithmetic

Proof

We have to show that PA = CPA
As both theories are based on the same language $\mathcal{L}_{P A}$ we have to show that for any formula B

$$
\vdash_{P A} B \text { if and only if } \quad \vdash_{C P A} B
$$

Both theories are also based on the same proof system H, so we have to prove that
(1) all axioms C1-C8 of CPA are provable in PA and
(2) all axioms $P 1-P 8$ of $P A$ are provable in CPA

Peano Arithmetic CPA

Here are detailed proofs for axioms P1, and C1
The proofs for other axioms follow the same pattern
(1) We prove that the axiom

C1 $\forall x \forall y \forall z(x=y \Rightarrow(y=z \Rightarrow x=z))$
is provable in PA as follows
Observe that axioms of CPA are closures of respective axioms of PA
Consider axiom
P1 $(x=y \Rightarrow(y=z \Rightarrow x=z))$

Peano Arithmetic CPA

As the proof system H has a generalization rule

$$
\text { (G) } \frac{A(x)}{\forall x A(x)}
$$

we obtain a formal proof
B1, B2, B3, B4
of C1 as follows
B1: $(x=y \Rightarrow(x=z \Rightarrow y=z))$, P1
B2: $\forall z(x=y \Rightarrow(x=z \Rightarrow y=z))$ (G) rule
B3: $\forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z))$ (G) rule
B4: $\forall x \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z)) \quad$ C1
This ends the proof of (1) for axioms P1, and C1

Peano Arithmetic CPA

(2) We prove now that the axiom

P1 $(x=y \Rightarrow(y=z \Rightarrow x=z))$
is provable in CPA
By completeness of H we know that the predicate tautology

$$
(* *) \quad(\forall x A(x) \Rightarrow A(t))
$$

where term t is free for x in $A(x)$
is provable in H for any formula $A(x)$ of \mathcal{L} and hence for any formula $A(x)$ of its particular sublanguage $\mathcal{L}_{P A}$
So for its particular case of

$$
\begin{aligned}
& \mathrm{A}(\mathrm{x})=(x=y \Rightarrow(x=z \Rightarrow y=z)) \text { and } t=x \\
& (*) \quad \stackrel{\text { CPA }}{ }(\forall x \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z)) \\
& \Rightarrow \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z)))
\end{aligned}
$$

Peano Arithmetic CPA

We construct a formal proof $B 1, B 2, B 3, B 4, B 5, B 6, B 7$ of P1 in CPA in as follows

B1 $\forall x \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z)) \quad$ C1

B2 $(\forall x \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z))$

$$
\Rightarrow \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z))) \quad(\text { ast })
$$

B3 $\forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z)) \quad$ MP on B1, B2

B4 $(\forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z))$

$$
\Rightarrow \forall z(x=y \Rightarrow(x=z \Rightarrow y=z))) \quad \text { (ast) }
$$

Peano Arithmetic CPA

B5 $\forall z(x=y \Rightarrow(x=z \Rightarrow y=z))$, MP on B3, B4

B6 $\quad(\forall z(x=y \Rightarrow(x=z \Rightarrow y=z))$

$$
\Rightarrow(x=y \Rightarrow(x=z \Rightarrow y=z))), \quad \text { ast })
$$

B7 $(x=y \Rightarrow(x=z \Rightarrow y=z))$ MP on B5, B6

This ends the proof of (2) for axioms P1, and C1

The proofs for other axioms is similar and are left as homework assignment

Peano Arithmetic PA

Here are some basic facts about $P A$
Fact 2
The following formulas are provable in PA for any terms t, s,
r of $\mathcal{L}_{P A}$
P1' $\quad(t=r \Rightarrow(t=s \Rightarrow r=s))$
P2' $\quad\left(t=r \Rightarrow t^{\prime}=r^{\prime}\right)$
P3' $0 \neq t^{\prime}$
P4' $\quad\left(t^{\prime}=r^{\prime} \Rightarrow t=r\right)$
P5' $\quad t+0=t$
P6 ${ }^{\prime} \quad t+r^{\prime}=(t+r)^{\prime}$
P7' $t \cdot 0=0$
P8' $\quad t \cdot r^{\prime}=(t \cdot r)+t$

Peano Arithmetic PA

We named the Fact 1 properties as P1'- P8' to stress the fact that they are generalizations of axioms P1-P8 of PA
to the set of all terms of the language $\mathcal{L}_{\text {PA }}$

Proof

We write the proof for P1' as an example
Proofs of all other formulas follow the same pattern
Consider axiom
P1: $\quad(x=y \Rightarrow(y=z \Rightarrow x=z))$
By the Fact 1 its closure is provable in PA, i.e.

$$
\text { (*) } \vdash_{P A} \forall x \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z))
$$

Peano Arithmetic PA

By completeness of H we know that the predicate tautology

$$
(P T) \quad(\forall x A(x) \Rightarrow A(t))
$$

where term t is free for x in $A(x)$
is provable in H for any formula $A(x)$ of \mathcal{L}
So it is also provable for a formula
$\mathrm{A}(\mathrm{x})=\forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z))$
Observe that any term t is free for x in this particular $A(x)$ so we get that for any term t the following holds

$$
\begin{gathered}
(* *) \quad \vdash P A(\forall x \forall y \forall z(x=y \Rightarrow(x=z \Rightarrow y=z)) \\
\Rightarrow \forall y \forall z(t=y \Rightarrow(t=z \Rightarrow y=z)))
\end{gathered}
$$

Peano Arithmetic PA

Applying MP to $(*)$ and $(* *)$ we get that for any term t

$$
\text { (a) } \vdash_{P A} \forall y \forall z(t=y \Rightarrow(t=z \Rightarrow y=z))
$$

Observe that any term r is free for for y in

$$
\forall z(t=y \Rightarrow(t=z \Rightarrow y=z))
$$

so we have that for all terms r

$$
\begin{gathered}
(\text { aa) } \vdash P A(\forall y \forall z(t=y \Rightarrow(t=z \Rightarrow y=z)) \\
\Rightarrow \forall z(t=r \Rightarrow(t=z \Rightarrow r=z)))
\end{gathered}
$$

as a particular case of the tautology $(P T)$

Peano Arithmetic PA

Applying MP to (a) and (aa) we get that for any terms t, r

$$
\text { (b) } \vdash_{P A} \forall z(t=r \Rightarrow(t=z \Rightarrow r=z))
$$

Observe that any term s is free for z in the formula

$$
(t=r \Rightarrow(t=z \Rightarrow r=z))
$$

and so we have that

$$
\begin{gathered}
(b b) \quad \vdash P A(\forall z(t=y \Rightarrow(t=z \Rightarrow y=z)) \\
\Rightarrow(t=r \Rightarrow(t=s \Rightarrow r=s)))
\end{gathered}
$$

for all terms r, t, s as a particular case of the tautology (PT)

Peano Arithmetic PA

Applying MP to (b) and (bb) we get that for any terms t, r

$$
\vdash_{P A}(t=r \Rightarrow(t=s \Rightarrow r=s))
$$

This ends the proof of $P 1^{\prime}$
The proofs of properties P2' - P8' follow the same pattern and are left as an exercise

As the next step we use Fact 1 and Fact 2, the axioms of PA, and the completeness of the proof system H to prove the following Fact 3
The details of the steps in the proof, similar to the proof of the Fact 2 are left to the reader as an exercise

Peano Arithmetic PA

Fact 3

The following formulas are provable in PA for any terms t, s, r of $\mathcal{L}_{P A}$
a1 $t=t$
a2 $\quad(t=r \Rightarrow r=t)$
a3 $\quad(t=r \Rightarrow(r=s \Rightarrow t=s))$
a4 $\quad(r=t \Rightarrow(t=s \Rightarrow r=s))$
a5 $\quad(t=r \Rightarrow(t+s=r+s))$
a6 $t=0+t$

Proof

The full details of the steps in the proof, similar to the proof of the Fact $\mathbf{2}$ are left to the reader as an exercise

Peano Arithmetic PA

a1 $\quad t=t$
We construct a formal proof

$$
B 1, B 2, B 3, B 34
$$

of $t=t$ in PA in as follows

B1 $t+0=t \quad \mathrm{P} 5 '$ in Fact 2
B2 $\quad(t+0=t \Rightarrow(t+0=t \Rightarrow t=t))$
P1' in Fact 2 for $t=t+0, \quad r=t, \quad s=t$
B3 $(t+0=t \Rightarrow t=t) \quad$ MP on B1, B2
B4 $t=t . \quad \mathrm{MP}$ on B1, B3

Peano Arithmetic PA

a2 $\quad(t=r \Rightarrow r=t)$
We construct a formal proof

$$
B 1, B 2, B 3, B 4
$$

of a2 as follows.

B1 $\quad(t=r \Rightarrow(t=t \Rightarrow r=t))$
P1' in Fact 2 for $r=t, \quad s=t$

B2 $\quad(t=t \Rightarrow(t=r \Rightarrow r=t)) \quad$ tautology, B1
B3 $\quad t=t \quad$ already proved a1
$\mathrm{B} 4(t=r \Rightarrow r=t) \quad$ MP on B2, B3

Peano Arithmetic PA

a3 $\quad(t=r \Rightarrow(r=s \Rightarrow t=s))$
We construct a formal proof

$$
B 1, B 2, B 3
$$

of a3 as follows.

B1 $\quad(r=t \Rightarrow(r=s \Rightarrow t=s)) \quad \mathrm{P} 1 '$ in Fact 2
B2 $(t=r \Rightarrow r=t) \quad$ already proved a2
B3 $(t=r \Rightarrow(r=s \Rightarrow t=s)) \quad$ tautology, B1, B2

Peano Arithmetic PA

a4 $\quad(r=t \Rightarrow(t=s \Rightarrow r=s))$
We construct a formal proof

$$
B 1, B 2, B 3, B 4, B 5
$$

of a4 as follows.

B1 $\quad(r=t \Rightarrow(t=s \Rightarrow r=s)) \quad$ a3 for $t=r, r=t$
$\mathrm{B} 2(t=s \Rightarrow(r=t \Rightarrow r=s)) \quad \mathrm{B} 1$, tautology
B3 $(s=t \Rightarrow t=s) \quad$ a2
B4 $\quad(s=t \Rightarrow(r=t \Rightarrow r=s)) \quad$ B1, B2, tautology
B5 $(r=t \Rightarrow(t=s \Rightarrow r=s)) \quad$ B4, tautology

Peano Arithmetic PA

a5 $\quad(t=r \Rightarrow(t+s=r+s))$

We prove a5 by the Principle of Mathematical Induction

$$
P 9 \quad\left(A(0) \Rightarrow\left(\forall x\left(A(x) \Rightarrow A\left(x^{\prime}\right) \Rightarrow \forall x A(x)\right)\right)\right)
$$

The proof uses the Deduction Theorem which holds for the proof system H and so it can be used in PA
We first apply the Induction Rule P9 to the formula

$$
A(z): \quad(x=y \Rightarrow x+z=y+z)
$$

to prove

$$
\vdash P A \quad \forall z(x=y \Rightarrow x+z=y+z)
$$

Peano Arithmetic PA

Proof of the formula $\forall z(x=y \Rightarrow x+z=y+z)$
by the Principle of Mathematical Induction

$$
P 9 \quad\left(A(0) \Rightarrow\left(\forall x\left(A(x) \Rightarrow A\left(x^{\prime}\right) \Rightarrow \forall x A(x)\right)\right)\right)
$$

applied to the forrmula

$$
A(z): \quad(x=y \Rightarrow x+z=y+z)
$$

(i) We prove initial step $A(0)$, i.e. we prove that

$$
\vdash P A \quad(x=y \Rightarrow x+0=y+0)
$$

Here the steps in the proof
B1 $\quad x+0=x \quad$ P5'
B2 $y+0=y \quad$ P5'

Peano Arithmetic PA

B3 $x=y \quad$ Hyp
B4 $\quad(x+0=x \Rightarrow(x=y \Rightarrow x+0=y) \quad$ a3 for
$t=x+0, r=x, s=y$
B5 $(x=y \Rightarrow x+0=y) \quad$ MP on B1, B4
B6 $x+0=y \quad$ MP on B3, B5
B7 $(x+0=y \Rightarrow(y+0=y \Rightarrow x+0=y+0), \quad$ a4 for $r=x+0, t=y, s=y=0$
B8 $\quad(y+0=y \Rightarrow x+0=y+0) \quad$ MP on B6, B7
B9 $x+0=y+0) \quad$ MP on B2, B8
B10 $(x=y \Rightarrow x+0=y+0) \quad$ B1- B9, Deduction Theorem

Thus, $\vdash_{P A} A(0)$

Peano Arithmetic PA

(ii) We prove inductive step $\forall z\left(A(z) \Rightarrow A\left(z^{\prime}\right)\right.$
i.e. prove that
$\vdash_{P A} \forall z\left((x=y \Rightarrow x+z=y+z) \Rightarrow\left(x=y \Rightarrow x+z^{\prime}=y+z^{\prime}\right)\right)$
Here the steps in the proof

C1 $(x=y \Rightarrow x+z=y+z) \quad$ Hyp
C2 $x=y \quad$ Hyp
C3 $x+z^{\prime}=(x+z)^{\prime} \quad$ P6'
C4 $y+z^{\prime}=(y+z)^{\prime} \quad$ P6 ${ }^{\prime}$

Peano Arithmetic PA

C5 $(x+z=y+z) \quad$ MP on C1, C2
C6 $\left(x+z=y+z \Rightarrow(x+z)^{\prime}=(y+z)^{\prime}\right) \quad$ P2' for $t=x+z, r=y+z$
C7 $(x+z)^{\prime}=(y+z)^{\prime} \quad$ MP on C5, C6
C8 $x+z^{\prime}=y+z^{\prime}, \quad$ a3 substitution, MP on C3, C7
C9 $\left((x=y \Rightarrow x+z=y+z) \Rightarrow x+z^{\prime}=y+z^{\prime}\right) \quad \mathrm{C} 1-\mathrm{C} 8$,
Deduction Theorem

This proves $\vdash_{P A} A(z) \Rightarrow A\left(z^{\prime}\right)$

Peano Arithmetic PA

C10 $(((x=y \Rightarrow x+0=y+0) \Rightarrow((x=y \Rightarrow x+z=$ $\left.\left.\left.y+z) \Rightarrow x+z^{\prime}=y+z^{\prime}\right)\right) \Rightarrow \forall z(x=y \Rightarrow x+z=y+z)\right)$
P 9 for $\mathrm{A}(z):(x=y \Rightarrow x+z=y+z)$

C11 $\left.\left((x=y \Rightarrow x+z=y+z) \Rightarrow x+z^{\prime}=y+z^{\prime}\right)\right) \Rightarrow$
$\forall z(x=y \Rightarrow x+z=y+z) \quad$ MP on C10 and B10

C12 $\forall z(x=y \Rightarrow x+z=y+z) \quad$ MP on C11, C9
C13 $\forall y \forall z(x=y \Rightarrow x+z=y+z)$
(G) rule

C14 $\forall x \forall y \forall z(x=y \Rightarrow x+z=y+z)$
(G) rule

Peano Arithmetic PA

Now we repeat here the proof of P1' of Fact 2
We apply it step by step to C14
We eliminate the quantifiers $\forall x \forall y \forall z$ and replace variables x, y, z by terms t, r, s using the tautology

$$
(\forall x A(x) \Rightarrow A(t))
$$

and Modus Ponens (MP) rule
Finally, we obtain the proof of a5, i.e. we prove that

$$
\vdash_{P A}(t=r \Rightarrow(t+s=r+s))
$$

Peano Arithmetic PA

We go on proving other basic properties of addition and multiplication including for example the following

Fact

The following formulas are provable in PA for any terms t, s, r of $\mathcal{L}_{P A}$
(i) $t \cdot(r+s)=(t \cdot r)+(t \cdot s) \quad$ distributivity
(ii) $\quad(r+s) \cdot t=(r \cdot t)+(s \cdot t) \quad$ distributivity
(iii) $(r \cdot t) \cdot s=r \cdot(t \cdot s) \quad$ associativity
(iv) $(t+s=r+s \Rightarrow t=r) \quad$ cancelation

Numerals in PA

Numerals Definition

The terms $0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots$ are called numerals and denoted by

$$
\overline{0}, \overline{1}, \overline{2}, \overline{3}, \ldots \ldots
$$

More precisely,
(1) the term $\overline{0}$ is number 0
(2) for any natural number n,

$$
\overline{n+1} \text { is }(\bar{n})^{\prime}
$$

In general, if n is a natural number,
\bar{n} stands for the corresponding numeral $0^{\prime \prime \prime} \ldots \prime$, i.e. by 0 followed by n strokes

Numerals in PA

The numerals can be defined recursively as follows
(1) 0 is a numeral
(2) if u is a numeral, then u^{\prime} is also a numeral

Here are some more of many properties, intuitively obvious, that provable in PA
We give in the chapter some proofs and an example, and leave the others as an exercise

Reminder

We use \bar{n}, \bar{m} as un abbreviation of the terms r, s they represent

Peano Arithmetic PA

Fact

The following formulas are provable in PA for any terms t, s of $\mathcal{L}_{P A}$

1. $t+\overline{1}=t^{\prime}$
2. $t \cdot \overline{1}=t$
3. $t \cdot \overline{2}=t+t$
4. $(t+s=0 \Rightarrow(t=0 \cap s=0))$
5. $(t \neq 0 \Rightarrow(s \cdot t=0 \Rightarrow s=0))$

Proof

Major steps in the proof of 1.-5. are presented in the chapter

Peano Arithmetic PA

For example, we construct the proof of
4. $(t+s=0 \Rightarrow(t=0 \cap s=0))$
in the following sequence of steps
(s1) We apply the Principle of Mathematical Induction P9 to

$$
A(y):(x+y=0 \Rightarrow(x=0 \cap y=0))
$$

and prove

$$
(*) \quad \forall y(x+y=0 \Rightarrow(x=0 \cap y=0))
$$

(s2) We apply the generalization rule (G) to (*) and get

$$
(* *) \quad \forall x \forall y(x+y=0 \Rightarrow(x=0 \cap y=0))
$$

Peano Arithmetic PA

(s3) We now repeat here the proof of P1' of Fact 2
We apply it step by step to $(* *)$ as follows
We eliminate the quantifiers $\forall x \forall y$ and replace variables x, y by terms t, s using (MP) rule and the tautology

$$
(\forall x A(x) \Rightarrow A(t))
$$

Finally, we obtain the proof of 4., i.e. we have proved that

$$
\vdash_{P A}(t+s=0 \Rightarrow(t=0 \cap s=0))
$$

Peano Arithmetic PA

We also prove in the chapter, as an example, the following
Fact
Let n, m be any natural numbers
(1) If $m \neq n$, then $\bar{m} \neq \bar{n}$
(2) $\overline{m+n}=\bar{m}+\bar{n}$ and $\overline{m \cdot m n}=\bar{m} \cdot \bar{n}$
are provable in $P A$
(3) Any model for PA is infinite

Order Relation in PA

An order relation can be introduced in PA as follows
Order Relation Definition
Let t, s be any terms of $\mathcal{L}_{P A}$
We write $t<s$ for a formula $\exists w(w \neq 0 \cap w+t=s)$
where we choose w to be the first variable not in t or s
We write $t \leq s$ for a formula $(t<s \cup t=s)$
We write $t>s$ for a formula $s<t$ and
$t \geq s$ for a formula $s \leq t$
t 大s for a formula $\neg(t<s)$
and so on...

Order Relation in PA

Then we prove properties of order relation, for example the following.

Fact

For any terms t, r, s of $\mathcal{L}_{P A}$, the following formulas are provable in PA
$01 t \leq t$
o2 $(t \leq s \Rightarrow(s \leq r \Rightarrow t \leq r))$
o3 $\quad((t \leq s \cap s \leq t) \Rightarrow t=s)$
$04 \quad(t \leq s \Rightarrow(t+r \leq s+r))$
$05(r>0 \Rightarrow(t>0 \Rightarrow r \cdot t>0))$.

Complete Inductionin PA

There are several stronger forms of the the
Principle of Mathematical Induction
P9 $\quad\left(A(0) \Rightarrow\left(\forall x\left(A(x) \Rightarrow A\left(x^{\prime}\right) \Rightarrow \forall x A(x)\right)\right)\right)$
that are provable in PA. Here is one of them
Fact
The following formula, called Complete Induction Principle
$(\mathrm{PCI}) \quad(\forall x \forall z(z<x \Rightarrow A(z)) \Rightarrow A(x)) \Rightarrow \forall x A(x))$
is provable in $P A$
In plain English, the (PCI) says:
consider a property P such that, for any x, if P holds for for all natural numbers less then x, then \mathbf{P} holds for x also.
Then \mathbf{P} holds for all natural numbers

Mendelson Book

We proved and cited only some of the basic properties corresponding to properties of arithmetic of natural numbers
There are many more of them, developed in many Classical
Logic textbooks

We refer the reader especially to Mendelson (1997) book:
Introduction to Mathematical Logic, Fourth Edition, Wadsworth\&Brooks/Cole Advanced Books \&Software

We found this book the most rigorous and complete
The proofs included in this chapter are detailed versions of few of Mendelson's proofs.

Peano Arithmetic PA

We selected and proved some direct consequences Peano Arithmetic axioms not only because they are needed as the starting point for a strict development of the formal theory of arithmetic of natural numbers but also because they are good examples of how one develops any formal theory

From this point on one can generally translate onto the language $\mathcal{L}_{P A}$ and prove in the $P A$ the results from any textbook on elementary number theory

Robinson Arithmetic RR

We know by Ryll Nardzewski Theorem that the
Peano Arithmetic PA is not finitely axiomatizable

We want now to bring reader's attention a Robinson Arithmetic RR that is a proper sub-theory of PA and which is finitely axiomatizable

Moreover, the Robinson Arithmetic RR has the same expressive power as PA with respect to the Gödel
Theorems discussed and proved in the next section

Here it is, as formalized and discussed in detail in the
Mendelson's book.

Robinson Arithmetic RR

RR Robinson Arithmetic

Language

The language of $R R$ is the same as the language of $P A$, i.e.

$$
\mathcal{L}_{R R}=\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}\left(\{=\},\left\{^{\prime},+, \cdot\right\},\{0\}\right)
$$

Specific Axioms

r1 $x=x$
r2 $\quad(x=y \Rightarrow y=x)$
r3 $\quad(x=y \Rightarrow(y=z \Rightarrow x=z))$
r4 $\quad\left(x=y \Rightarrow x^{\prime}=y^{\prime}\right)$
r5 $\quad(x=y \Rightarrow(x+z=y+z \Rightarrow z+x=z+y))$
r6 $\quad(x=y \Rightarrow(x \cdot z=y \cdot z \Rightarrow z \cdot x=z \cdot y))$

Robinson Arithmetic RR

r7 $\quad\left(x^{\prime}=y^{\prime} \Rightarrow x=y\right)$
r8 $0 \neq x^{\prime}$
r9 $\quad\left(x \neq 0 \Rightarrow \exists y x=y^{\prime}\right)$
r10 $\quad x+0=x$
$r 11 \quad x+y^{\prime}=(x+y)^{\prime}$
$r 12 \quad x \cdot 0=0$
$r 13 x \cdot y^{\prime}=x \cdot y+x$
$r 14 \quad(y=x \cdot z+p \cap((p<x \cap y<x \cdot q+r) \cap r<x) \Rightarrow p=r)$
for any $x, y, z, p, q, r \in V A R$

Robinson Arithmetic RR

Axioms r1-r13 are due to Robinson (1950)
Axiom r14 is due to Mendelson (1973)
It expresses the uniqueness of remainder
The relation $<$ is the order relation as defined in PA

Gödel showed in his famous Incompleteness Theorem that there are closed formulas of the language $\mathcal{L}_{P A}$ of the Peano Arithmetic PA that are neither provable nor disprovable in $P A$, if $P A$ is consistent

Robinson Arithmetic RR

Hence, the Gödel Incompleteness Theorem also says that there is a formula that is true under standard interpretation but is not provable in PA

We also see that the incompleteness of PA cannot be attributed to omission of some essential axiom but has deeper underlying causes that apply to other theories as well

Robinson proved in 1950, that the Gödel Theorems hold in his system $R R$ and that $R R$ has the same incompleteness property as PA

Chapter 11
 Formal Theories and Gödel Theorems

Slides Set 2

PART 3: Consistency, Completeness, Gödel Theorems
PART 4: Proof of the Gödel Incompleteness Theorems

Chapter 11
 Formal Theories and Gödel Theorems

Slides Set 2

PART 3: Consistency, Completeness, Gödel Theorems

Consistency, Completeness, Gödel Theorems

Formal theories, because of their precise structure, became themselves an object of of mathematical research

The mathematical theory concerned with the study of formalized mathematical theories is called, after Hilbert, metamathematics

The most important open problems of metamathematics were introduced by Hilbert as a part of the Hilbert Program

They were concerned with notions of consistency, completeness, and decidability

Consistency, Completeness, Gödel Theorems

The answers to Hilbert problems of consistency and completeness of formal theories were given by Gödel in 1930 in a form of his two theorems

They are some of the most important and influential results in twentieth century mathematics

There are two definitions of consistency: semantical and syntactical

Consistency

The semantical definition is based on the notion of a model and says, in plain English:
a theory is consistent if the set of its specific axioms has a model

The syntactical definition uses the notion of provability and says:
a theory is consistent if one can't prove
a contradiction in it

Consistency

We have used the syntactical definition in chapter 5 in the proof the completeness theorem for the propositional logic In chapter 9 we used the semantical one

We extend now these propositional definitions to the predicate language and formal theories

In order to distinguish these two definitions of consistency we call the semantical one model-consistent, and we call the syntactical one just consistent

Model - Consistency

Model for a Theory

Given a first order theory

$$
(\mathcal{L}, \mathcal{F}, L A, S A, \mathcal{R})
$$

Any structure $\mathcal{M}=[M, I]$ that is a model for the set $S A$ of the specific axioms of T is called a model for the theory T

Model - Consistent Theory

A first order theory $T=(\mathcal{L}, \mathcal{F}, L A, S A, \mathcal{R})$ is model-consistent if and only if it has a model

Standard Model for PA

Consider the Peano Arithmetics PA and a structure $\mathcal{M}=[M, I]$ for its language

$$
\mathcal{L}_{P A}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}\left(\{=\},\left\{^{\prime},+, \cdot\right\},\{0\}\right)
$$

such that the universe M is the set N of natural numbers (nonnegative integers) and the interpretation $/$ is defined as follows
(1) the constant symbol 0 is interpreted as a natural number 0

Standard Model for PA

(2) the one argument function symbol' (successor) is interpreted as successor operation (addition of 1) on natural numbers;

$$
\operatorname{succ}(n)=n+1
$$

(3) the two argument function symbols + and are interpreted as ordinary addition and multiplication in N
(4) the predicate symbol " $=$ " is interpreted as equality relation in N

Standard Model for PA

Standard Model for PA
We denote $\mathcal{M}=[N, I]$ for I defined by (1) - (4) as

$$
\mathcal{M}=[N,=, \text { succ },+, \cdot]
$$

and call it a standard model for $P A$

The interpretation l is called a standard interpretation

Any model for PA in which the predicate symbol " $=$ " is interpreted as equality relation in N that is not isomorphic to the standard model is called a nonstandard model for PA

Standard Model for PA

Observe that if we recognize that the set N of natural numbers with the standard interpretation i.e. the structure

$$
\mathcal{M}=[N,=, \text { succ },+, \cdot]
$$

to be a model for $P A$, then, of course, $P A$ is consistent

However, semantic methods, involving a fair amount of set-theoretic reasoning, are regarded by many (and were regarded as such by Gödel) as too precarious to serve as basis of consistency proofs

Standard Model and Consistency

Moreover, we have not proved formally that the axioms of $P A$ are true under standard interpretation

We only have taken it as intuitively obvious

Hence for this and other reasons it is common practice to take the model-consistency of $P A$ as un explicit, unproved assumption and to adopt, after Gödel the following syntactic definition of consistency

Consistent Theory

Consistent Theory

Given a theory $T=(\mathcal{L}, \mathcal{F} L A, S A, \mathcal{R})$
Let T be the set of all provable formulas in T

The theory T is consistent if and only if there is no formula A of the language $\mathcal{L}_{S A}$ such that

$$
\vdash_{T} A \text { and } \vdash_{T} \neg A
$$

i.e. there is no formula A such that

$$
A \in \mathbf{T} \text { and } \neg A \in \mathbf{T}
$$

Inconsistent Theory

Inconsistent Theory

The theory $T=(\mathcal{L}, \mathcal{F}, L A, S A, \mathcal{R})$ is inconsistent if and only if
there is a formula A of the language $\mathcal{L}_{S A}$ such that

$$
\vdash_{T} A \text { and } \vdash_{T} \neg A
$$

i.e. there is a formula A such that

$$
A \in \mathbf{T} \text { and } \neg A \in \mathbf{T}
$$

Consistency Theorem

Here is a basic characterization of consistent theories

Theorem

A theory $T=(\mathcal{L}, \mathcal{F}, L A, S A, \mathcal{R})$ based on a complete proof system $H=(\mathcal{L}, \mathcal{F}, L A, \mathcal{R})$ is consistent if and only if there is a formula A of the language $\mathcal{L}_{S A}$ such that

$$
A \notin \mathbf{T}
$$

Proof

Let denote by CD the consistency condition in the consistency definition and by CT consistency condition in the theorem

Consistency Theorem Proof

1. We prove implication "if $C D$, then CT"

Assume not CT
This means that $A \in \mathbf{T}$ for all formulas A
In particular there is a formula B such that

$$
B \in \mathbf{T} \quad \text { and } \quad \neg B \in \mathbf{T}
$$

and not $C D$ holds
2. We prove implication " if $C T$, then $C D$ "

Assume not CD
This means that there is A of $\mathcal{L}_{S A}$, such that $A \in \mathbf{T}$

$$
\text { (*) } \quad A \in \mathbf{T} \quad \text { and } \quad \neg A \in \mathbf{T}
$$

Consistency Theorem Proof

By definition of formal theory T, all tautologies of $\mathcal{L}_{S A}$ are provable on T, i.e. are in T and so

$$
(((A \cap B) \Rightarrow C) \Rightarrow((A \Rightarrow(B \Rightarrow C)))) \in \mathbf{T}
$$

and

$$
(* *) \quad((A \cap \neg A) \Rightarrow C) \in \mathbf{T}
$$

for all A, B, C of $\mathcal{L}_{S A}$
In particular, when $B=\neg A$ we get that

$$
(* * *) \quad(((A \cap \neg A) \Rightarrow C) \Rightarrow((A \Rightarrow(\neg A \Rightarrow C)))) \in \mathbf{T}
$$

Consistency Theorem Proof

Applying MP to $(* *)$ and $(* * *)$ we get

$$
((A \Rightarrow(\neg A \Rightarrow C))) \in \mathbf{T}
$$

Applying MP twice to $(* * *)$ and (*) we get that

$$
C \in \mathbf{T} \quad \text { for all formulas } C
$$

We proved not CT
This ends the proof of 2. and of the Theorem

The Theorem often serves a following definition of consistency

Consistency Definition

Definition

A theory T is consistent if and only if $\mathrm{T} \neq \mathcal{F}_{S A}$, i.e. there is A of $\mathcal{L}_{S A}$, such that

$$
A \notin \mathbf{T}
$$

The next important characterization of a formal theory T is the one of its completeness understood as the ability of proving or disapproving any of its statements, provided it is correctly formulated in its language $\mathcal{L}_{S A}$

Complete Theory

Definition

A theory $T=(\mathcal{L}, \mathcal{F}, L A, S A, \mathcal{R})$ is complete
if and only if
for any closed formula (sentence) A of the language $\mathcal{L}_{S A}$,

$$
\vdash_{T} A \text { or } \quad \vdash_{T} \neg A
$$

We also write the above as

$$
A \in \mathbf{T} \quad \text { or } \quad \neg A \in \mathbf{T}
$$

Incomplete Theory

Definition

A theory T is incomplete if and only if
there is a closed formula (sentence) A of the language
$\mathcal{L}_{S A}$, such that

$$
\Vdash_{T} A \text { and } \quad \Vdash_{T} \neg A
$$

We also write the above condition as

$$
\text { (*) } A \notin \mathbf{T} \quad \text { and } \quad \neg A \notin \mathbf{T}
$$

Definition
Any sentence A with the property $(*)$ is called an independent, or undecidable sentence of the theory T

Gödel Theorems

The incompleteness definition says that in order to prove that a given theory T is incomplete we have to construct a sentence A of $\mathcal{L}_{S A}$ and be able to prove that neither A nor $\neg A$ has a proof in it

We are now almost ready to discuss Gödel Theorems

One of the most comprehensive development and proofs of Gödel Theorems can be found the Mendelson (1984) book

The Gödel Theorems chapter in Mendelson book is over 50 pages long, technically sound and beautiful

Gödel Theorems

We present here a short, high level approach adopting style of Smorynski's chapter in the

Handbook of Mathematical Logic, Studies in Logic and Foundations of Mathematics, Volume 20 (1977)

The chapter is over 40 pages long what seems to be a norm when one wants to prove Gödel's results

Smorynski's chapter is written in a very condensed and general way and concentrates on presentation of modern results

Gödel Theorems

We also want to bring to readers attention that the introduction to the Smorynski's chapter contains an excellent discussion of Hilbert Program and its relationship to Gödel's results

The chapter also provides an explanation why and how devastating Gödel Theorems were to the optimism reflected in Hilbert's Consistency and Conservation Programs

Hilbert's Conservation and Consistency Programs

Hilbert's Conservation and Consistency Programs

Hilbert proposed his Conservation and Consistency
Programs as response to Brouwer and Weyl propagation of their theory that existence of Zermello's paradoxes free axiomatization of set theory makes the need for
investigations into consistency of mathematics superfluous

Hilbert wrote:
".... they (Brouwer and Weil) would chop and mangle the science. If we would follow such a reform as the one they suggest, we would run the risk of losing a great part of our most valuable treasures! "

Hilbert's Conservation Programs

Hilbert stated his Conservation Program as follows:

To justify the use of abstract techniques he would show - by as simple and concrete a means as possible - that the use of abstract techniques was conservative - i.e. that any concrete assertion one could derive by means of such abstract techniques would be derivable without them

Hilbert's Conservation Programs

We follow Smorynski's clarification of some of Hilbertian jargon whose exact meaning was never defined by Hilbert

We hence talk about finitistically meaningful statements and finitistic means of proof

By the finitistically meaningful statements we mean for example identities of the form

$$
\forall x(f(x)=g(x))
$$

where f, g are reasonably simple functions, for example primitive recursive
We will call them real statements

Hilbert's Conservation Programs

Finitistic proofs correspond to computations or combinatorial manipulations
More complicated statements are called ideal ones and, as
such, have no meaning, but can be manipulated abstractly

The use of ideal statements and abstract reasoning about them would not allow one to derive any new real statements, i.e. none which were not already derivable

To refute Weyl and Brouwer, Hilbert required that his conservation property itself be finitistically provable

Hilbert's Consistency Programs

Hilbert's Consistency Program asks to devise a finitistic means of proving the consistency of various formal systems encoding abstract reasoning with ideal statements

The Consistency Program is a natural outgrowth and successor to the Conservation Program

There are two reasons for this

Hilbert's Consistency Programs

R1 Consistency is the assertion that some string of symbols is not provable
Since derivations are simple combinatorial manipulations, this is a finitistically meaningful and ought to have a finitistic proof

R2 Proving a consistency of a formal system encoding the abstract concepts already establishes the conservation result

Reason $\mathbf{R 1}$ is straightforward
We will discuss $\mathbf{R 2}$ as it is particularly important

Hilbert's Consistency Programs

Let's denote by \mathbf{R} a formal system encoding real statements with their finitistic proofs
Denote by I the ideal system with its abstract reasoning
Let A be a real statement $\forall x(f(x)=g(x))$
Assume \vdash, A
Then there is a derivation d of A in I
But, derivations are concrete objects and, for some real formula $P(x, y)$ encoding derivations in I,

$$
\vdash_{R} P(d,\ulcorner A\urcorner)
$$

where $\ulcorner A\urcorner$ is some code for A

Hilbert's Consistency Programs

Now, if A were false, one would have

$$
f(a) \neq g(a)
$$

for some a and hence

$$
\vdash_{R} P(c,\ulcorner\neg A\urcorner)
$$

for some c being a derivation of $\neg A$ in I

In fact, one would have a stronger assertion

$$
\vdash_{R}\left(f(x) \neq g(x) \Rightarrow P\left(c_{x},\ulcorner\neg A\urcorner\right)\right)
$$

for some c_{X} depending on x

Hilbert's Consistency Programs

But, if \mathbf{R} proves consistency of \mathbf{I}, we have

$$
\vdash_{R} \neg(P(d,\ulcorner A\urcorner) \cap P(c,\ulcorner\neg A\urcorner))
$$

whence $\vdash_{R} f(x)=g(x)$, with free variable x, i.e.

$$
\vdash_{R} \forall x(f(x)=g(x))
$$

To make the above argument rigorous, one has to define and explain the basics of encoding, develop the assumptions on the formula $P(x, y)$ and to deliver the whole argument in a formal rigorous way

Hilbert's Consistency Programs

To make the above argument rigorous, one also has to develop rigorously the whole apparatus developed originally by Gödel, which is needed for the proofs of his theorems

We bring it here at this stage because the above argument clearly invited Hilbert to establish his Consistency Program

Hilbert's Consistency Programs

Since Consistency Program was as broad as the general Conservation Program and, since it was more tractable, Hilbert fixed on it asserting:
"if the arbitrary given axioms do not contradict each other through their consequences, then they are true, then the objects defined through the axioms exist

That, for me, is the criterion of truth and existence"

Hilbert's Consistency Programs

The Consistency Program had as its goal the proof, by finitistic means of the consistence of strong systems

The solution would completely justify the use of abstract concepts and would repudiate Brouwer and Weyl

Gödel proved that it couldn't work

Gödel Incompleteness Theorems

Gödel Incompleteness Theorems

In 1920, while in his twenties, Kurt Gödel announced that Hilbert's Consistency Program could not be carried out

He had proved two theorems which gave a blow to the Hilbert's Program but on the other hand changed the face of mathematics establishing mathematical logic as strong and rapidly developing discipline

Loosely stated these theorems are as follows

Gödel Incompleteness Theorems

First Incompleteness Theorem

Let T be a formal theory containing arithmetic
Then there is a sentence A in the language of T which asserts its own unprovability and is such that:
(i) If T is consistent, then $\nvdash T A$
(ii) If T is ω-consistent, then $\nvdash T^{\text {- }} \neg A$

Gödel Incompleteness Theorems

Second Incompleteness Theorem

Let T be a consistent formal theory containing arithmetic
Then

$$
ъ_{T} \text { Con }_{T}
$$

where Con_{T} is the sentence in the language of T asserting the consistency of T

Observe that the Second Incompleteness Theorem destroys the Consistency Program

It states that \mathbf{R} can't prove its own consistency, so obviously it can't prove consistency of I

Gödel Incompleteness Theorems

Smorynski's argument that the First Incompleteness
Theorem destroys the Conservation Program is as follows

The Gödel sentence A is real and is easily seen to be true

It asserts its own unprovability and is indeed unprovable

Thus the Conservation Program cannot be carried out and, hence, the same must hold for the Consistency Program

Gödel Incompleteness Theorems

M. Detlefsen in the Appendix of his book

"Hilbert Program: An Essay on Mathematical Instrumentalism", Springer, 2013

argues that Smorynski's argument is ambiguous, as he doesn't tell us whether it is unprovability in \mathbf{R} or unprovability in I

Gödel Incompleteness Theorems

We recommend to the reader interested a philosophical discussion of Hilbert Program to read this Appendix, if not the whole book

We will now formulate the Incompleteness Theorems in a more precise formal way and describe the main ideas behind their proofs

Arithmetization and Encoding

Arithmetization and Encoding

Observe that in order to formalize the Incompleteness
Theorems one has first to "translate" the Gödel sentences
A and Con_{T} into the language of T

For the First Incompleteness Theorem one needs to
" translate " a self-referring sentence
"I am not provable in a theory T "
and for the Second Incompleteness Theorem one needs to
" translate " the self-referring sentence
"I am consistent"

Arithmetization and Encoding

The assumption in both theorems is that T contains arithmetic means usually it contains the Peano Arithmetic PA, or even its sub-theory RR called Robinson System

In this case the final product of such "translation" must be a sentence A or sentence $C^{C o n}$ of the language $\mathcal{L}_{\text {PA }}$ of PA, usually written as

$$
\mathcal{L}_{P A}=\mathcal{L}\left(\{=\},\left\{^{\prime},+, \cdot\right\},\{0\}\right)
$$

Arithmetization and Encoding

This "translation" process into the language of some formal system containing arithmetic is called arithmetization and encoding, or just encoding for short

We define a notion of arithmetization as follows

An arithmetization of a theory T is a one-to-one function g from the set of symbols of the language of T, expressions (formulas) of T , and finite sequences of expressions of T (proofs) into the set of positive integers

Arithmetization and Encoding

The function g must satisfy the following conditions
(1) g is effectively computable
(2) there is an effective procedure that determines whether any given positive integer n is in the range of g and, if n is in the range of g , the procedure finds the object x such that $g(x)=n$

Arithmetization was originally devised by Gödel in 1931 in order to arithmetize Peano Arithmetic PA and encode the arithmetization process in PA in order to formulate and to prove his Incompleteness Theorems

Arithmetization and Encoding

Functions and relations whose arguments and values are natural numbers are called the number-theoretic functions and relations

In order to arithmetize and encode in a formal system we have to

1. associate numbers with symbols of the language of the system, associate numbers with expressions (formulas), and with sequences of expressions of the language of the system

This is arithmetization of basic syntax, and encoding of syntax in the system

Arithmetization and Encoding

2. replace assertions about the system by number-theoretic statements, and express these number-theoretic statements within the formal system itself
This is arithmetization and encoding in the system

We want the number - theoretic function to be representable in PA and we want the predicates to be expressible in PA, i.e. their characteristic functions to be representable in PA

Functions Representable in PA

The study of representability of functions in PA leads to the class of number-theoretic functions that turn out to be of great importance in mathematical logic, namely the primitive recursive and recursive functions

Their definition and study in a form of a Recursion Theory is an important field of mathematics and of computer science which developed out of the Gödel proof of the Incompleteness Theorems

Primitive Recursive and Recursive Functions

We prove that the class of recursive functions is identical with the class of functions representable in PA, i.e. we prove:
every recursive function is representable in PA and every function representable in PA is recursive

The representability of primitive recursive and recursive functions in a formal system S in general and in $P A$ in particular plays crucial role in the encoding process and consequently in the proof of Gödel Theorems

Arithmetization and Encoding

The details of arithmetization and encoding are as complicated and tedious as fascinating but are out of scope of our book

We recommend Mendelson's book:
Introduction to Mathematical Logic, Chapman \& Hall (1997) as the one with the most comprehensive and detailed presentation

Theories T and S

Principles of Encoding for T and S

Theories T and S

We assume at this moment that T is some fixed, but for a moment unspecified consistent formal theory

We also assume that encoding is done in some fixed theory S and that the theory T contains S, i.e. the language of T is an extension of the language of S and

$$
\mathbf{S} \subseteq \mathbf{T}
$$

i.e. for any formula A,

$$
\text { if } \vdash_{S} A \text {, then } \vdash_{T} A
$$

Theories T and S

Moreover, we also assume that theories T and S contain as constants only numerals

$$
\overline{0}, \overline{1}, \overline{2}, \overline{3}, \ldots, \ldots
$$

and T contains infinitely countably many functional and predicate symbols

Usually S is taken to be a formal theory of arithmetic, but sometimes S can be a weak set theory
But in any case S always contains numerals

We also assume that theories T and S are such that the following Principles of Encoding hold

Principles of Encoding

The mechanics, conditions and details of encoding for T and S being Peano Arithmetic PA or its sub-theory Robinson Arithmetic $R R$ are beautifully presented in the smallest detail in Mendelson's book

The Smorynski's approach we discuss here covers a larger class of formal theories and uses a more general and modern approach
We can't include all details but we are convinced that at this stage the reader will be able to follow Smorynski's chapter in the Encyclopedia

Principles of Encoding

Smorynski's chapter is very well and clearly written and is now classical

We wholeheartedly recommend it as a future reading

We also follow Smorynski's approach explaining what is to be encoded, where it is to be encoded, and which are the most important encoding and provability conditions needed for the proofs of the Incompleteness Theorems

Principles of Encoding

We first encode the syntax of T in S
Since encoding takes place in S, we assumed that it has
a sufficient supply of constants, namely a countably infinite set of numerals

$$
\overline{0}, \overline{1}, \overline{2}, \overline{3}, \ldots, \ldots
$$

and closed terms to be used as codes

We assign to each formula A of the language of T a closed term

$$
\ulcorner A\urcorner
$$

called the code of A

Principles of Encoding

If $A(x)$ is a formula with a free variable x, then the code

$$
\ulcorner A(x)\urcorner
$$

is a closed term encoding the formula $A(x)$, with x viewed as a syntactic object and not as a parameter

We do it recursively

First we assign codes (unique closed terms from S) to its basic syntactic objects, i.e. elements of the alphabet of the language of T

Principles of Encoding

Terms and formulas are finite sequences of the basic syntactic objects and derivations (formal proofs) are also finite sequences of formulas

It means that S have to be able to encode and manipulate finite sequences

In the next recursive step we use for such encoding a class of primitive recursive functions and relations

We assume S admits a representation of the primitive recursive functions and relations and we finish encoding syntax

Principles of Encoding

S will also have to have certain important function symbols and we have to be able to encode them

1. S must have functional symbols
neg, impl, ... etc.
corresponding to the logical connectives and quantifiers, such that, for all formulas A, B of the language of T

$$
\begin{gathered}
\vdash s \operatorname{neg}(\ulcorner A\urcorner)=\ulcorner\neg A\urcorner, \\
\vdash s \quad \operatorname{impl}(\ulcorner A\urcorner,\ulcorner B\urcorner)=\operatorname{impl}(\ulcorner A \Rightarrow B\urcorner), \ldots \text { etc. }
\end{gathered}
$$

Principles of Encoding

An operation of substitution of a variable x in a formula $A(x)$ by a term t is of a special importance in logic, so it must be represented in S, i.e.
2. S must have in a functional symbol sub that represents the substitution operator, such that for any formula $A(x)$ and term t with codes

$$
\ulcorner A(x)\urcorner, \quad\ulcorner\downarrow\urcorner
$$

respectively, we have that

$$
\vdash s \quad \operatorname{sub}(\ulcorner A(x)\urcorner,\ulcorner t\urcorner)=\ulcorner A(t)\urcorner
$$

Principles of Encoding

Iteration of sub allows one to define

$$
\text { sub }_{3}, \text { sub }_{4}, \quad \text { sub }_{5}, \ldots
$$

such that

$$
\vdash s \operatorname{sub}_{n}\left(\left\ulcorner A\left(x_{1}, \ldots, x_{n}\right)\right\urcorner,\left\ulcorner t_{1}\right\urcorner, \ldots,\left\ulcorner t_{n}\right\urcorner\right)=\left\ulcorner A\left(t_{1}, \ldots, t_{n}\right)\right\urcorner
$$

Finally, we have to encode derivations in S
To do so we proceed as follows

Principles of Encoding

3. S must have in a binary relation $\operatorname{Prov}_{T}(x, y)$, such that for closed terms t_{1}, t_{2}
rs $\operatorname{Prov}_{T}\left(t_{1}, t_{2}\right)$ if and only if t_{1} is a code of a derivation in T of the formula with a code t_{2}

We read $\operatorname{Prov}_{T}(x, y)$ as " x proves y in T " or as " x is a proof y in T "

It follows that for some closed term t,
$\vdash_{T} A$ if and only if $\vdash_{s} \operatorname{Prov}_{T}(t,\ulcorner A\urcorner)$

Principles of Encoding

We define

$$
\operatorname{Pr}_{T}(y) \Leftrightarrow \exists x \operatorname{Prov}_{T}(x, y)
$$

and obtain a predicate asserting provability

However, it is not always true

$$
\vdash_{T} A \text { if and only if } \vdash_{S} \operatorname{Pr}_{T}(\ulcorner A\urcorner)
$$

unless S is fairly sound (to be defined separately)

The encoding can be carried out, however, in such a way that the following conditions essential to the proofs of the Incompleteness Theorems hold for any sentence A of T

Derivability Conditions

Derivability Conditions (Hilbert-Bernays, 1939)

For sentence A of T
D1 $\vdash_{T} A$ implies $\vdash_{s} \operatorname{Pr}_{T}(\ulcorner A\urcorner)$
$\mathbf{D 2} \quad \vdash_{s}\left(\left(\operatorname{Pr}_{T}(\ulcorner A\urcorner) \Rightarrow \operatorname{Pr}_{T}\left(\left\ulcorner\operatorname{Pr}_{T}(\ulcorner A\urcorner)\right\urcorner\right)\right)\right)$

D3 $\vdash_{S}\left(\left(\operatorname{Pr}_{T}(\ulcorner A\urcorner) \cap \operatorname{Pr}(\ulcorner(A \Rightarrow B)\urcorner)\right) \Rightarrow \operatorname{Pr}(\ulcorner B\urcorner)\right)$

Chapter 11
 Formal Theories and Gödel Theorems

Slides Set 2

PART 4: Proof of the Gödel Incompleteness Theorems

Diagonalization Lemma

The following theorem, called historically by the name Diagonalization Lemma is essential to the proof of the Incompleteness Theorems

It is also called Fixed Point Theorem and both names are used interchangeably

The fist name as is historically older, important for convenience of references and the second name is routinely used in computer science community

Diagonalization Lemma

Mendelson (1977) believes that the central idea was first explicitly mentioned by Carnap who pointed out in 1934 that the result was implicit in the work of Gödel (1931)

Gödel was not aware of Carnap work until 1937

The name Diagonalization Lemma is used because the main argument in its proof has some resemblance to the diagonal arguments used by Cantor in 1891

Diagonalization Lemma

In mathematics, a Fixed-point Theorem is a name of a theorem saying that a function f under some conditions, will have at least one fixed point, i.e. a point x such that

$$
f(x)=x
$$

The Diagonalization Lemma says that for any formula A in the language of theory T with one free variable there is a sentence B such that the formula

$$
(B \Leftrightarrow A(\ulcorner B\urcorner)) \text { is provable in } T
$$

Diagonalization Lemma

Intuitively, the Diagonalization Lemma sentence B
such that

$$
\vdash_{T} \quad(B \Leftrightarrow A(\ulcorner B\urcorner))
$$

is a self-referential sentence saying that B has property A

The sentence B can be viewed as a fixed point of the operation assigning to each formula A the sentence $A(\ulcorner B\urcorner)$

Hence the name Fixed Point Theorem.

Diagonalization Lemma

Diagonalization Lemma

Let T, S be theories as defined
Let $A(x)$ be a formula in the language of T with x as the only free variable
Then there is a sentence B such that

$$
\vdash_{s}(B \Leftrightarrow A(\ulcorner B\urcorner))
$$

NOTE: If A, B are not in the language of S, then by
$\vdash s(B \Leftrightarrow A(\ulcorner B\urcorner))$ we mean that the equivalence is proved in the theory S^{\prime} in the language of T whose only non-logical axioms are those of S

Proof of Diagonalization Lemma

Proof of Diagonalization Lemma

Given $A(x)$, let the formula $(C(x) \Leftrightarrow A(\operatorname{sub}(x, x))$
be a diagonalization of $A(x)$
Let $m=\ulcorner C(x)\urcorner$ and $B=C(m)$, i.e. $B=C(\ulcorner C(x)\urcorner)$
Then we claim

$$
\vdash_{s}(B \Leftrightarrow A(\ulcorner B\urcorner))
$$

For, in S, we see that
$B \Leftrightarrow C(m) \Leftrightarrow A(\operatorname{sub}(m, m))$
$\Leftrightarrow A(\operatorname{sub}(\ulcorner C(x)\urcorner, m) \quad($ since $m=\ulcorner C(x)\urcorner)$
$\Leftrightarrow A(\ulcorner C(m)\urcorner) \Leftrightarrow A(\ulcorner B\urcorner)$
by sub definition and $B=C(m)$
This proves (we leave details to the reader as exercise)

$$
\vdash_{s}(B \Leftrightarrow A(\ulcorner B\urcorner))
$$

First Incompleteness Theorem

First Incompleteness Theorem

First Incompleteness Theorem

Let T, S be theories as defined
Then there is a sentence G in the language of T such that:
(i) $\Vdash_{T} G$
(ii) under an additional assumption, $\nvdash T^{\text {}} \neg G$

Proof

We apply Diagonalization Lemma for a formula $A(x)$ being $\neg \operatorname{Pr}_{T}(x)$, where $\operatorname{Pr}_{T}(x)$ is defined as

$$
\operatorname{Pr}_{T}(x) \Leftrightarrow \exists y \operatorname{Prov}_{T}(y, x)
$$

and $\operatorname{Prov}_{T}(y, x)$ reads as " y is a proof x in T "
We get that there is a sentence G such that

$$
\vdash_{s}\left(G \Leftrightarrow \neg \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)
$$

Proof of First Incompleteness Theorem

We have assumed about theories T, S that T is consistent and $S \subseteq T$, i.e. for any formula A,

$$
\text { if } \vdash_{S} A \text {, then } \vdash_{T} A
$$

So we have that also

$$
(*) \quad \vdash_{T}\left(G \Leftrightarrow \neg \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)
$$

Now we are ready to prove (i)
We conduct the proof of \quad (i) $\Vdash_{T} G$ by contradiction
Assume

$$
\vdash_{T} G
$$

Proof of First Incompleteness Theorem

Observe that by the Derivability Condition D1: $\vdash_{T} A$ implies ts $\operatorname{Pr}_{T}(\ulcorner A\urcorner)$ for $A=G$ we get that

$$
\vdash_{T} G \text { implies } \vdash_{S} \operatorname{Pr}_{T}(\ulcorner G\urcorner)
$$

Hence by assumption $\vdash_{T} G$ we get

$$
\vdash_{S} \quad \operatorname{Pr}_{T}(\ulcorner G\urcorner)
$$

By the assumption $\mathbf{S} \subseteq \mathbf{T}$ we get

$$
\vdash_{T} \quad \operatorname{Pr}_{T}(\ulcorner G\urcorner)
$$

This, the assumption $\vdash_{T} G$, and already proved

$$
(*) \quad \vdash_{T}\left(G \Leftrightarrow \neg \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)
$$

contradicts the consistency of T

Proof of First Incompleteness Theorem

Now we are ready to prove
(ii) under an additional assumption, $\Vdash_{T} \neg G$

The additional assumption is a strengthening of the converse implication to D1 namely,

$$
\vdash_{T} \operatorname{Pr}_{T}(\ulcorner G\urcorner) \text { implies } \vdash_{T} G
$$

We conduct the proof by contradiction
Assume $\vdash_{T} \neg G$
Hence $\left.\vdash_{T} \neg \neg \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)$ so we have that $\left.\vdash_{T} \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)$
By the additional assumption it implies that $\vdash_{T} G$ what contradicts the consistency of T
This ends the proof

First Incompleteness Theorem

Observe that the sentence G is equivalent in T to an assertion that G is unprovable in T In other words the sentence G says
" I am not provable in T"
Hence the just proved Second Incompleteness Theorem provides a strict mathematical formalization of its previously intuitively stated version that said:
"there is a sentence A in the language of T which asserts its own unprovability "

We call G the Gödel's sentence

Second Incompleteness Theorem

Second Incompleteness Theorem

Second Incompleteness Theorem

Let T, S be theories as defined
Let Con_{T} be a sentence $\neg \operatorname{Pr}_{T}(\ulcorner C\urcorner)$), where is C is any contradictory statement
Then

$$
ъ_{T} \text { Con }_{T}
$$

Proof

Let G the Gödel's sentence of the First Incompleteness
Theorem. We prove that

$$
\vdash_{T}\left(\operatorname{Con}_{T} \Leftrightarrow G\right)
$$

and use it to prove that
\Vdash_{T} Con $_{T}$

Proof of Second Incompleteness Theorem

Assume that we have already proved the property

$$
(*) \quad \vdash_{T} \quad\left(\operatorname{Con}_{T} \Leftrightarrow G\right)
$$

We conduct the proof of

$$
\varkappa_{T} \text { Con }_{T}
$$

by contradiction
Assume \vdash_{T} Con $_{T}$
By (*) we have that $\vdash_{T}\left(\operatorname{Con}_{T} \Leftrightarrow G\right)$, so by the assumption we get $\vdash_{T} G$ what contradicts the First Incompleteness Theorem.

Proof of Second Incompleteness Theorem

To complete the proof we have to prove now the property

$$
(*) \quad \vdash_{T} \quad\left(\operatorname{Con}_{T} \Leftrightarrow G\right)
$$

In the proof of $(*)$ we use some logic facts, called
Logic 1, 2, 3, 4 that are listed and proved after this proof

We know by Logic 1 that

$$
\begin{gathered}
\vdash_{T}\left(\operatorname{Con}_{T} \Leftrightarrow G\right) \\
\text { if and only if } \\
\vdash_{T}\left(\operatorname{Con}_{T} \Rightarrow G\right) \text { and } \vdash_{T}\left(G \Rightarrow \operatorname{Con}_{T}\right)
\end{gathered}
$$

Proof of Second Incompleteness Theorem

1. We prove the implication

$$
\vdash_{T} \quad\left(G \Rightarrow \text { Con }_{T}\right)
$$

By definition of Con $_{T}$ we have to prove now

$$
\vdash_{T} \quad\left(G \Rightarrow \neg \operatorname{Pr}_{T}(\ulcorner C\urcorner)\right)
$$

The formula C is a contradiction, so the formula $(C \Rightarrow G)$ is a predicate tautology Hence

$$
\vdash_{T}(C \Rightarrow G)
$$

By the Derivability Condition D1: $\vdash_{T} A$ implies
s $\operatorname{Pr}_{T}(\ulcorner A\urcorner)$ for $A=(C \Rightarrow G)$ we get that

$$
\vdash_{S} \quad \operatorname{Pr}_{T}(\ulcorner(C \Rightarrow G)\urcorner)
$$

Proof of Second Incompleteness Theorem

We write D3 for $A=\operatorname{Pr}_{T}(\ulcorner C\urcorner)$ and
$B=\vdash_{s} \operatorname{Pr}_{T}(\ulcorner(C \Rightarrow G)\urcorner)$ and obtain that
$(*) \quad \vdash_{s}\left(\left(\operatorname{Pr}_{T}(\ulcorner C\urcorner) \cap \operatorname{Pr}_{T}(\ulcorner(C \Rightarrow G)\urcorner)\right) \Rightarrow \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)$
We have by Logic 2

$$
(* *) \quad \vdash_{S}\left(\operatorname{Pr}_{T}(\ulcorner C\urcorner) \Rightarrow\left(\operatorname{Pr}_{T}(\ulcorner C\urcorner) \cap \operatorname{Pr} r_{T}(\ulcorner(C \Rightarrow G)\urcorner)\right)\right)
$$

We get from $(*),(* *)$, and Logic 3

$$
\vdash_{S}\left(\operatorname{Pr}_{T}(\ulcorner C\urcorner) \Rightarrow \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)
$$

We apply Logic 4 (contraposition) to the above and get

$$
(* * *) \quad \vdash_{s}\left(\neg \operatorname{Pr}_{T}(\ulcorner G\urcorner) \Rightarrow \neg \operatorname{Pr}_{T}(\ulcorner C\urcorner)\right)
$$

Proof of Second Incompleteness Theorem

Observe that by the property $\vdash_{s}\left(G \Leftrightarrow \neg \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)$ proved in in the proof of the First Incompleteness Theorem we have

$$
\vdash s\left(G \Rightarrow \neg \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)
$$

We put $(* * *)$ and the property above the together and get
$\vdash_{S}\left(G \Rightarrow \neg \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)$ and $\vdash_{S}\left(\neg \operatorname{Pr}_{T}(\ulcorner G\urcorner) \Rightarrow \neg \operatorname{Pr}_{T}(\ulcorner C\urcorner)\right)$
Applying Logic 4 to the above we get

$$
\vdash_{s}(G \Rightarrow \neg \operatorname{Pr}(\ulcorner C\urcorner))
$$

But C is by definition $C o n_{T}$ and hence we have proved the

$$
\vdash s\left(G \Rightarrow C_{T}\right)
$$

and hence also

$$
\vdash_{T} \quad\left(G \Rightarrow C_{T}\right)
$$

Proof of Second Incompleteness Theorem

2. We prove now $\vdash_{T}\left(\operatorname{Con}_{T} \Rightarrow G\right)$, i.e. the implication

$$
\vdash_{T} \quad\left(\neg \operatorname{Pr}_{T}(\ulcorner C\urcorner) \Rightarrow G\right)
$$

Here is a concise proof
We leave it to the reader as an exercise to write a detailed version that develops and lists needed Logic properties in a similar way as we did in the part 1.
By the Derivability Condition D2 for $A=G$ we get

$$
\vdash_{S}\left(\left(\operatorname{Pr}_{T}(\ulcorner G\urcorner) \Rightarrow \operatorname{Pr}_{T}\left(\left\ulcorner\operatorname{Pr}_{T}(\ulcorner G\urcorner)\right\urcorner\right)\right)\right)
$$

Proof of Second Incompleteness Theorem

The property $\vdash^{s}\left(\left(\operatorname{Pr}_{T}(\ulcorner G\urcorner) \Rightarrow \operatorname{Pr}_{T}\left(\left\ulcorner\operatorname{Pr}_{T}(\ulcorner G\urcorner)\right\urcorner\right)\right)\right)$ implies

$$
\vdash_{s}\left(\operatorname{Pr}_{T}(\ulcorner G\urcorner) \Rightarrow \operatorname{Pr}_{T}(\ulcorner\neg G\urcorner)\right)
$$

by D1, D3, since $\vdash^{s}\left(G \Rightarrow \neg \operatorname{Pr}_{T}(\ulcorner G\urcorner)\right)$
This yields

$$
\vdash_{s}\left(\left(\operatorname{Pr}_{T}(\ulcorner G\urcorner) \Rightarrow \operatorname{Pr}_{T}(\ulcorner(G \cap \neg G)\urcorner)\right)\right.
$$

by D1, D3, and logic properties
This in turn implies

$$
\vdash_{s}\left(\left(\operatorname{Pr}_{T}(\ulcorner G\urcorner) \Rightarrow \operatorname{Pr}_{T}(\ulcorner C\urcorner)\right)\right.
$$

by again D1, D3, and logic properties

Proof of Second Incompleteness Theorem

By Logic 4 (contraposition) we get

$$
\vdash s \quad\left(\neg \operatorname{Pr}_{T}(\ulcorner G\urcorner) \Rightarrow \neg \operatorname{Pr}_{T}(\ulcorner C\urcorner)\right)
$$

which is

$$
\vdash s\left(\mathrm{Con}_{T} \Rightarrow G\right)
$$

and hence by assumption $\mathbf{S} \subseteq \mathbf{T}$ we get that also

$$
\vdash_{T} \quad\left(\mathrm{Con}_{T} \Rightarrow G\right)
$$

This ends the proof

Second Incompleteness Theorem

Observation

We proved, a part of proof of the Second Incompleteness
Theorem the equivalence

$$
\vdash_{T}\left(\operatorname{Con}_{T} \Leftrightarrow G\right)
$$

which says that the self-referential Gödel sentence G
which asserts its own unprovability is equivalent to the sentence asserting consistency

Hence, the sentence G is unique up to provable equivalence $\left(\operatorname{Con}_{T} \Leftrightarrow G\right)$ and we can say that G is the sentence that asserts its own unprovability

We used, in the part (ii) of the First Incompleteness
Theorem, an additional assumption that $\vdash_{T} \operatorname{Pr}_{T}(\ulcorner G\urcorner)$ implies $\vdash_{T} G$, instead of a habitual assumption of
ω-consistency
The concept of ω-consistency was introduced by Gödel for purpose of stating assumption needed for the proof of his First Incompleteness Theorem

The modern researchers proved that the assuption of the ω-consistency can be replaced, as we did, by other more general better suited for new proofs conditions

ω-consistency

ω - consistency
Informally, we say that T is ω - consistent if the following two conditions are not simultaneously satisfied for any formula A :
(i) $\vdash_{T} \exists x A(x)$
(ii) $\vdash T \neg A(\bar{n})$ for every natural number n

Formally, ω-consistency can be represented in varying degrees of generality by (modification of) the following formula

$$
\left(\operatorname{Pr}_{T}(\ulcorner\exists x A(x)\urcorner) \Rightarrow \exists x \neg \operatorname{Pr}_{T}(\ulcorner\neg A(x)\urcorner)\right)
$$

Logic Properties

Logic Properties

We prove now, as an exercise the logic based steps in the proof of part 1. of the proof the Second Incompleteness

Theorem that follow the predicate logic properties, hence we named them Logic

The discovery and formalization of needed logic properties and their proofs for the part 2. is left as a homework exercise

Logic Properties

Remark

All formulas belonging to the languages of of T, S belong to the language of H
By the monotonicity of classical consequence everything provable in T, S is provable in H

By definition of T, S, they are based on a complete proof system H for predicate logic and so all predicate tautologies are provable in H
In particular, all predicate tautologies formulated on the languages of T, S are provable in T and in S, respectively

Logic Properties

Logic 1

Given a complete proof system H, for any formulas A, B of the language of H,

$$
\vdash(A \Leftrightarrow B) \text { if and only if } \vdash(A \Rightarrow B) \text { and } \vdash(B \Rightarrow A)
$$

Proof

1. We prove implication

$$
\text { if } \vdash(A \Leftrightarrow B) \text {, then } \vdash(A \Rightarrow B) \text { and } \vdash(B \Rightarrow A)
$$

Directly from provability of a tautology

$$
((A \Leftrightarrow B) \Rightarrow((A \Rightarrow B) \cap(B \Rightarrow A)))
$$

and assumption $\vdash(A \Leftrightarrow B)$, and MP we get

$$
\vdash((A \Rightarrow B) \cap(B \Rightarrow A))
$$

Logic Properties

Consequently, from

$$
\vdash((A \Rightarrow B) \cap(B \Rightarrow A))
$$

and provability of tautologies $((A \cap B) \Rightarrow A)$ and $((A \cap B) \Rightarrow B)$, for any formulas A, B, i.e. from fact that in a particular case

$$
\vdash(((A \Rightarrow B) \cap(B \Rightarrow A) \Rightarrow(A \Rightarrow B))
$$

and

$$
\vdash(((A \Rightarrow B) \cap(B \Rightarrow A) \Rightarrow(B \Rightarrow A))
$$

and MP applied twice we get

$$
\vdash(A \Rightarrow B) \text { and } \quad \vdash(B \Rightarrow A)
$$

Logic Properties

2. We prove implication

$$
\text { if } \vdash(A \Rightarrow B) \text { and } \vdash(B \Rightarrow A) \text {, then } \vdash(A \Leftrightarrow B)
$$

Directly from provability of tautology

$$
\vdash((A \Rightarrow B) \Rightarrow((B \Rightarrow A) \Rightarrow(A \Leftrightarrow B)))
$$

and assumptions

$$
\vdash(A \Rightarrow B) \text { and } \quad \vdash(B \Rightarrow A)
$$

and MP applied twice we get

$$
\vdash(A \Leftrightarrow B)
$$

Logic Properties

Logic 2

For any formulas A, B of the language of H,

$$
\vdash(A \Rightarrow(A \cup B)) \text { and } \quad \vdash(A \Rightarrow(B \cup A))
$$

Proof

Follows directly from predicate tautologies

$$
(A \Rightarrow(A \cup B)) \text { and } \quad(A \Rightarrow(B \cup A))
$$

and completeness of H

Logic Properties

Logic 3

For any formulas A, B of the language of H,

$$
\text { if } \vdash(A \Rightarrow B) \text { and } \vdash(B \Rightarrow C) \text {, then } \vdash(A \Rightarrow C)
$$

Proof

From completeness of H and predicate tautology we get

$$
(*) \quad \vdash((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))
$$

Assume $\vdash(A \Rightarrow B)$ and $\vdash(B \Rightarrow C)$
Applying MP to $(*)$ twice we get the proof of $(A \Rightarrow C)$, i.e.

$$
\vdash(A \Rightarrow C)
$$

Logic Properties

Logic 4

For any formulas A, B of the language of H,

$$
\vdash(A \Rightarrow B) \quad \text { if and only if } \quad \vdash(\neg B \Rightarrow \neg A)
$$

Proof

From completeness of H, predicate tautology, and Logic 1

$$
\vdash((A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow \neg A))
$$

if and only if
$(*) \vdash((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$ and $\vdash((\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B))$

Logic Properties

Assume $\vdash(A \Rightarrow B)$
By (*) and MP we get

$$
\vdash(\neg B \Rightarrow \neg A)
$$

Assume $\vdash(\neg B \Rightarrow \neg A)$
By (*) and MP we get

$$
(A \Rightarrow B)
$$

This ends the proof

The Formalized Completeness Theorem

The Formalized Completeness Theorem - Introduction

Proving completeness of a proof system with respect to a given semantics is the first and most important goal while developing a logic and was the central focus of our study

So we now conclude our book with presentation the formalized completeness theorem

We discuss its proof and show how to use it to give new type of proofs, called model-theoretic proofs, of the incompleteness theorems for Peano Arithmetic PA, i.e. for the case when $S=P A$

The Formalized Completeness Theorem

Formalizing the proof of completeness theorem for classical predicate logic from chapter 9 within PA we get the following

Hilbert-Bernays Completeness Theorem

Let U be a theory with a primitive recursive set of axioms There is a set Tr_{M} of formulas such that in $P A+C_{U}$ one can prove that this set Tr_{M} defines a model M of U :

$$
\vdash P A+\operatorname{Con}_{U} \forall x\left(\operatorname{Pr}_{U}(x) \Rightarrow \operatorname{Tr}_{M}(x)\right)
$$

Moreover, the set Tr_{M} is of type Δ_{2}

The Formalized Completeness Theorem

The Hilbert-Bernays Completeness Theorem asserts that modulo Con $_{U}$, one can prove in PA the existence of a model of U whose truth definition is of type Δ_{2}

The proof of the Completeness Theorem is just an arithmetization of the Henkin proof presented in chapter 9

The proof proceeds as follows

The Formalized Completeness Theorem

Following the Henkin proof one adds to the language of U an infinite primitive recursive set of new constants

$$
c_{0}, c_{1}, c_{2} \ldots, \ldots
$$

Then one adds for each formula $A(x)$ the corresponding Henkin Axiom

$$
\left(\exists x A(x) \Rightarrow A\left(c_{A[x]}\right)\right)
$$

and enumerates sentences
$A_{0}, A_{1}, A_{2}, \ldots, \ldots$
in this augmented language

The Formalized Completeness Theorem

As next step one defines a complete theory by starting
with U and adding at each step n a sentence

$$
A_{n} \text {, or } \neg A_{n}
$$

according to whether A_{n} is consistent with what has been chosen before or not

The construction is then described within PA
Assuming Conu one can also prove that the construction never terminates

The Formalized Completeness Theorem

The resulting set of sentences forms a complete theory which by Henking Axioms forms a model of U Inspection shows that the truth definition Tr_{M} is of type Δ_{2} This ends the proof

The Hilbert-Bernays completeness makes possible to conduct new type of proofs of the Gödel incompleteness theorems, model- theoretic proofs

The Formalized Completeness Theorem

Gödel chose as the self-referring sentence a syntactic statement
"I do not have a proof"
He did not want (and saw difficulties with) to use the sentence involving the notion of truth, i.e. the sentence

"I am not true"

The new proofs use exactly this semantic statement and this is why they are called model-theoretic proofs

Model-theoretic Proof

Dana Scott was the first to observe that one can give a model- theoretic proof of the First Incompleteness Theorem

Here is the theorem and its Dana Scott's short proof

First Incompleteness Theorem
Let PA be a Peano Arithmetic
There is a sentence G of $P A$, such that
(i) $\Vdash_{P A} G$
(ii) $\Vdash_{P A} \neg G$

Model-theoretic Proof

Proof

Assume PA is complete
Then, since PA is true,

$$
\vdash_{P A} \text { Con }_{P A}
$$

and we can apply the Hilbert-Bernays Completeness
Theorem to obtain a formula Tr_{M} which gives a
truth definition for the model of PA
We choose G by

$$
(*) \quad \vdash_{P A}\left(G \Leftrightarrow \neg \operatorname{Tr}_{M}(\ulcorner G\urcorner)\right)
$$

Model-theoretic Proof

We claim

$$
\Vdash_{P A} G \text { and } \Vdash_{P A} \neg G
$$

For if $\vdash_{P A} G$, then $\left.\vdash_{P A} \operatorname{Tr}_{M}(\ulcorner G\urcorner)\right)$
By (*) and logic properties we get $\vdash_{P A} \neg G$

Contradiction

Similarly, $\vdash_{P A} \neg G$ implies $\vdash_{P A} G$
This ends the proof
Observe that the sentence G as defined by (*) asserts
"I am not true"

G Sentences

Scott 's proof differs from the Gödel proof not only by the choice of the model- theoretic method, but also by be a choice of the model- theoretic sentence G

Let's compare these two independent sentences G: the classic syntactic one of Gödel proof representing statement
"I do not have a proof"
and the semantic one of Scott proof representing statement
"I am not true"

G Sentences

G- Sentences Property

The sentence G_{s} of the Gödel Incompleteness
Theorem asserting its own unprovability is
(i) unique up to provable equivalence $\left(\operatorname{Con}_{T} \Leftrightarrow G\right)$
(ii) the sentence is Π_{1} and hence true

The sentence G of the Scott Incompleteness Theorem asserting its own falsity in the model constructed is
(iii) not unique - for the following implication holds

$$
\text { if }\left(G \Leftrightarrow \neg \operatorname{Tr}_{M}(\ulcorner G\urcorner)\right) \text {, then }\left(\neg G \Leftrightarrow \neg \operatorname{Tr}_{M}(\ulcorner\neg G\urcorner)\right)
$$

(iv) the sentence is Δ_{2} and, by (iii) there is no obvious way of deciding its truth or falsity

Model-theoretic Proof

Georg Kreisler was the first to present a model- theoretic proof of the following

Second Incompleteness Theorem

Let PA be a Peano Arithmetic

$$
\Vdash_{P A} \text { Con }_{P A}
$$

The proof uses, as did the proof of the Hilbert-Bernays
Completeness Theorem the arithmetization of Henkin proof of completeness theorem presented in Chapter 9

Model-theoretic Proof

Proof

The proof is carried by contradiction
We assume

$$
\vdash_{P A} \text { Con }_{P A}
$$

Then we show, for any presentation of the Henkin proof of completeness theorem construction (as given by encoding, the enumeration of sentences ...etc.) there is a number m, such that, for any model N of PA, the sequence of models determined by the given presentations must stop after fewer then m steps with a model in which

Con $_{P A}$ is false

