LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

Chapter 2
Introduction to Classical Logic Languages and Semantics

CHAPTER 2 SLIDES

Chapter 2
 Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 1: Classical Logic Model
PART 2: Propositional Language
PART 3: Propositional Semantics
PART 4: Examples of Propositional Tautologies

Slides Set 2
PART 5 4: Predicate Language
PART 6 4: Predicate Tautologies - Laws for Quantifiers

Chapter 2
 Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 1: Classical Logic Model

Very Short History

Logic Origins:

Stoic school of philosophy (3rd century B.C.)
Tthe most eminent representative was Chryssipus

Modern Origins:

Mid-19th century
English mathematician G. Boole, who is sometimes regarded as the founder of mathematical logic

First Axiomatic System:
In 1879 by German logician G. Frege.

Logic

Logic builds symbolic models of our world

Logic builds the models in order to describe formally the ways we reason in and about our world

Logic also poses questions about correctness of such models and develops tools to answer them

Classical Model Assumptions

Assumption 1
 Classical logic model admits only two logical values

Why two logical values only?

Classical logic was created to model the reasoning principles of mathematics

We expect from mathematical theorems to be always either true or false and the reasoning leading to them should guarantee this without any ambiguity

Classical Model Assumptions

Assumption 2

1. The language in which we reason uses sentences
2. The sentences are build up from basic assertions about the world using special words or phrases:
"not", "not true", "and", "or", "implies", "if then", "from the fact that we can deduce", " if and only if", "equivalent", "every", "for all", any", "some", "exists"
3. We use symbols do denote basic assertions and special words or phrases

Hence the name symbolic logic

Logic

Logic studies the behavior of the special words and phrases

Special words and phrases have accepted intuitive meanings

Logic builds models to formalize these intuitive meanings

To do so we first define formal symbolic languages and then define a formal meaning of their symbols

The formal meaning is called semantics

Propositional Connectives

The symbols for he special words and phrases are called propositional connectives
There are different choices of symbols for the propositional connectives; we adopt the following:
\neg for "not", "not true"
\cap for "and"
\cup for ör"
\Rightarrow for "implies", "if then", "from the fact that... we can deduce"
\Leftrightarrow for " if and only if", "equivalent"
The names for the propositional connectives are:
negation for \neg
conjunction, for \cap, disjunction for \cup
implication for \Rightarrow, and equivalence for \Leftrightarrow

Propositional Logic

Restricting our attention to the role of propositional connectives yields to what is called propositional logic

The basic components of the propositional logic are a propositional language and a propositional semantics

The propositional logic is a quite simple model to justify, describe and develop

We devote first few chapters to it. We do it both for its own sake and because it provides a good background for developing and understanding more difficult languages and logics to follow

Quantifiers and Predicate Logic

Quantifiers

We use symbols:
\forall for "every", "any", "all"
\exists for "some"," exists","there is"
The symbols \forall, \exists are called quantifiers

Consideration and study of the role of propositional connectives and quantifiers leads to what is called a predicate logic

Quantifiers and Predicate Logic

The basic components of the predicate logic are predicate language and predicate semantics

The predicate logic is a much more complicated model

We develop and study it in full formality in chapters following this introduction and examination of the propositional logic model

Chapter 2

Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 2: Propositional Language

Propositional Language

Propositional language is a quite simple, symbolic language into which we can translate (represent) sentences of a

natural language

Example

Consider natural language sentence
" If $2+2=5$, then $2+2=4$ "
We translate it into the propositional language as follows
We denote the basic assertion (proposition) " $2+2=5$ " by a variable, let's say a, and the proposition " $2+2=4$ " by a variable b

We write a connective \Rightarrow for "if then"
As a result we obtain a propositional language formula

$$
(a \Rightarrow b)
$$

Propositional Translation

Exercise

Translate a natural language sentence S
"The fact that it is not true that at the same time $2+2=4$ and
$2+2=5$ implies that $2+2=4$ "
into a corresponding propositional language formula
We carry the translation as follows

1. We identify all words and phrases representing the logical connectives and we re-write the sentence S
in a simpler form introducing parenthesis to better express its meaning

Propositional Translation

The sentence S becomes:
" If not $(2+2=4$ and $2+2=5)$ then $2+2=4$ "
2.

We identify the basic assertions (propositions) and assign propositional variables to them:

$$
a: " 2+2=4 " \text { and } \quad b: " 2+2=5 "
$$

Step 3

We write the propositional language formula:

$$
(\neg(a \cap b) \Rightarrow a)
$$

Syntax

A formal description of symbols and the definition of the set of formulas is called a syntax of a symbolic language

We use the word syntax to stress that the formulas do not carry neither formal meaning nor a logical value
We assign the meaning and logical value to syntactically defined formulas in a separate step
This next, separate step is called a semantics of the given symbolic language

A given symbolic language can have different semantics and the different semantics can define different logics

Natural Languages

One can think about a natural language as a set \mathcal{W} of all words and sentences based on a given alphabet \mathcal{A}

This leads to a simple, abstract model of a natural language NL as a pair

$$
N L=(\mathcal{A}, \mathcal{W})
$$

Some natural languages share the same alphabet, some have different alphabets

All of them face serious problems with a proper recognition and definitions of accepted words and complex sentences

Symbolic Languages

We do not want the symbolic languages to share the difficulties of the natural languages

We define their components precisely and in such a way that their recognition and correctness will be easily decided We call their words and sentences formulas and denote the set of all formulas by \mathcal{F}

We define a symbolic language as a pair

$$
S L=(\mathcal{A}, \mathcal{F})
$$

Symbolic Languages Categories

We distinguish two categories of symbolic languages:

propositional and predicate

We define first the propositional language

The definition of the predicate language, with its much more complicated structure will follow

Propositional Language Definition

Definition

By a propositional language \mathcal{L} we understand a pair

$$
\mathcal{L}=(\mathcal{A}, \mathcal{F})
$$

where \mathcal{A} is called propositional alphabet
\mathcal{F} is called a set of all well formed formulas

Language Components: Alphabet

1. Alphabet \mathcal{A}

The alphabet \mathcal{A} consists of
a countably infinite set VAR of propositional variables, a finite set of propositional connectives, and a set of two parenthesis
We denote the propositional variables by letters

$$
a, b, c, p, q, r, \ldots \ldots .
$$

with indices if necessary. It means that we can also use

$$
a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots
$$

as symbols for propositional variables

Language Components: Alphabet

Propositional connectives are:

$$
\neg, \cap, \cup, \Rightarrow, \Leftrightarrow
$$

The connectives have well established names
The connectives names are:
negation, conjunction, disjunction, implication, and equivalence (biconditional)
for the connectives $\neg, \cap, \cup, \Rightarrow$, and \Leftrightarrow, respectively

Parenthesis are symbols (and)

Language Components: Formulas

Formulas are expressions build by means of elements of the alphabet \mathcal{A}. We denote formulas by capital letters
$A, B, C, D, \ldots .$. , with indices, if necessary.
The set \mathcal{F} of all formulas of the propositional language \mathcal{L} is defined recursively as follows

1. Base step: all propositional variables are are formulas

They are called atomic formulas
2. Recursive step: for any already defined formulas A, B, the expressions

$$
\neg A,(A \cap B),(A \cup B),(A \Rightarrow B),(A \Leftrightarrow B)
$$

are also formulas
3. Only those expressions are formulas that are determined to be so by means of conditions $\mathbf{1}$. and 2 .

Formulas Example

By the definition, any propositional variable is a formula.
Let's take two variables a and b.
By the recursive step we get that

$$
(a \cap b),(a \cup b),(a \Rightarrow b),(a \Leftrightarrow b), \neg a, \neg b
$$

are formulas
The recursive step applied again produces for example some formulas :

$$
\neg(a \cap b), \quad((a \Leftrightarrow b) \cup \neg b), \quad \neg \neg a, \quad \neg \neg(a \cap b)
$$

Formulas

Observe that we listed only few formulas obtained in the first recursive step

As as the recursive process continue we obtain a set of well formed of formulas

The set of all formulas is countably infinite

Formulas

Remark that we put parenthesis within the formulas in a way
to avoid ambiguity
The expression

$$
a \cap b \cup a
$$

is ambiguous
We don't know whether it represents a formula

$$
(a \cap b) \cup a \quad \text { or } a \text { formula } a \cap(b \cup a)
$$

Observe that neither of formulas $a \cap b \cup a,(a \cap b) \cup a$ or $a \cap(b \cup a)$ is a well formed formula

Exercises

Exercise

Consider a following set
$\mathcal{S}=\{\neg a \Rightarrow(a \cup b),((\neg a) \Rightarrow(a \cup b)), \neg(a \Rightarrow(a \cup b)),(a \rightarrow a)\}$

1. Determine which of the elements of \mathcal{S} are, and which are not well formed formulas of $\mathcal{L}=(\mathcal{A}, \mathcal{F})$
2. For any $A \notin \mathcal{F}$ re-write it as a correct formula and write what it says in the natural language

Exercises

Solution

The formula $\neg a \Rightarrow(a \cup b)$ is not a well formed formula

A correct formula is $(\neg a \Rightarrow(a \cup b))$

It says: "If a is not true, then we have a or b"

Another correct formula in is $\neg(a \Rightarrow(a \cup b))$

It says: "It is not true that a implies a or b"

Exercises

Solution

The formula $((\neg a) \Rightarrow(a \cup b))$ is not correct because $(\neg a) \notin \mathcal{F}$
The correct formula is $(\neg a \Rightarrow(a \cup b))$
The formula $\neg(a \Rightarrow(a \cup b))$ is correct
The formula $\neg(a \rightarrow a) \notin \mathcal{F}$ is not correct
The connective \rightarrow does not belong to the language \mathcal{L}
$\neg(a \rightarrow a)$ is a correct formula of another propositional language; the one that uses a symbol \rightarrow for implication

Exercises

Exercise

Write following natural language statement:
"One likes to play bridge or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes swimming"
as a formula of the propositional language $\mathcal{L}=(\mathcal{A}, \mathcal{F})$

Solution

First we identify the needed components of the alphabet \mathcal{A} :
propositional variables: a, b, c
a denotes statement: one likes to play bridge, b denotes a statement: the weather is good, c denotes a statement: one likes swimming
Connectives: $\cup, \Rightarrow, \cup . \neg$
The corresponding formula of \mathcal{L} is

$$
(a \cup(b \Rightarrow(\neg a \cup c)))
$$

Symbols for Connectives

The connectives symbols we use are not the only one used in mathematical, logical, or computer science literature Some Other Symbols

Negation	Disjunction	Conjunction	Implication	Equivalence
$-A$	$(A \cup B)$	$(A \cap B)$	$(A \Rightarrow B)$	$(A \Leftrightarrow B)$
$N A$	$D A B$	$A A B$	$I A B$	$E A B$
\bar{A}	$(A \vee B)$	$(A \& B)$	$(A \rightarrow B)$	$(A \leftrightarrow B)$
$\sim A$	$(A \vee B)$	$(A \cdot B)$	$(A \supset B)$	$(A \equiv B)$
A^{\prime}	$(A+B)$	$(A \cdot B)$	$(A \rightarrow B)$	$(A \equiv B)$

The first notation is the closest to ours and is drawn mainly from the algebra of sets and lattice theory
The second comes from the Polish logician J. Łukasiewicz and is called the Polish notation

The third was used by D. Hilbert.
The fourth comes from Peano and Russell
The fifth goes back to Schröder and Pierce

Chapter 2

Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 3: Propositional Semantics

Propositional Semantics

We present now definitions of propositional connectives in terms of two logical values true or false and discuss their motivations

The resulting definitions are called a semantics for the classical propositional connectives

The semantics presented here is fairly informal

The formal definition of classical propositional semantics is presented in chapter 3

Conjunction: Motivation and Definition

Conjunction

A conjunction $(A \cap B)$ is a true formula if both A and B are true formulas

If one of the formulas, or both, are false, then the conjunction is a false formula

Let's denote statement: "formula A is false " by $A=F$ and a statement: "formula A is true " by $A=T$

Conjunction: Definition

Conjunction

The logical value of a conjunction depends on the logical values of its factors in a way which is express in the form of the following table (truth table)
Conjunction Table

A	B	$(A \cap B)$
T	T	T
T	F	F
F	T	F
F	F	F

Disjunction

Disjunction

The word or is used in natural language in two different senses.

First: A or B is true if at least one of the statements A, B is true

Second: A or B is true if one of the statements A and B is true and the other is false

In mathematics and hence in logic, the word or is used in the first sense

Disjunction: Definition

Disjunction

We adopt the convention that a disjunction $(A \cup B)$ is true if at least one of the formulas A, B is true

Disjunction Table

A	B	$(A \cup B)$
T	T	T
T	F	T
F	T	T
F	F	F

Negation: Definition

Negation

The negation of a true formula is a false formula, and the negation of a false formula is a true formula

Negation Table

A	$\neg A$
T	F
F	T

Implication: Motivation and Definition

The semantics of the statements in the form
if A, then B
needs a little bit more discussion.
In everyday language a statement if A, then B is interpreted to mean that B can be inferred from A.
In mathematics its interpretation differs from that in natural language

Implication: Definition

Implication

The above examples justify adopting the following definition of a semantics for the implication $(A \Rightarrow B)$ Implication Table

A	B	$(A \Rightarrow B)$
T	T	T
T	F	F
F	T	T
F	F	T

Implication: Motivation

Consider the following
Theorem
For every natural number n, if 6 DIVIDES n, then 3 DIVIDES n
The theorem is true for any natural number, hence in particular, it is true for numbers 2, 3, 6

Consider number 2
The following proposition is true

if 6 DIVIDES 2, then 3 DIVIDES 2

It means an implication $(A \Rightarrow B)$ in which A and B are false is interpreted as a true statement

Implication: Motivation

Consider now a number 3
The following proposition is true
if 6 DIVIDES 3, then 3 DIVIDES 3,
It means that an implication $(A \Rightarrow B)$ in which A is false and B is true is interpreted as a true statement
Consider now a number 6
The following proposition is true

$$
\text { if } 6 \text { DIVIDES 6, then } 3 \text { DIVIDES } 6 .
$$

It means that an implication $(A \Rightarrow B)$ in which A and B are true is interpreted as a true statement

Implication: Motivation

One more case.
What happens when in the implication $(A \Rightarrow B)$ the formula A is true and the formula B is false

Consider a sentence
if 6 DIVIDES 12, then 6 DIVIDES 5.
Obviously, this is a false statement

Equivalence Definition

Equivalence

An equivalence $(A \Leftrightarrow B)$ is true if both formulas A and B have the same logical value
Equivalence Table

A	B	$(A \Leftrightarrow B)$
T	T	T
T	F	F
F	T	F
F	F	T

Truth Tables Semantics

We summarize the tables for propositional connectives in the following one table.
We call it a truth table definition of propositional; connectives and hence we call the semantics defined here a truth tables semantics.

A	B	$\neg A$	$(A \cap B)$	$(A \cup B)$	$(A \Rightarrow B)$	$(A \Leftrightarrow B)$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Truth Tables Semantics

The truth tables indicate that the logical value of of propositional connectives independent of the formulas A, B We write the connectives in a "formula independent" form as a set of of the following equations

$$
\begin{aligned}
& \neg T=F, \quad \neg F=T ; \\
& T \cap T=T, \quad T \cap F=F, \quad F \cap T=F, \quad F \cap F=F ; \\
& T \cup T=T, \quad T \cup F=T, \quad F \cup T=T, \quad F \cup F=F ; \\
& T \Rightarrow T=T, \quad T \Rightarrow F=F, \quad F \Rightarrow T=T, \quad F \Rightarrow F=T ; \\
& T \Leftrightarrow T=T, \quad T \Leftrightarrow F=F, \quad F \Leftrightarrow T=F, \quad T \Leftrightarrow T=T
\end{aligned}
$$

We use the above set of connectives equations to evaluate logical values of formulas

Exercise

Exercise

Show that $(A \Rightarrow(\neg A \cap B))=F \quad$ for the following logical values of its basic components: $A=T$ and $B=F$

Solution

We calculate the logical value of the formula

$$
(A \Rightarrow(\neg A \cap B))
$$

by substituting the respective logical values T, F for the component formulas A, B and applying the set of connectives equations as follows

$$
T \Rightarrow(\neg T \cap F)=T \Rightarrow(F \cap F)=T \Rightarrow F=F
$$

Extensional Connectives

Extensional connectives are the connectives that have the following property:
the logical value of the formulas form by means of these connectives and certain given formulas depends only on the logical value(s) of the given formulas

All classical propositional connectives

$$
\neg, \cup, \cap, \Rightarrow, \Leftrightarrow
$$

are extensional

Propositional Connectives

Remark

In everyday language there are expressions such as
"I believe that", "it is possible that", " certainly", etc....
They are represented by some propositional connectives which are not extensional

They do not play any role in mathematics and so are not discussed in classical logic, they belong to non-classical logics

All Extensional Two Valued Connectives

There are many other binary (two valued) extensional propositional connectives
Here is a table of all unary connectives

A	$\nabla_{1} A$	$\nabla_{2} A$	$\neg A$	$\nabla_{4} A$
T	F	T	F	T
F	F	F	T	T

All Extensional Binary Connectives

Here is a table of all binary connectives

A	B	$\left(A \circ_{1} B\right)$	$(A \cap B)$	$\left(A \circ_{3} B\right)$	$\left(A \circ_{4} B\right)$
T	T	F	T	F	F
T	F	F	F	T	F
F	T	F	F	F	T
F	F	F	F	F	F
A	B	$(A \downarrow B)$	$\left(A{ }_{6} B\right)$	$\left(A \circ_{7} B\right)$	$(A \Leftrightarrow B)$
T	T	F	T	T	T
T	F	F	T	F	F
F	T	F	F	T	F
F	F	T	F	F	T
A	B	$\left(A{ }_{9} B\right)$	$\left(A \circ_{10} B\right)$	$\left(A \circ_{11} B\right)$	$(A \cup B)$
T	T	F	F	F	T
T	F	T	T	F	T
F	T	T	F	T	T
F	F	F	T	T	F
A	B	$\left(A \circ_{13} B\right)$	$(A \Rightarrow B)$	$(A \uparrow B)$	$\left(A \circ_{16} B\right)$
T	T	T	T	F	
T	F	T	F	T	T
F	T	F	T	T	T
F	F	T	T	T	T
			T		

Functional Dependency Definition

Definition

Functional dependency of connectives is the ability of defining some connectives in terms of some others

All classical propositional connectives can be defined in terms of disjunction and negation

Two binary connectives: \downarrow and \uparrow suffice, each of them separately, to define all classical connectives, whether unary or binary

Functional Dependency

The connective \uparrow was discovered in 1913 by H.M. Sheffer, who called it alternative negation
Now it is often called a Sheffer's connective

The formula
$A \uparrow B$ reads: not both A and B.

Negation $\neg A$ is defined as $A \uparrow A$.
Disjunction $(A \cup B)$ is defined as $(A \uparrow A) \uparrow(B \uparrow B)$

Functional Dependency

The connective \downarrow was discovered by J. Łukasiewicz and is called a joint negation

The formula
$A \downarrow B$ reads: neither A nor B.

It was proved in 1925 by E. Żyliński that no propositional connective other than \uparrow and \downarrow suffices to define all the remaining classical connectives

Chapter 2
 Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 4: Examples of Propositional Tautologies

Propositional Tautologies

Now we connect syntax (formulas of a given language \mathcal{L}) with semantics (assignment of truth values to the formulas of the language \mathcal{L})

In logic we are interested in those propositional formulas that must be] always true because of their syntactical structure without reference to the natural language meaning of the propositions they represent

Such formulas are called propositional tautologies

Example

Example

Given a formula $(A \Rightarrow A)$
We evaluate the logical value of our formula for all possible logical values of its basic component A
We put our calculation in a form of a table, called a truth table below

A	$(A \Rightarrow A)$ computation	$(A \Rightarrow A)$
T	$T \Rightarrow T=T$	\mathbf{T}
F	$F \Rightarrow F=T$	\mathbf{T}

The logical value of the formula $(A \Rightarrow A)$ is always T
This means that it is a propositional tautology.

Example

Example

Here is a truth table for a formula $(A \Rightarrow B)$

A	B	$(A \Rightarrow B)$ computation	$(A \Rightarrow B)$
T	T	$T \Rightarrow T=T$	\mathbf{T}
T	F	$T \Rightarrow F=F$	\mathbf{F}
F	T	$\mathrm{~F} \Rightarrow T=T$	\mathbf{T}
F	F	$\mathrm{~F} \Rightarrow F=T$	\mathbf{T}

The logical value of the formula $(A \Rightarrow B)$ is F for $A=T$ and $B=F$ what means that it is not a propositional tautology

Tautology Definition

Definition

For any formula $A \in \mathcal{F}$ of a propositional language $\mathcal{L}=(\mathcal{A}, \mathcal{F})$, we say that A is a propositional tautology
if and only if
the logical value of A is T (we write it $A=T$) for all possible logical values of its basic components

We write
$\vDash A$
to denote that A is a tautology

Classical Tautologies

Here is a list of some of the most known classical notions and tautologies

Modus Ponens known to the Stoics (3rd century B.C.)

$$
\models((A \cap(A \Rightarrow B)) \Rightarrow B)
$$

Detachment

$$
\begin{aligned}
& \models((A \cap(A \Leftrightarrow B)) \Rightarrow B) \\
& \models((B \cap(A \Leftrightarrow B)) \Rightarrow A)
\end{aligned}
$$

Sufficient and Necessary

Sufficient: Given an implication $(A \Rightarrow B)$,
A is called a sufficient condition for B to hold.

Necessary : Given an implication $(A \Rightarrow B)$,
B is called a necessary condition for A to hold.

Implication Names

Simple:

$(A \Rightarrow B)$ is called a simple implication

Converse:

$(B \Rightarrow A)$ is called a converse implication to $(A \Rightarrow B)$
Opposite:
$(\neg B \Rightarrow \neg A)$ is called an opposite implication to $(A \Rightarrow B)$
Contrary:
$(\neg A \Rightarrow \neg B)$ is called a contrary implication to $(A \Rightarrow B)$

Laws of contraposition

Laws of Contraposition

$$
\begin{aligned}
& \models((A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow \neg A)), \\
& \models((B \Rightarrow A) \Leftrightarrow(\neg A \Rightarrow \neg B)) .
\end{aligned}
$$

These Laws make it possible to replace, in any deductive argument, a sentence of the form $(A \Rightarrow B)$ by $(\neg B \Rightarrow \neg A)$, and conversely

Necessary and sufficient

We read the formula $(A \Leftrightarrow B)$ as
"B is necessary and sufficient for A "
because of the following tautology

$$
\models((A \Leftrightarrow B)) \Leftrightarrow((A \Rightarrow B) \cap(B \Rightarrow A)))
$$

Stoics, 3rd century B.C.

Hypothetical Syllogism

$$
\begin{aligned}
& \models(((A \Rightarrow B) \cap(B \Rightarrow C)) \Rightarrow(A \Rightarrow C)), \\
& \models((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))), \\
& \models((B \Rightarrow C) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C))) .
\end{aligned}
$$

Modus Tollendo Ponens

$$
\begin{aligned}
& \vDash(((A \cup B) \cap \neg A) \Rightarrow B), \\
& \models(((A \cup B) \cap \neg B) \Rightarrow A)
\end{aligned}
$$

Duns Scotus 12/13 century

$$
\models(\neg A \Rightarrow(A \Rightarrow B))
$$

Clavius 16th century

$$
\models((\neg A \Rightarrow A) \Rightarrow A)
$$

Frege 1879

$$
\begin{aligned}
& \models(((A \Rightarrow(B \Rightarrow C)) \cap(A \Rightarrow B)) \Rightarrow(A \Rightarrow C)), \\
& \models((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))
\end{aligned}
$$

Frege gave the the first formulation of the classical propositional logic as a formalized axiomatic system

Apagogic Proofs

Apagogic Proofs: means proofs by reductio ad absurdum

Reductio ad absurdum:

to prove A to be true, we assume $\neg A$. If we get
a contradiction, it means that we have proved A to be true

Correctness of this reasoning is guarantee by the following tautology

$$
\models((\neg A \Rightarrow(B \cap \neg B)) \Rightarrow A)
$$

Classical Tautologies

This chapter contains a very extensive list of classical propositional tautologies

Read, prove, and memorize as many as you can

We will use them freely in later Chapters assuming that you are really familiar with all of them

Chapter 2
 Introduction to Classical Logic Languages and Semantics

Slides Set 2

PART 5: Predicate Language

Predicate Language

We define a predicate language \mathcal{L} following the pattern established by the definitions of symbolic and propositional languages

The predicate language is much more complicated in its structure then the propositional one

Its alphabet \mathcal{A} is much richer.
The definition of its set of formulas \mathcal{F} is more complicated

Predicate Language

In order to define the set \mathcal{F} define an additional set T , called a set of all terms of the predicate language \mathcal{L}

We single out this set T of terms not only because we need it for the definition of formulas, but also because of its role in the development of other notions of predicate logic.

Predicate Language Definition

Definition

By a predicate language \mathcal{L} we understand a triple

$$
\mathcal{L}=(\mathcal{A}, \mathbf{T}, \mathcal{F})
$$

where \mathcal{A} is a predicate alphabet

T is the set of terms, and \mathcal{F} is a set of formulas

Alphabet Components

Alphabet \mathcal{A}

The components of \mathcal{A} are as follows

1. Propositional connectives

$$
\neg, \cap, \cup, \Rightarrow, \Leftrightarrow
$$

2. Quantifiers \forall, \exists
\forall is the universal quantifier, and \exists is the existential quantifier
3. Parenthesis (and)

Alphabet Components

4. Variables

We assume that we have, as we did in the propositional case a countably infinite set VAR of variables
The variables now have a different meaning than they had in the propositional case
We hence call them variables, or individual variables
We put

$$
V A R=\left\{x_{1}, x_{2}, \ldots .\right\}
$$

5. Constants

The constants represent in "real life" elements of concrete sets We assume that we have a countably infinite set C of constants

$$
\mathbf{C}=\left\{c_{1}, c_{2}, \ldots\right\}
$$

Alphabet Components

6. Predicate symbols

The predicate symbols represent "real life" relations
We denote them by P, Q, R, \ldots, with indices, if necessary
We use symbol P for the set of all predicate symbols
We assume that P is countably infinite and write

$$
\mathbf{P}=\left\{P_{1}, P_{2}, P_{3}, \ldots \ldots . .\right\}
$$

Alphabet Components

Logic notation

In "real life" we write symbolically $x<y$ to express that element x is smaller then element y according to the two argument order relation $<$
In the predicate language \mathcal{L} we represent the relation $<$ as a two argument predicate $P \in \mathbf{P}$
We write $P(x, y)$ as a representation of "real life" $x<y$.
The variables x, y in $P(x, y)$ are individual variables from the set VAR

Mathematical statements $n<0,1<2,0<m$ are represented in \mathcal{L} by $P\left(x, c_{1}\right), P\left(c_{2}, c_{3}\right), P\left(c_{1}, y\right)$, respectively, where c_{1}, c_{2}, c_{3} are any constants and x, y any variables

Alphabet Components

7. Function symbols

The function symbols represent "real life" functions
We denote function symbols by f, g, h, \ldots, with indices, if necessary
We use symbol F for the set of all function symbols
We assume that F is countably infinite and write

$$
\mathbf{F}=\left\{f_{1}, f_{2}, f_{3}, \ldots \ldots . .\right\}
$$

Set T of Terms

Definition

Terms are expressions built out of function symbols and variables

Terms describe how we build compositions of functions We define the set T of all terms recursively as follows.

1. All variables are terms;
2. All constants are terms;
3. For any function symbol $f \in \mathbf{F}$ representing a function on
n variables, and any terms $t_{1}, t_{2}, \ldots, t_{n}$, the expression $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a term;
4. The set T of all terms of the predicate language \mathcal{L} is the smallest set that fulfills the conditions 1.-3.

Example

Example

Here are some terms of \mathcal{L}

$$
\begin{gathered}
h\left(c_{1}\right), f(g(c, x)), g(f(f(c)), g(x, y)), \\
f_{1}(c, g(x, f(c))), g(g(x, y), g(x, h(c))) \ldots
\end{gathered}
$$

Observe that to obtain the predicate language representation of for example $x+y$ we can first write it as $+(x, y)$ and then replace the addition symbol + by any two argument function symbol $g \in \mathrm{~F}$ and get the term $g(x, y)$.

Set \mathcal{F} of Formulas

Formulas are build out of elements of the alphabet \mathcal{A} and the set T of all terms

We denote the formulas by $A, B, C, \ldots .$. , with indices, if necessary.
We them, as before in recursive steps
The first recursive step says:
all atomic formulas are formulas
The atomic formulas are the simplest formulas, as the propositional variables were in the case of the propositional language.
We define the atomic formulas as follows.

Atomic Formulas

Definition

An atomic formula is any expression of the form

$$
R\left(t_{1}, t_{2}, \ldots, t_{n}\right)
$$

where R is any n-argument predicate $R \in \mathbf{P}$ and $t_{1}, t_{2}, \ldots, t_{n}$ are terms, i.e. $t_{1}, t_{2}, \ldots, t_{n} \in \mathbf{T}$.
Some atomic formulas of \mathcal{L} are:

$$
\begin{gathered}
Q(c), Q(x), Q\left(g\left(x_{1}, x_{2}\right)\right), \\
R(c, d), R(x, f(c)), R(g(x, y), f(g(c, z))), \ldots \ldots
\end{gathered}
$$

Set \mathcal{F} of Formulas

Definition

The set \mathcal{F} of formulas of predicate language \mathcal{L} is the smallest set meeting the following conditions

1. All atomic formulas are formulas;
2. If A, B are formulas, then
$\neg A,(A \cap B),(A \cup B),(A \Rightarrow B),(A \Leftrightarrow B)$ are formulas;
3. If A is a formula, then $\forall x A, \exists x A$ are formulas for any variable $x \in$ VAR.

Set \mathcal{F} of Formulas

Example

Some formulas of \mathcal{L} are:

$$
\begin{gathered}
R(c, d), \quad \exists y R(y, f(c)), \quad R(x, y), \\
(\forall x R(x, f(c)) \Rightarrow \neg R(x, y)), \quad(R(c, d) \cap \forall z R(z, f(c))), \\
\forall y R(y, g(c, g(x, f(c)))), \quad \forall y \neg \exists x R(x, y)
\end{gathered}
$$

Set \mathcal{F} of Formulas

Let's look now closer at the following formulas.

$$
\begin{aligned}
& R\left(c_{1}, c_{2}\right), \quad R(x, y), \quad((R(y, d) \Rightarrow R(a, z)), \\
& \quad \exists x R(x, y), \quad \forall y R(x, y), \quad \exists x \forall y R(x, y) .
\end{aligned}
$$

Observations

1. Some formulas are without quantifiers:

$$
R\left(c_{1}, c_{2}\right), \quad R(x, y), \quad(R(y, d) \Rightarrow R(a, z))
$$

A formula without quantifiers is called an open formula
Variables x, y in $R(x, y)$ are called free variables
The variable y in $R(y, d)$ and z in $R(a, z)$ are also free

Set \mathcal{F} of Formulas

Observations

2. Quantifiers bind variables within formulas.

The variable x is bounded by $\exists x$ in the formula

$$
\exists x R(x, y)
$$

the variable y is free
The variable y is bounded by $\forall y$ in the formula

$$
\forall y R(x, y),
$$

the variable y is free.

Set \mathcal{F} of Formulas

Observations

3. The formula

$$
\exists x \forall y R(x, y)
$$

does not contain any free variables, neither does the formula

$$
R\left(c_{1}, c_{2}\right)
$$

4. A formula without any free variables is called a closed formula or a sentence

Mathematical Statements

We often use logic symbols, while writing mathematical statements in a symbolic way

For example, mathematicians to say
"all natural numbers are greater then zero and some integers are equal 1"
and often write it as

$$
x \geq 0, \quad \forall_{x \in N} \quad \text { and } \quad \exists_{y \in Z}, \quad y=1
$$

Mathematical Statements

Some mathematicians who are more "logic oriented" would write the satements as follows

$$
\forall_{x \in N} x \geq 0 \cap \exists_{y \in z} y=1
$$

or even write it as

$$
\forall_{x \in N} x \geq 0 \cap \exists_{y \in z} y=1
$$

Observe that none of the above symbolic statement are correct formulas of the predicate language.
These are mathematical statements written with mathematical and logic symbols They are written with different degree of "logical precision", the last being, from a logician point of view the most precise

Mathematical Statements

Our goal now is to "translate" mathematical and natural language statement into correct formulas of the predicate language \mathcal{L}
Let's start with some observations

01 The quantifiers in $\forall_{x \in N}, \exists_{y \in Z}$ often used by mathematicians are not the one defined and used in logic

02 The predicate language \mathcal{L} admits only quantifiers
$\forall x, \exists y$, for any variables $x, y \in V A R$

Quantifiers with Restricted Domain

03 The quantifiers $\forall_{x \in N}, \exists_{y \in Z}$ are called quantifiers with restricted domain, or restricted domain quantifiers

Definition

$\forall_{A(x)} B(x)$ stands for a formula $\forall x(A(x) \Rightarrow B(x)) \in \mathcal{F}$
$\exists_{A(x)} B(x)$ stands for a formula $\exists x(A(x) \cap B(x)) \in \mathcal{F}$

The restriction of the quantifier domain can, and often is given by more complicated statements

Quantifiers with Restricted Domain

We write the definition of the restricted domain quantifiers in a form of the following rules

Transformations Rules for Restricted Quantifiers

$$
\begin{aligned}
& \forall_{A(x)} B(x) \equiv \forall x(A(x) \Rightarrow B(x)) \\
& \exists_{A(x)} B(x) \equiv \exists x(A(x) \cap B(x))
\end{aligned}
$$

Translations to Formulas of \mathcal{L}

Given a mathematical statement S written with the use of logical symbols.

We obtain a formula $A \in \mathcal{F}$ that is a translation of S into the predicate language \mathcal{L} by conducting a following sequence of steps

Step 1 We identify basic statements in S, i.e. mathematical statements that involve only relations. They are to be translated into atomic formulas

Step 2 We write the basic statements as atomic formulas of the predicate language \mathcal{L}

Translations to Formulas of \mathcal{L}

Step 3 We write the statement S a formula with restricted quantifiers (if needed)
Step 4 We apply the transformations rules for restricted quantifiers to the formula obtained in the Step 3

In case of a translation from mathematical statement S written without logical symbols we add a following step

Step 0 We identify propositional connectives and quantifiers and use them to re-write the statement in a form that is as close to the structure of a logical formula as possible

Translations to Formulas of \mathcal{L}

Step 1 We identify basic statements in S, i.e. mathematical statements that involve only relations. They are to be translated into atomic formulas

We proceed as follows
We identify the relations in the basic statements and choose the predicate symbols as their names

We identify all functions and constants (if any) in the basic statements and choose the function symbols and constant symbols as their names

Translations to Formulas of \mathcal{L}

Step 2 We write the basic statements as atomic formulas of the predicate language \mathcal{L}

Remember that in the predicate language \mathcal{L} we write a function symbol in front of the function arguments not between them as we write in mathematics

The same applies to relation symbols

Translations to Formulas of \mathcal{L}

Example

We re-write a basic mathematical statement

$$
x+2>y \quad \text { as } \quad>(+(x, 2), y)
$$

and then we write it as an atomic formula

$$
P(f(x, c), y)
$$

$P \in \mathbf{P}$ stands for two argument relation >
$f \in \mathbf{F}$ stands for two argument function +
$c \in \mathbf{C}$ stands for the number 2

Translations to Formulas of \mathcal{L}

Step 3 We write the statement S a formula with restricted quantifiers (if needed)
Step 4 We apply the transformations rules for restricted quantifiers to the formula obtained in the Step 3

In case of a translation from mathematical statement written without logical symbols we add a following step.

Step 0 We identify propositional connectives and quantifiers and use them to re-write the statement in a form that is as close to the structure of a logical formula as possible

Translations Examples

Exercise

Given a mathematical statement S written with logical symbols

$$
\left(\forall_{x \in N} x \geq 0 \cap \exists_{y \in Z} y=1\right)
$$

1. Translate it into a proper logical formula with restricted quantifiers i.e. into a formula of \mathcal{L} that uses the restricted domain quantifiers.
2. Translate your restricted quantifiers formula into a correct formula without restricted domain quantifiers, i.e. into a proper formula of \mathcal{L}

A long and detailed solution is given in Chapter 2, page 28. A short statement of the exercise and a short solution follows

Translations Examples

Exercise

Given a mathematical statement S written with logical symbols

$$
\left(\forall_{x \in N} x \geq 0 \cap \exists_{y \in Z} y=1\right)
$$

Translate it into a proper formula of \mathcal{L}

Short Solution

The basic statements in S are:

$$
x \in N, \quad x \geq 0, \quad y \in Z, y=1
$$

The corresponding atomic formulas of \mathcal{L} are

$$
N(x), \quad G\left(x, c_{1}\right), \quad Z(y), \quad E\left(y, c_{2}\right)
$$

Translations Examples

The statement S becomes restricted quantifiers formula

$$
\left(\forall_{N(x)} G\left(x, c_{1}\right) \cap \exists_{Z(y)} E\left(y, c_{2}\right)\right)
$$

By the Transformation Rules we get the formula $A \in \mathcal{F}$

$$
\left(\forall x\left(N(x) \Rightarrow G\left(x, c_{1}\right)\right) \cap \exists y\left(Z(y) \cap E\left(y, c_{2}\right)\right)\right)
$$

Translations Examples

Exercise

Here is a mathematical statement \mathbf{S}
"For all real numbers x the following holds: If $x<0$, then there is a natural number n , such that $x+n<0$."

1. Re-write S as a symbolic mathematical statement $S F$ that only uses mathematical and logical symbols.
2. Translate the symbolic statement SF into to a corresponding formula $A \in \mathcal{F}$ of the predicate language \mathcal{L}

Translations Examples

Solution

The statement \mathbf{S} is
"For all real numbers x the following holds: If $x<0$, then there is a natural number n , such that $x+n<0$."
S becomes a symbolic mathematical statement SF

$$
\forall_{x \in R}\left(x<0 \Rightarrow \exists_{n \in N} x+n<0\right)
$$

We write $\mathrm{R}(\mathrm{x})$ for $x \in R, \mathrm{~N}(\mathrm{y})$ for $n \in N$, a constant c for the number 0 . We use $L \in \mathbf{P}$ to denote the relation $<$. We use $f \in \mathbf{F}$ to denote the function +

The statement $x<0$ becomes an atomic formula

$$
L(x, c)
$$

Translations Examples

The statement $x+n<0$ becomes an atomic formula

$$
L(f(x, y), c)
$$

The symbolic mathematical statement SF

$$
\forall_{x \in R}\left(x<0 \Rightarrow \exists_{n \in N} x+n<0\right)
$$

becomes a restricted quantifiers formula

$$
\forall_{R(x)}\left(L(x, c) \Rightarrow \exists_{N(y)} L(f(x, y), c)\right)
$$

We apply now the transformation rules and get a corresponding formula $A \in \mathcal{F}$

$$
\forall x(N(x) \Rightarrow(L(x, c) \Rightarrow \exists y(N(y) \cap L(f(x, y), c)))
$$

Translations from Natural Language

Exercise

Translate a natural language statement S
"Any friend of Mary is a friend of John and Peter is not John's
friend. Hence Peter is not May's friend"
into a formula $A \in \mathcal{F}$ of the predicate language \mathcal{L}

Solution

Step 1 We identify the basic relations and functions (if any) and translate them into atomic formulas

We have only one relation of "being a friend"
We translate it into an atomic formula

$$
F(x, y),
$$

where $F(x, y)$ stands for " x is a friend of y "

Translations from Natural Language

"Any friend of Mary is a friend of John and Peter is not John's friend. Hence Peter is not May's friend"
We use constants m, j, p for Mary, John, and Peter, respectively
Step 2 We hence have the following atomic formulas:

$$
F(x, m), \quad F(x, j), \quad F(p, j)
$$

where $F(x, m)$ stands for " x is a friend of Mary",
$F(x, j)$ stands for "x is a friend of John", and
$F(\mathrm{p}, \mathrm{j})$ stands for "Peter is a friend of John"

Translations from Natural Language

Step 3 Statement "Any friend of Mary is a friend of John" translates into a restricted quantifier formula

$$
\forall_{F(x, m)} F(x, j)
$$

Statement "Peter is not John's friend" translates into

$$
\neg F(p, j)
$$

and "Peter is not May's friend" translates into

$$
\neg F(p, m)
$$

Translations from Natural Language

Restricted quantifiers formula for S is

$$
\left(\left(\forall_{F(x, m)} F(x, j) \cap \neg F(p, j)\right) \Rightarrow \neg F(p, m)\right)
$$

4 By the Transformation Rules, the formula $A \in \mathcal{F}$ of \mathcal{L} corresponding to S is

$$
((\forall x(F(x, m) \Rightarrow F(x, j)) \cap \neg F(p, j)) \Rightarrow \neg F(p, m))
$$

Rules of Translations

Rules of translation from natural language to the predicate language \mathcal{L}
Given a statement S

1. Identify the basic relations and functions (if any) and translate them into atomic formulas
2. Identify propositional connectives and use symbols
$\neg, \cup, \cap, \Rightarrow, \Leftrightarrow$ for them
3. Identify quantifiers: restricted $\forall_{A(x)}, \exists_{A(x)}$, and non-restricted $\forall x, \exists x$
4. Use the symbols from 1. - 3. and write logic formula containing restricted and non-restricted quantifiers, if any
5. Use the restricted quantifiers Transformation Rules to write $A \in \mathcal{F}$ of the predicate language \mathcal{L} corresponding to S

Translation Example

Exercise

Given a natural language statement
S: "For any bird one can find some birds that white"
Show that the translation of S into a formula of the predicate language \mathcal{L} is

$$
\forall x(B(x) \Rightarrow \exists x(B(x) \cap W(x)))
$$

Solution

We follow the Rules of Translation as flollows

1. Atomic formulas: $B(x), W(x)$
where $B(x)$ stands for " x is a bird" and $W(x)$ stands for " x is white"

Translation Example

2. There is no propositional connectives in S
3. Restricted quantifiers:
$\forall_{B(x)}$ for "any bird"
$\exists_{B(x)}$ for "one can find some birds"
4. Restricted quantifiers formula for S is

$$
\forall_{B(x)} \exists_{B(x)} W(x)
$$

5. By the Transformation Rules we get a required formula of the predicate language \mathcal{L} :

$$
\forall x(B(x) \Rightarrow \exists x(B(x) \cap W(x)))
$$

Translation Example

Exercise

Translate into \mathcal{L} a natural language statement
S: "Some patients like all doctors"

Solution

1. Atomic formulas: $P(x), D(x), L(x, y)$
$P(x)$ stands for " x is a patient",
$D(x)$ stands for " x is a doctor", and
$L(x, y)$ stands for " x likes y "
2. There is no propositional connectives in \mathbf{S}

Translation Example

3. Restricted quantifiers:
$\exists_{P(x)}$ for "some patients" and $\forall_{D(x)}$ for "all doctors"

Observe that we can't write $\mathrm{L}(\mathrm{x}, \mathrm{D}(\mathrm{y}))$ for "x likes doctor y "
$D(y)$ is a predicate, not a term, and hence $L(x, D(y))$ is not a formula

We have to express the statement "x likes all doctors y " in terms of restricted quantifiers and the predicate $L(x, y)$ only

Translation Example

Observe that the statement "x likes all doctors y " means also "all doctors y are liked by x"
We hence re- write it as "for all doctors y , x likes y " what translates to a formula

$$
\forall_{D(y)} L(x, y)
$$

Hence the statement S translates to

$$
\exists_{P(x)} \forall_{D(x)} L(x, y)
$$

4. By the Transformation Rules we get the following translation of S into \mathcal{L}

$$
\exists x(P(x) \cap \forall y(D(y) \Rightarrow L(x, y)))
$$

Chapter 2
 Introduction to Classical Logic Languages and Semantics

Slides Set 3

PART 6: Predicate Tautologies - Laws for Quantifiers

Predicate Tautologies

The notion of predicate tautology is much more complicated then that of the propositional one
We introduce it intuitively here and define it formally in chapter 8

Predicate tautologies are also called valid formulas, or laws of quantifiers to distinguish them from the propositional case

We provide here a motivation, some examples and
intuitive definitions
We also list and discuss the most used and useful predicate tautologies and equational laws of quantifiers

Interpretation

The formulas of the predicate language \mathcal{L} have a meaning only when an interpretation is given for its symbols

We define the interpretation I in a set $U \neq \emptyset$ by interpreting predicate and functional symbols of \mathcal{L} as concrete relations and functions defined in the set U

We interpret constants symbols as elements of the set U

The set U is called the universe of the interpretation I

Model Structure

We define a model structure for the predicate language \mathcal{L} as a pair

$$
\mathbf{M}=(U, I)
$$

where the set U is called the structure universe and of the I is the structure interpretation in the universe U

Given a formula A of \mathcal{L}, and the model structure $\mathbf{M}=(U, I)$ We denote by

$$
A_{I}
$$

a statement defined in the structure $\mathbf{M}=(U, I)$ that is determined by the formula A and the interpretation I in the universe U

Model Structure

When the formula A is a sentence, it means it is a formula without free variables, the model structure statement
A_{I}
represents a proposition that is true or false in the universe U, under the interpretation I

When the formula A is not a sentence, it contains free variables and may be satisfied (i.e. true) for some values in the universe U and not satisfied (i.e. false) for the others

Lets look at few simple examples

Examples

Example

Let A be a formula $\exists x P(x, c)$
Consider a model structure $\mathbf{M}_{1}=\left(N, l_{1}\right)$
The universe of the interpretation I_{1} is the set N of natural numbers

We define I_{1} as follows:
We interpret the two argument predicate P as a relation $<$ and the constant c as number 5, i.e we put
$P_{l_{1}}:=$ and $c_{l_{1}}: 5$

Examples

The formula A: $\exists x P(x, c)$ under the interpretation I_{1} becomes a mathematical statement

$$
\exists x x<0
$$

defined in the set N of natural numbers We write it for short

$$
A_{l_{1}}: \exists_{x \in N} x=5
$$

$A_{l_{1}}$ is obviously a true mathematical statement in the model structure $\mathbf{M}_{1}=\left(N, l_{1}\right)$
We write it symbolically as

$$
\mathbf{M}_{1} \models \exists x P(x, c)
$$

and say: \mathbf{M}_{1} is a model for the formula A

Examples

Example

Consider now a model structure $\mathbf{M}_{2}=\left(N, I_{2}\right)$ and the formula A: $\exists x P(x, c)$

We interpret now the predicate P as relation < in the set N of natural numbers and the constant c as number 0

We write it as

$$
P_{l_{2}}:<\text { and } c_{l_{2}}: 0
$$

Examples

The formula A: $\exists x P(x, c)$ under the interpretation I_{2} becomes a mathematical statement $\exists x x<0$ defined in the set N of natural numbers

We write it for short

$$
A_{l_{2}}: \quad \exists_{x \in N} x<0
$$

A_{12} is obviously a false mathematical statement.
We say: the formula A : $\exists x P(x, c)$ is false under the interpretation I_{2} in \mathbf{M}_{2}, or we say for short: A is false in \mathbf{M}_{2}
We write it symbolically as

$$
\mathbf{M}_{2} \not \models \exists x P(x, c)
$$

and say that \mathbf{M}_{2} is a counter-model for the formula A

Examples

Example

Consider now a model structure
$\mathbf{M}_{3}=\left(Z, I_{3}\right)$ and the formula A: $\exists x P(x, c)$

We define an interpretation I_{3} in the set of all integers Z exactly as the interpretation I_{1} was defined, i.e. we put

$$
P_{l_{3}}:<\text { and } c_{l_{3}}: 0
$$

Examples

In this case we get

$$
A_{l_{3}}: \exists_{x \in Z} x<0
$$

Obviously A_{13} is a true mathematical statement

The formula A is true under the interpretation I_{3} in \mathbf{M}_{3} (A is satisfied, true in M_{3})
We write it symbolically as

$$
\mathbf{M}_{3} \models \exists x P(x, c)
$$

M_{3} is yet another model for the formula A

Examples

When a formula A is not a closed, i.e. is not a sentence, the situation gets more complicated

A can be satisfied (i.e. true) for some values in the universe U of a $\mathbf{M}=(U, I)$

But also and can be not satisfied (i.e. false) for some other values in the universe U of a $\mathbf{M}=(U, I)$

We explain it in the following examples

Examples

Example

Consider a formula

$$
A_{1}: R(x, y)
$$

We define a model structure

$$
\mathbf{M}=(N, I)
$$

where R is interpreted as a relation \leq defined in the set N of all natural numbers, i.e. we put $R_{l}: \leq$ In this case we get

$$
A_{11}: x \leq y
$$

and $A_{1}: R(x, y)$ is satisfied in model structure $\mathbf{M}=(N, I)$ by all $n, m \in N$ such that $n \leq m$

Examples

Example

Consider a following formula

$$
A_{2}: \forall y R(x, y)
$$

and the same model structure $\mathbf{M}=(N, I)$, where R is interpreted as a relation \leq defined in the set N of all natural numbers, i.e. we put

$$
R_{I}: \leq
$$

In this case we get that

$$
A_{21}: \forall y \in N x \leq y
$$

and so the formula $A_{2}: \forall y R(x, y)$ is satisfied in $\mathbf{M}=(N, I)$ only by the natural number 0

Examples

Example

Consider now a formula

$$
A_{3}: \exists x \forall y R(x, y)
$$

and the same model structure $\mathbf{M}=(N, I)$, where R is interpreted as a relation \leq defined in the set N of all natural numbers, i.e. we put $R_{l}: \leq$

In this case the statement

$$
A_{31}: \exists_{x \in N} \forall_{y \in N} x \leq y
$$

asserts that there is a smallest number
This is a true statement and we call the structure $\mathbf{M}=(N, I)$ ia model for the formula $A_{3}: \exists x \forall y R(x, y)$

Predicate Tautology Definition

We want the predicate language tautologies to have the same property as the tautologies of the propositional language, namely to be always true

In this case, we intuitively agree that it means that we want the predicate tautologies to be formulas that are true under any interpretation in any possible universe

A rigorous definition of the predicate tautology is provided in Chapter 8

Predicate Tautology Definition

We construct the rigorous definition of a predicate tautology in a following sequence of steps

S1 We define formally the notion of interpretation I of symbols of the language \mathcal{L} in a set $U \neq \emptyset$, i.e. in a model structure $\mathbf{M}=(U, I)$ for \mathcal{L}

S2 We define formally a notion
" a formula A of \mathcal{L} is true in the structure $\mathbf{M}=(U, I)$ " We write it symbolically $\mathbf{M} \models A$ and call thestructure $\mathbf{M}=(U, I)$ a model for the formula A

Predicate Tautology Definition

S3 We define a notion " A is a predicate tautology" as follows

Defintion

For any formula A of predicate language \mathcal{L},
A is a predicate tautology (valid formula) if and only if

$$
\mathbf{M} \models A
$$

for all model structures $\mathbf{M}=(U, I)$ for the language \mathcal{L}

Predicate Tautology Definition

Directly from the above definition we get the following definition of a notion "A is not a predicate tautology"

Defintion

For any formula A of predicate language \mathcal{L},
A is not a predicate tautology if and only if there is a model structure $\mathbf{M}=(U, I)$ for \mathcal{L}, such that
$\mathbf{M} \not \vDash A$
We call such model structure M a counter-model for A

Predicate Tautology Definition

The definition of a notion
" A is not a predicate tautology"
says that in order to prove that a formula A is not a predicate tautology one has to show a counter- model for it

It means that one has to define a non-empty set U and define an interpretation I, such that we can prove that

$$
A_{I}
$$

is false

Predicate Tautology Definition

We use terms predicate tautology or valid formula instead of just saying a tautology in order to distinguish tautologies belonging to two very different languages

For the same reason we usually reserve the symbol \models for propositional case

Sometimes we use symbols

$$
\models_{p} \text { or } \models_{f}
$$

to denote predicate tautologies
p stands for predicate and f stands first order
Predicate tautologies are also called laws of quantifiers
We will use both names

Predicate Tautologies Examples

Here are some examples of predicate tautologies and counter models for formulas that are not tautologies

Example

For any formula $A(x)$ with a free variable x :

$$
\models_{p}(\forall x A(x) \Rightarrow \exists x A(x))
$$

Observe that the formula

$$
(\forall x A(x) \Rightarrow \exists x A(x))
$$

represents an infinite number of formulas.
It is a tautology for any formula $A(x)$ of \mathcal{L} with a free variable x

Predicate Tautologie Examples

The inverse implication to $(\forall x A(x) \Rightarrow \exists x A(x))$ is not a predicate tautology, i.e.

$$
\not \vDash_{p}(\exists x A(x) \Rightarrow \forall x A(x))
$$

To prove it we have to provide an example of a concrete formula $A(x)$ and construct a counter-model $\mathbf{M}=(U, I)$ for the formula

$$
F:(\exists x A(x) \Rightarrow \forall x A(x))
$$

Let the concrete $A(x)$ be an atomic formula $P(x, c)$
We define $\mathbf{M}=(N, I)$ for N set of natural numbers and
$P_{1}:<, \quad c_{1}: 3$
The formula F becomes an obviously false mathematical statement

$$
F_{l}:\left(\exists_{n \in N} n<3 \Rightarrow \forall_{n \in N} n<3\right)
$$

Restricted Quantifiers Laws

We have to be very careful when we deal with restricted domain quantifiers
For example, the most basic predicate tautology

$$
(\forall x A(x) \Rightarrow \exists x A(x))
$$

fails when written with the restricted domain quantifiers, i.e.
We show that

$$
\not \vDash_{p}\left(\forall_{B(x)} A(x) \Rightarrow \exists_{B(x)} A(x)\right)
$$

To prove this we have to show that corresponding formula of \mathcal{L} obtained by the restricted quantifiers transformations rules is not a predicate tautology, i.e. to prove:

$$
\forall_{p}(\forall x(B(x) \Rightarrow A(x)) \Rightarrow \exists x(B(x) \cap A(x))) .
$$

Restricted Quantifiers Laws

We construct a counter-model \mathbf{M} for the formula

$$
F: \quad(\forall x(B(x) \Rightarrow A(x)) \Rightarrow \exists x(B(x) \cap A(x)))
$$

We take

$$
\mathbf{M}=(N, I)
$$

where N is the set of natural numbers
We take as the concrete formulas $B(x), A(x)$ atomic formulas

$$
Q(x, c) \text { and } P(x, c)
$$

respectively, and the interpretation । i defined as

$$
Q_{1}:<, \quad P_{1}:>, \quad c_{l}:
$$

Restricted Quantifiers Laws

The formula

$$
F:(\forall x(B(x) \Rightarrow A(x)) \Rightarrow \exists x(B(x) \cap A(x)))
$$

becomes a mathematical statement

$$
F_{I}: \quad\left(\forall_{n \in N}(x<0 \Rightarrow n>0) \Rightarrow \exists_{n \in N}(n<0 \cap n>0)\right)
$$

The satement F_{l} is a false
because the statement $n<0$ is false for all natural numbers and the implication false $\Rightarrow B$ is true for any logical value of B Hence $\forall_{n \in N}(n<0 \Rightarrow n>0)$ is a true statement and $\exists_{n \in N}(n<0 \cap n>0)$ is obviously false

Restricted Quantifiers Laws

Restricted quantifiers law corresponding to the predicate tautology

$$
(\forall x A(x) \Rightarrow \exists x A(x))
$$

is

$$
\models_{p}\left(\forall_{B(x)} A(x) \Rightarrow\left(\exists x B(x) \Rightarrow \exists_{B(x)} A(x)\right)\right)
$$

We remind that it means that we prove that the corresponding proper formula of \mathcal{L} obtained by the restricted quantifiers transformations rules is a predicate tautology, i.e. that

$$
\models_{p}(\forall x(B(x) \Rightarrow A(x)) \Rightarrow(\exists x B(x) \Rightarrow \exists x(B(x) \cap A(x))))
$$

Quantifiers Laws

Another basic predicate tautology called a dictum de omni law is

$$
\models_{p}(\forall x A(x) \Rightarrow A(y))
$$

where $A(x)$ are any formulas with a free variable x and $y \in \operatorname{VAR}$

The corresponding restricted quantifiers law is:

$$
\models_{p}\left(\forall_{B(x)} A(x) \Rightarrow(B(y) \Rightarrow A(y))\right),
$$

where $A(x), B(x)$ are any formulas with a free variable x and $y \in \operatorname{VAR}$

Quantifiers Laws

The next important laws are the Distributivity Laws
Distributivity of existential quantifier over conjunction holds only in one direction, namely the following is a predicate tautology

$$
\models_{p}(\exists x(A(x) \cap B(x)) \Rightarrow(\exists x A(x) \cap \exists x B(x))),
$$

where $A(x), B(x)$ are any formulas with a free variable x The inverse implication is not a predicate tautology, i.e.

$$
\not \vDash_{p}((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))
$$

Quantifiers Laws

To prove it we have to find an example of concrete formulas $A(x), B(x) \in \mathcal{F}$ and a model structure $\mathbf{M}=(U, I)$ with the interpretation I, such that \mathbf{M} is counter- model for the formula

$$
F:((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))
$$

We define the counter - model for F is as follows
Take $\mathbf{M}=(R, I)$ where R is the set of real numbers Let $A(x), B(x)$ be atomic formulas $Q(x, c), \mathscr{I}(x, c)$ We define the interpretation 1 as $Q_{1}:>, \quad P_{1}:<, \quad c_{1}: 0$. The formula F becomes an obviously false mathematical statement

$$
F_{I}:\left(\left(\exists_{x \in R} x>0 \cap \exists_{x \in R} x<0\right) \Rightarrow \exists_{x \in R}(x>0 \cap x<0)\right)
$$

Quantifiers Laws

Distributivity of universal quantifier over disjunction holds only on one direction, namely the following is a predicate tautology for any formulas $A(x), B(x)$ with a free variable x.

$$
\models_{p}((\forall x A(x) \cup \forall x B(x)) \Rightarrow \forall x(A(x) \cup B(x))) .
$$

The inverse implication is not a predicate tautology, i.e.

$$
\not \models_{p}(\forall x(A(x) \cup B(x)) \Rightarrow(\forall x A(x) \cup \forall x B(x)))
$$

Quantifiers Laws

To prove it we have to find an example of concrete formulas $A(x), B(x) \in \mathcal{F}$ and a model structure $\mathbf{M}=(U, I)$ that is counter- model for the formula

$$
F:(\forall x(A(x) \cup B(x)) \Rightarrow(\forall x A(x) \cup \forall x B(x)))
$$

We take $\mathbf{M}=(R, I)$ where R is the set of real numbers, and $A(x), B(x)$ are atomic formulas $Q(x, c), R(x, c)$
We define $Q_{l}: \geq$ and $R_{l}:<, c_{l}: 0$
The formula F becomes an obviously false mathematical statement

$$
F_{I}:\left(\forall_{x \in R}(x \geq 0 \cup x<0) \Rightarrow\left(\forall_{x \in R} x \geq 0 \cup \forall_{x \in R} x<0\right)\right)
$$

Logical Equivalence

The most frequently used laws of quantifiers have a form of a logical equivalence, symbolically written as \equiv

Remember that \equiv is not a new logical connective

This is a very useful symbol
It says that two formulas always have the same logical value It can be used in the same way we the equality symbol =

Logical Equivalence

We formally define the logical equivalence as follows

Definition

For any formulas $A, B \in \mathcal{F}$ of the predicate language \mathcal{L},

$$
A \equiv B \quad \text { if and only if } \models_{p}(A \Leftrightarrow B) .
$$

We have also a similar definition for the propositional language and propositional tautology

Equational Laws for Quantifiers

De Morgan

For any formula $A(x) \in \mathcal{F}$ with a free variable x,

$$
\neg \forall x A(x) \equiv \exists x \neg A(x), \quad \neg \exists x A(x) \equiv \forall x \neg A(x)
$$

Definability

For any formula $A(x) \in \mathcal{F}$ with a free variable x,

$$
\forall x A(x) \equiv \neg \exists x \neg A(x), \quad \exists x A(x) \equiv \neg \forall x \neg A(x)
$$

Equational Laws for Quantifiers

Renaming the Variables

Let $A(x)$ be any formula with a free variable x and let y be a variable that does not occur in $A(x)$.
Let $A(x / y)$ be a result of replacement of each occurrence of x by y, then the following holds.

$$
\forall x A(x) \equiv \forall y A(y), \quad \exists x A(x) \equiv \exists y A(y)
$$

Alternations of Quantifiers

Let $A(x, y)$ be any formula with a free variables x and y.

$$
\begin{aligned}
& \forall x \forall y(A(x, y) \equiv \forall y \forall x(A(x, y), \\
& \exists x \exists y(A(x, y) \equiv \exists y \exists x(A(x, y)
\end{aligned}
$$

Equational Laws for Quantifiers

Introduction and Elimination Laws

If B is a formula such that B does not contain any free occurrence of x, then the following logical equivalences hold.

$$
\begin{aligned}
& \forall x(A(x) \cup B) \equiv(\forall x A(x) \cup B), \\
& \exists x(A(x) \cup B) \equiv(\exists x A(x) \cup B), \\
& \forall x(A(x) \cap B) \equiv(\forall x A(x) \cap B), \\
& \exists x(A(x) \cap B) \equiv(\exists x A(x) \cap B)
\end{aligned}
$$

Equational Laws for Quantifiers

Introduction and Elimination Laws

If B is a formula such that B does not contain any free occurrence of x, then the following logical equivalences hold.

$$
\begin{aligned}
& \forall x(A(x) \Rightarrow B) \equiv(\exists x A(x) \Rightarrow B), \\
& \exists x(A(x) \Rightarrow B) \equiv(\forall x A(x) \Rightarrow B), \\
& \forall x(B \Rightarrow A(x)) \equiv(B \Rightarrow \forall x A(x)), \\
& \exists x(B \Rightarrow A(x)) \equiv(B \Rightarrow \exists x A(x))
\end{aligned}
$$

Equational Laws for Quantifiers

Distributivity Laws

Let $A(x), B(x)$ be any formulas with a free variable x

Distributivity of universal quantifier over conjunction.

$$
\forall x(A(x) \cap B(x)) \equiv(\forall x A(x) \cap \forall x B(x))
$$

Distributivity of existential quantifier over disjunction.

$$
\exists x(A(x) \cup B(x)) \equiv(\exists x A(x) \cup \exists x B(x))
$$

Equational Laws for Quantifiers

We also define the notion of logical equivalence \equiv for the formulas of the propositional language and its semantics
For any formulas $A, B \in \mathcal{F}$ of the propositional language \mathcal{L},

$$
A \equiv B \quad \text { if and only if } \quad \models(A \Leftrightarrow B)
$$

Moreover, we prove that any substitution of propositional tautology by a formulas of the predicate language is a predicate tautology
The same holds for the logical equivalence

Equational Laws for Quantifiers

In particular, we transform the propositional tautologies into the following corresponding predicate equivalences.
For any formulas A, B of the predicate language \mathcal{L},

$$
\begin{aligned}
& (A \Rightarrow B) \equiv(\neg A \cup B), \\
& (A \Rightarrow B) \equiv(\neg A \cup B)
\end{aligned}
$$

We use them to prove the following De Morgan Laws for restricted quantifiers.

Equational Laws for Quantifiers

Restricted De Morgan

For any formulas $A(x), B(x) \in \mathcal{F}$ with a free variable x,

$$
\neg \forall_{B(x)} A(x) \equiv \exists_{B(x)} \neg A(x), \quad \neg \exists_{B(x)} A(x) \equiv \forall_{B(x)} \neg A(x)
$$

Here is a poof of first equality. The proof of the second one is similar and is left as an exercise.

$$
\begin{gathered}
\neg \forall_{B(x)} A(x) \equiv \neg \forall x(B(x) \Rightarrow A(x)) \\
\equiv \neg \forall x(\neg B(x) \cup A(x)) \\
\equiv \exists x \neg(\neg B(x) \cup A(x)) \equiv \exists x(\neg \neg B(x) \cap \neg A(x)) \\
\left.\equiv \exists x(B(x) \cap \neg A(x)) \equiv \exists_{B(x)} \neg A(x)\right)
\end{gathered}
$$

