
LOGICS FOR COMPUTER SCIENCE:
Classical and Non-Classical

Springer 2019

Anita Wasilewska

Chapter 2
Introduction to Classical Logic Languages and Semantics

CHAPTER 2 SLIDES

Chapter 2
Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 1: Classical Logic Model

PART 2: Propositional Language

PART 3: Propositional Semantics

PART 4: Examples of Propositional Tautologies

Slides Set 2

PART 5 4: Predicate Language

PART 6 4: Predicate Tautologies - Laws for Quantifiers

Chapter 2
Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 1: Classical Logic Model

Very Short History

Logic Origins:

Stoic school of philosophy (3rd century B.C.)

Tthe most eminent representative was Chryssipus

Modern Origins:

Mid-19th century

English mathematician G. Boole, who is sometimes regarded

as the founder of mathematical logic

First Axiomatic System:

In 1879 by German logician G. Frege.

Logic

Logic builds symbolic models of our world

Logic builds the models in order to describe

formally the ways we reason in and about our world

Logic also poses questions about correctness of such

models and develops tools to answer them

Classical Model Assumptions

Assumption 1

Classical logic model admits only two logical values

Why two logical values only?

Classical logic was created to model the reasoning

principles of mathematics

We expect from mathematical theorems to be always

either true or false and the reasoning leading to them should

guarantee this without any ambiguity

Classical Model Assumptions

Assumption 2

1. The language in which we reason uses sentences

2. The sentences are build up from basic assertions

about the world using special words or phrases:

”not”, ”not true” , ”and”, ”or”, ” implies”, ”if then”,
”from the fact that we can deduce”, ” if and only if”,
”equivalent”, ”every”, ”for all”, any”, ”some”, ” exists”

3. We use symbols do denote basic assertions and special

words or phrases

Hence the name symbolic logic

Logic

Logic studies the behavior of the special words and phrases

Special words and phrases have accepted intuitive meanings

Logic builds models to formalize these intuitive meanings

To do so we first define formal symbolic languages and

then define a formal meaning of their symbols

The formal meaning is called semantics

Propositional Connectives

The symbols for he special words and phrases are called
propositional connectives

There are different choices of symbols for the propositional
connectives; we adopt the following:

¬ for ”not”, ”not true”

∩ for ”and”

∪ for ör”

⇒ for ” implies” , ”if then”, ”from the fact that... we can
deduce”

⇔ for ” if and only if”, ”equivalent”

The names for the propositional connectives are:

negation for ¬

conjunction, for ∩, disjunction for ∪

implication for ⇒, and equivalence for ⇔

Propositional Logic

Restricting our attention to the role of propositional
connectives yields to what is called propositional logic

The basic components of the propositional logic are a
propositional language and a propositional semantics

The propositional logic is a quite simple model to justify,
describe and develop

We devote first few chapters to it. We do it both for its own
sake and because it provides a good background for
developing and understanding more difficult languages and
logics to follow

Quantifiers and Predicate Logic

Quantifiers

We use symbols:

∀ for ”every”, ”any”, ”all”

∃ for ”some” ,” exists”, ”there is”

The symbols ∀, ∃ are called quantifiers

Consideration and study of the role of propositional

connectives and quantifiers leads to what is called a

predicate logic

Quantifiers and Predicate Logic

The basic components of the predicate logic are predicate
language and predicate semantics

The predicate logic is a much more complicated model

We develop and study it in full formality in chapters following

this introduction and examination of the propositional logic

model

Chapter 2
Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 2: Propositional Language

Propositional Language

Propositional language is a quite simple, symbolic language

into which we can translate (represent) sentences of a

natural language

Example

Consider natural language sentence
” If 2 + 2 = 5, then 2 + 2 = 4”

We translate it into the propositional language as follows

We denote the basic assertion (proposition) ”2 + 2 = 5” by
a variable, let’s say a, and the proposition ”2 + 2 = 4” by a
variable b

We write a connective⇒ for ”if then”

As a result we obtain a propositional language formula

(a ⇒ b)

Propositional Translation

Exercise

Translate a natural language sentence S

”The fact that it is not true that at the same time 2+2 = 4 and

2+2 = 5 implies that 2+2 = 4”

into a corresponding propositional language formula

We carry the translation as follows

1. We identify all words and phrases representing the

logical connectives and we re-write the sentence S

in a simpler form introducing parenthesis to better express

its meaning

Propositional Translation

The sentence S becomes:

” If not (2 + 2 = 4 and 2 + 2 = 5) then 2 + 2 = 4”

2.

We identify the basic assertions (propositions) and assign
propositional variables to them:

a : ”2 + 2 = 4” and b : ”2 + 2 = 5”

Step 3

We write the propositional language formula:

(¬(a ∩ b)⇒ a)

Syntax

A formal description of symbols and the definition of the

set of formulas is called a syntax of a symbolic language

We use the word syntax to stress that the formulas do not

carry neither formal meaning nor a logical value

We assign the meaning and logical value to syntactically

defined formulas in a separate step

This next, separate step is called a semantics of the given

symbolic language

A given symbolic language can have different semantics and

the different semantics can define different logics

Natural Languages

One can think about a natural language as a setW

of all words and sentences based on a given alphabet A

This leads to a simple, abstract model of a natural language

NL as a pair
NL = (A, W)

Some natural languages share the same alphabet, some have

different alphabets

All of them face serious problems with a proper recognition

and definitions of accepted words and complex sentences

Symbolic Languages

We do not want the symbolic languages to share the
difficulties of the natural languages

We define their components precisely and in such a way

that their recognition and correctness will be easily decided

We call their words and sentences formulas and denote

the set of all formulas by F

We define a symbolic language as a pair

SL = (A, F)

Symbolic Languages Categories

We distinguish two categories of symbolic languages:

propositional and predicate

We define first the propositional language

The definition of the predicate language, with its much more

complicated structure will follow

Propositional Language Definition

Definition

By a propositional language L we understand a pair

L = (A,F)

where A is called propositional alphabet

F is called a set of all well formed formulas

Language Components: Alphabet

1. Alphabet A

The alphabet A consists of

a countably infinite set VAR of propositional variables,

a finite set of propositional connectives, and

a set of two parenthesis

We denote the propositional variables by letters

a, b , c, p, q, r ,

with indices if necessary. It means that we can also use

a1, a2, ..., b1, b2, ...

as symbols for propositional variables

Language Components: Alphabet

Propositional connectives are:

¬, ∩, ∪, ⇒, ⇔

The connectives have well established names

The connectives names are:

negation, conjunction, disjunction, implication, and

equivalence (biconditional)

for the connectives ¬, ∩, ∪, ⇒, and⇔, respectively

Parenthesis are symbols (and)

Language Components: Formulas

Formulas are expressions build by means of elements of the
alphabet A. We denote formulas by capital letters
A , B , C , D,, with indices, if necessary.
The set F of all formulas of the propositional language L is
defined recursively as follows

1. Base step: all propositional variables are are formulas

They are called atomic formulas

2. Recursive step: for any already defined formulas A ,B ,
the expressions

¬A , (A ∩ B), (A ∪ B), (A ⇒ B), (A ⇔ B)

are also formulas

3. Only those expressions are formulas that are determined
to be so by means of conditions 1. and 2.

Formulas Example

By the definition, any propositional variable is a formula.
Let’s take two variables a and b.

By the recursive step we get that

(a ∩ b), (a ∪ b), (a ⇒ b), (a ⇔ b), ¬a, ¬b

are formulas

The recursive step applied again produces for example

some formulas :

¬(a ∩ b), ((a ⇔ b) ∪ ¬b), ¬¬a, ¬¬(a ∩ b)

Formulas

Observe that we listed only few formulas obtained in the first

recursive step

As as the recursive process continue we obtain a set of

well formed of formulas

The set of all formulas is countably infinite

Formulas

Remark that we put parenthesis within the formulas in a way

to avoid ambiguity

The expression
a ∩ b ∪ a

is ambiguous

We don’t know whether it represents a formula

(a ∩ b) ∪ a or a formula a ∩ (b ∪ a)

Observe that neither of formulas a ∩ b ∪ a, (a ∩ b) ∪ a

or a ∩ (b ∪ a) is a well formed formula

Exercises

Exercise

Consider a following set

S = {¬a ⇒ (a ∪ b), ((¬a)⇒ (a ∪ b)), ¬(a ⇒ (a ∪ b)), (a → a)}

1. Determine which of the elements of S are, and which

are not well formed formulas of L = (A,F)

2. For any A < F re-write it as a correct formula and write

what it says in the natural language

Exercises

Solution

The formula ¬a ⇒ (a ∪ b) is not a well formed formula

A correct formula is (¬a ⇒ (a ∪ b))

It says: ”If a is not true , then we have a or b ”

Another correct formula in is ¬(a ⇒ (a ∪ b))

It says: ”It is not true that a implies a or b ”

Exercises

Solution

The formula ((¬a)⇒ (a ∪ b)) is not correct because
(¬a) < F

The correct formula is (¬a ⇒ (a ∪ b))

The formula ¬(a ⇒ (a ∪ b)) is correct

The formula ¬(a → a) < F is not correct

The connective→ does not belong to the language L

¬(a → a) is a correct formula of another propositional
language; the one that uses a symbol→ for implication

Exercises

Exercise
Write following natural language statement:
”One likes to play bridge or from the fact that the weather is
good we conclude the following: one does not like to play
bridge or one likes swimming”
as a formula of the propositional language L = (A,F)

Solution
First we identify the needed components of the alphabet A:
propositional variables: a, b , c
a denotes statement: one likes to play bridge, b denotes
a statement: the weather is good, c denotes a statement:
one likes swimming
Connectives: ∪, ⇒, ∪. ¬
The corresponding formula of L is

(a ∪ (b ⇒ (¬a ∪ c)))

Symbols for Connectives

The connectives symbols we use are not the only one used in
mathematical, logical, or computer science literature

Some Other Symbols
Negation Disjunction Conjunction Implication Equivalence
−A (A ∪ B) (A ∩ B) (A ⇒ B) (A ⇔ B)
NA DAB CAB IAB EAB
A (A ∨ B) (A & B) (A → B) (A ↔ B)
∼ A (A ∨ B) (A · B) (A ⊃ B) (A ≡ B)
A ′ (A + B) (A · B) (A → B) (A ≡ B)

The first notation is the closest to ours and is drawn mainly
from the algebra of sets and lattice theory

The second comes from the Polish logician J. Łukasiewicz
and is called the Polish notation

The third was used by D. Hilbert.

The fourth comes from Peano and Russell

The fifth goes back to Schröder and Pierce

Chapter 2
Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 3: Propositional Semantics

Propositional Semantics

We present now definitions of propositional connectives

in terms of two logical values true or false and discuss

their motivations

The resulting definitions are called a semantics for the
classical propositional connectives

The semantics presented here is fairly informal

The formal definition of classical propositional semantics

is presented in chapter 3

Conjunction: Motivation and Definition

Conjunction

A conjunction (A ∩ B) is a true formula if both A and B

are true formulas

If one of the formulas, or both, are false, then the

conjunction is a false formula

Let’s denote statement: ”formula A is false ” by A = F and

a statement: ”formula A is true ” by A = T

Conjunction: Definition

Conjunction

The logical value of a conjunction depends on the logical
values of its factors in a way which is express in the form of
the following table (truth table)

Conjunction Table

A B (A ∩ B)

T T T
T F F
F T F
F F F

Disjunction

Disjunction

The word or is used in natural language in two different
senses.

First: A or B is true if at least one of the statements A, B is
true

Second: A or B is true if one of the statements A and B
is true and the other is false

In mathematics and hence in logic, the word or is used in the
first sense

Disjunction: Definition

Disjunction

We adopt the convention that a disjunction (A ∪ B) is true if
at least one of the formulas A , B is true

Disjunction Table

A B (A ∪ B)

T T T
T F T
F T T
F F F

Negation: Definition

Negation

The negation of a true formula is a false formula, and the
negation of a false formula is a true formula

Negation Table

A ¬A
T F
F T

Implication: Motivation and Definition

The semantics of the statements in the form

if A, then B

needs a little bit more discussion.

In everyday language a statement if A, then B is interpreted
to mean that B can be inferred from A.

In mathematics its interpretation differs from that in natural
language

Implication: Definition

Implication

The above examples justify adopting the following definition
of a semantics for the implication (A ⇒ B)

Implication Table
A B (A ⇒ B)

T T T
T F F
F T T
F F T

Implication: Motivation

Consider the following

Theorem

For every natural number n,

if 6 DIVIDES n, then 3 DIVIDES n

The theorem is true for any natural number, hence in
particular, it is true for numbers 2, 3, 6

Consider number 2

The following proposition is true

if 6 DIVIDES 2, then 3 DIVIDES 2

It means an implication (A ⇒ B) in which A and B are
false is interpreted as a true statement

Implication: Motivation

Consider now a number 3

The following proposition is true

if 6 DIVIDES 3, then 3 DIVIDES 3,

It means that an implication (A ⇒ B) in which A is false and
B is true is interpreted as a true statement

Consider now a number 6

The following proposition is true

if 6 DIVIDES 6, then 3 DIVIDES 6.

It means that an implication (A ⇒ B) in which A and B
are true is interpreted as a true statement

Implication: Motivation

One more case.

What happens when in the implication (A ⇒ B) the formula
A is true and the formula B is false

Consider a sentence

if 6 DIVIDES 12, then 6 DIVIDES 5.

Obviously, this is a false statement

Equivalence Definition

Equivalence

An equivalence (A ⇔ B) is true if both formulas A and B
have the same logical value

Equivalence Table

A B (A ⇔ B)

T T T
T F F
F T F
F F T

Truth Tables Semantics

We summarize the tables for propositional connectives in the
following one table.

We call it a truth table definition of propositional;
connectives and hence we call the semantics defined here a
truth tables semantics.

A B ¬A (A ∩ B) (A ∪ B) (A ⇒ B) (A ⇔ B)

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Truth Tables Semantics

The truth tables indicate that the logical value of of
propositional connectives independent of the formulas A, B

We write the connectives in a ”formula independent” form
as a set of of the following equations

¬T = F , ¬F = T ;

T ∩ T = T , T ∩ F = F , F ∩ T = F , F ∩ F = F ;

T ∪ T = T , T ∪ F = T , F ∪ T = T , F ∪ F = F ;

T ⇒ T = T , T ⇒ F = F , F ⇒ T = T , F ⇒ F = T ;

T ⇔ T = T , T ⇔ F = F , F ⇔ T = F , T ⇔ T = T

We use the above set of connectives equations to evaluate
logical values of formulas

Exercise

Exercise

Show that (A ⇒ (¬A ∩ B)) = F for the following logical
values of its basic components: A=T and B=F

Solution

We calculate the logical value of the formula

(A ⇒ (¬A ∩ B))

by substituting the respective logical values T, F for the
component formulas A, B and applying the set of
connectives equations as follows

T ⇒ (¬T ∩ F) = T ⇒ (F ∩ F) = T ⇒ F = F

Extensional Connectives

Extensional connectives are the connectives that have the
following property:

the logical value of the formulas form by means of these
connectives and certain given formulas depends only on
the logical value(s) of the given formulas

All classical propositional connectives

¬, ∪, ∩, ⇒, ⇔

are extensional

Propositional Connectives

Remark

In everyday language there are expressions such as

”I believe that”, ”it is possible that”, ” certainly”, etc....

They are represented by some propositional connectives
which are not extensional

They do not play any role in mathematics and so are not
discussed in classical logic, they belong to non-classical
logics

All Extensional Two Valued Connectives

There are many other binary (two valued) extensional
propositional connectives

Here is a table of all unary connectives

A 51A 52A ¬A 54A
T F T F T
F F F T T

All Extensional Binary Connectives

Here is a table of all binary connectives

A B (A◦1B) (A ∩ B) (A◦3B) (A◦4B)
T T F T F F
T F F F T F
F T F F F T
F F F F F F
A B (A ↓ B) (A◦6B) (A◦7B) (A ⇔ B)
T T F T T T
T F F T F F
F T F F T F
F F T F F T
A B (A◦9B) (A◦10B) (A◦11B) (A ∪ B)
T T F F F T
T F T T F T
F T T F T T
F F F T T F
A B (A◦13B) (A ⇒ B) (A ↑ B) (A◦16B)
T T T T F T
T F T F T T
F T F T T T
F F T T T T

Functional Dependency Definition

Definition

Functional dependency of connectives is the ability of defining
some connectives in terms of some others

All classical propositional connectives can be defined in
terms of disjunction and negation

Two binary connectives: ↓ and ↑ suffice, each of them
separately, to define all classical connectives, whether unary
or binary

Functional Dependency

The connective ↑ was discovered in 1913 by H.M. Sheffer,
who called it alternative negation

Now it is often called a Sheffer’s connective

The formula

A ↑ B reads: not both A and B.

Negation ¬A is defined as A ↑ A .

Disjunction (A ∪ B) is defined as (A ↑ A) ↑ (B ↑ B)

Functional Dependency

The connective ↓ was discovered by J. Łukasiewicz and is
called a joint negation

The formula

A ↓ B reads: neither A nor B.

It was proved in 1925 by E. Żyliński that no propositional
connective other than ↑ and ↓ suffices to define all the
remaining classical connectives

Chapter 2
Introduction to Classical Logic Languages and Semantics

Slides Set 1

PART 4: Examples of Propositional Tautologies

Propositional Tautologies

Now we connect syntax (formulas of a given language L)
with semantics (assignment of truth values to the formulas of
the language L)

In logic we are interested in those propositional formulas that
must be] always true because of their syntactical structure
without reference to the natural language meaning of the
propositions they represent

Such formulas are called propositional tautologies

Example

Example

Given a formula (A ⇒ A)

We evaluate the logical value of our formula for all possible
logical values of its basic component A

We put our calculation in a form of a table, called a truth
table below

A (A ⇒ A) computation (A ⇒ A)

T T ⇒ T = T T
F F ⇒ F = T T

The logical value of the formula (A ⇒ A) is always T

This means that it is a propositional tautology.

Example

Example

Here is a truth table for a formula (A ⇒ B)

A B (A ⇒ B) computation (A ⇒ B)

T T T ⇒ T = T T
T F T ⇒ F = F F
F T F ⇒ T = T T
F F F ⇒ F = T T

The logical value of the formula (A ⇒ B) is F for A = T and
B = F what means that it is not a propositional tautology

Tautology Definition

Definition

For any formula A ∈ F of a propositional language
L = (A,F), we say that A is a propositional tautology

if and only if

the logical value of A is T (we write it A = T) for all possible
logical values of its basic components

We write
|= A

to denote that A is a tautology

Classical Tautologies

Here is a list of some of the most known classical notions
and tautologies

Modus Ponens known to the Stoics (3rd century B.C.)

|= ((A ∩ (A ⇒ B))⇒ B)

Detachment
|= ((A ∩ (A ⇔ B))⇒ B)

|= ((B ∩ (A ⇔ B))⇒ A)

Sufficient and Necessary

Sufficient: Given an implication (A ⇒ B),

A is called a sufficient condition for B to hold.

Necessary : Given an implication (A ⇒ B),

B is called a necessary condition for A to hold.

Implication Names

Simple:

(A ⇒ B) is called a simple implication

Converse:

(B ⇒ A) is called a converse implication to (A ⇒ B)

Opposite:

(¬B ⇒ ¬A) is called an opposite implication to (A ⇒ B)

Contrary:

(¬A ⇒ ¬B) is called a contrary implication to (A ⇒ B)

Laws of contraposition

Laws of Contraposition

|= ((A ⇒ B)⇔ (¬B ⇒ ¬A)),

|= ((B ⇒ A)⇔ (¬A ⇒ ¬B)).

These Laws make it possible to replace, in any deductive

argument, a sentence of the form (A ⇒ B) by

(¬B ⇒ ¬A), and conversely

Necessary and sufficient

We read the formula (A ⇔ B) as

”B is necessary and sufficient for A”

because of the following tautology

|= ((A ⇔ B))⇔ ((A ⇒ B) ∩ (B ⇒ A)))

Stoics, 3rd century B.C.

Hypothetical Syllogism

|= (((A ⇒ B) ∩ (B ⇒ C))⇒ (A ⇒ C)),

|= ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C))),

|= ((B ⇒ C)⇒ ((A ⇒ B)⇒ (A ⇒ C))).

Modus Tollendo Ponens

|= (((A ∪ B) ∩ ¬A)⇒ B),

|= (((A ∪ B) ∩ ¬B)⇒ A)

12 to 19 Century

Duns Scotus 12/13 century

|= (¬A ⇒ (A ⇒ B))

Clavius 16th century

|= ((¬A ⇒ A)⇒ A)

Frege 1879

|= (((A ⇒ (B ⇒ C)) ∩ (A ⇒ B))⇒ (A ⇒ C)),

|= ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

Frege gave the the first formulation of the classical

propositional logic as a formalized axiomatic system

Apagogic Proofs

Apagogic Proofs: means proofs by reductio ad absurdum

Reductio ad absurdum:

to prove A to be true, we assume ¬A . If we get

a contradiction, it means that we have proved A to be true

Correctness of this reasoning is guarantee by the following

tautology
|= ((¬A ⇒ (B ∩ ¬B))⇒ A)

Classical Tautologies

This chapter contains a very extensive list of classical

propositional tautologies

Read, prove , and memorize as many as you can

We will use them freely in later Chapters assuming that

you are really familiar with all of them

Chapter 2
Introduction to Classical Logic Languages and Semantics

Slides Set 2

PART 5: Predicate Language

Predicate Language

We define a predicate language L following the pattern

established by the definitions of symbolic and propositional

languages

The predicate language is much more complicated in

its structure then the propositional one

Its alphabet A is much richer.

The definition of its set of formulas F is more complicated

Predicate Language

In order to define the set F define an additional set T, called
a set of all terms of the predicate language L

We single out this set T of terms not only because we need it
for the definition of formulas, but also because of its role in the
development of other notions of predicate logic.

Predicate Language Definition

Definition

By a predicate language L we understand a triple

L = (A, T, F)

where A is a predicate alphabet

T is the set of terms, and F is a set of formulas

Alphabet Components

Alphabet A

The components of A are as follows

1. Propositional connectives

¬, ∩, ∪, ⇒, ⇔

2. Quantifiers ∀, ∃

∀ is the universal quantifier, and ∃ is the existential
quantifier

3. Parenthesis (and)

Alphabet Components

4. Variables

We assume that we have, as we did in the propositional case
a countably infinite set VAR of variables

The variables now have a different meaning than they had
in the propositional case

We hence call them variables, or individual variables

We put
VAR = {x1, x2,}

5. Constants

The constants represent in ”real life” elements of concrete
sets We assume that we have a countably infinite set C of
constants

C = {c1, c2, ...}

Alphabet Components

6. Predicate symbols

The predicate symbols represent ”real life” relations

We denote them by P, Q, R, ..., with indices, if necessary

We use symbol P for the set of all predicate symbols

We assume that P is countably infinite and write

P = {P1,P2,P3,}

Alphabet Components

Logic notation

In ”real life” we write symbolically x < y to express that
element x is smaller then element y according to the two
argument order relation <

In the predicate language L we represent the relation < as
a two argument predicate P ∈ P

We write P(x, y) as a representation of ”real life” x < y.

The variables x, y in P(x, y) are individual variables from
the set VAR

Mathematical statements n < 0, 1 < 2, 0 < m are
represented in L by P(x, c1), P(c2, c3), P(c1, y),
respectively,

where c1, c2, c3 are any constants and x, y any variables

Alphabet Components

7. Function symbols

The function symbols represent ”real life” functions

We denote function symbols by f , g, h, ..., with indices, if
necessary

We use symbol F for the set of all function symbols

We assume that F is countably infinite and write

F = {f1, f2, f3,}

Set T of Terms

Definition

Terms are expressions built out of function symbols and
variables

Terms describe how we build compositions of functions

We define the set T of all terms recursively as follows.

1. All variables are terms;

2. All constants are terms;

3. For any function symbol f ∈ F representing a function on
n variables, and any terms t1, t2, ..., tn, the expression
f(t1, t2, ..., tn) is a term;

4. The set T of all terms of the predicate language L is the
smallest set that fulfills the conditions 1. - 3.

Example

Example

Here are some terms of L

h(c1), f(g(c, x)), g(f(f(c)), g(x, y)),

f1(c, g(x, f(c))), g(g(x, y), g(x, h(c)))

Observe that to obtain the predicate language
representation of for example x + y we can first write it as
+(x, y) and then replace the addition symbol + by any two
argument function symbol g ∈ F and get the term g(x, y).

Set F of Formulas

Formulas are build out of elements of the alphabet A and
the set T of all terms

We denote the formulas by A ,B ,C ,, with indices, if
necessary.

We them, as before in recursive steps

The first recursive step says:

all atomic formulas are formulas

The atomic formulas are the simplest formulas, as the
propositional variables were in the case of the propositional
language.

We define the atomic formulas as follows.

Atomic Formulas

Definition

An atomic formula is any expression of the form

R(t1, t2, ..., tn),

where R is any n-argument predicate R ∈ P and t1, t2, ..., tn
are terms, i.e. t1, t2, ..., tn ∈ T.

Some atomic formulas of L are:

Q(c), Q(x), Q(g(x1, x2)),

R(c, d), R(x, f(c)), R(g(x, y), f(g(c, z))),

Set F of Formulas

Definition

The set F of formulas of predicate language L is the
smallest set meeting the following conditions

1. All atomic formulas are formulas;

2. If A ,B are formulas, then
¬A , (A ∩ B), (A ∪ B), (A ⇒ B), (A ⇔ B) are formulas;

3. If A is a formula, then ∀xA , ∃xA are formulas for any
variable x ∈ VAR.

Set F of Formulas

Example

Some formulas of L are:

R(c, d), ∃yR(y, f(c)), R(x, y),

(∀xR(x, f(c))⇒ ¬R(x, y)), (R(c, d) ∩ ∀zR(z, f(c))),

∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y)

Set F of Formulas

Let’s look now closer at the following formulas.

R(c1, c2), R(x, y), ((R(y, d)⇒ R(a, z)),

∃xR(x, y), ∀yR(x, y), ∃x∀yR(x, y).

Observations
1. Some formulas are without quantifiers:

R(c1, c2), R(x, y), (R(y, d)⇒ R(a, z)).

A formula without quantifiers is called an open formula

Variables x, y in R(x, y) are called free variables

The variable y in R(y, d) and z in R(a,z) are also free

Set F of Formulas

Observations

2. Quantifiers bind variables within formulas.

The variable x is bounded by ∃x in the formula

∃xR(x, y)

the variable y is free

The variable y is bounded by ∀y in the formula

∀yR(x, y),

the variable y is free.

Set F of Formulas

Observations

3. The formula
∃x∀yR(x, y)

does not contain any free variables, neither does the
formula

R(c1, c2)

4. A formula without any free variables is called a closed
formula or a sentence

Mathematical Statements

We often use logic symbols, while writing mathematical
statements in a symbolic way

For example, mathematicians to say

”all natural numbers are greater then zero
and some integers are equal 1”

and often write it as

x ≥ 0, ∀x∈N and ∃y∈Z , y = 1

Mathematical Statements

Some mathematicians who are more ”logic oriented” would
write the satements as follows

∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1

or even write it as

∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1

Observe that none of the above symbolic statement are
correct formulas of the predicate language.

These are mathematical statements written with mathematical
and logic symbols They are written with different degree of
”logical precision”, the last being, from a logician point of view
the most precise

Mathematical Statements

Our goal now is to ”translate ” mathematical and natural
language statement into correct formulas of the predicate
language L

Let’s start with some observations

O1 The quantifiers in ∀x∈N , ∃y∈Z often used by

mathematicians are not the one defined and used in logic

O2 The predicate language L admits only quantifiers

∀x, ∃y, for any variables x, y ∈ VAR

Quantifiers with Restricted Domain

O3 The quantifiers ∀x∈N , ∃y∈Z are called quantifiers with
restricted domain, or restricted domain quantifiers

Definition

∀A(x)B(x) stands for a formula ∀x(A(x)⇒ B(x)) ∈ F

∃A(x)B(x) stands for a formula ∃x(A(x) ∩ B(x)) ∈ F

The restriction of the quantifier domain can, and often is
given by more complicated statements

Quantifiers with Restricted Domain

We write the definition of the restricted domain quantifiers in a
form of the following rules

Transformations Rules for Restricted Quantifiers

∀A(x) B(x) ≡ ∀x(A(x)⇒ B(x))

∃A(x) B(x) ≡ ∃x(A(x) ∩ B(x))

Translations to Formulas of L

Given a mathematical statement S written with the use of
logical symbols.

We obtain a formula A ∈ F that is a translation of S into the
predicate language L by conducting a following sequence of
steps

Step 1 We identify basic statements in S, i.e. mathematical
statements that involve only relations. They are to be
translated into atomic formulas

Step 2 We write the basic statements as atomic formulas
of the predicate language L

Translations to Formulas of L

Step 3 We write the statement S a formula with restricted
quantifiers (if needed)

Step 4 We apply the transformations rules for restricted
quantifiers to the formula obtained in the Step 3

In case of a translation from mathematical statement S
written without logical symbols we add a following step

Step 0 We identify propositional connectives and
quantifiers and use them to re-write the statement in a form
that is as close to the structure of a logical formula as possible

Translations to Formulas of L

Step 1 We identify basic statements in S, i.e. mathematical
statements that involve only relations. They are to be
translated into atomic formulas

We proceed as follows

We identify the relations in the basic statements and choose
the predicate symbols as their names

We identify all functions and constants (if any) in the basic
statements and choose the function symbols and constant
symbols as their names

Translations to Formulas of L

Step 2 We write the basic statements as atomic formulas
of the predicate language L

Remember that in the predicate language L we write a
function symbol in front of the function arguments not
between them as we write in mathematics

The same applies to relation symbols

Translations to Formulas of L

Example

We re-write a basic mathematical statement

x + 2 > y as > (+(x, 2), y),

and then we write it as an atomic formula

P(f(x, c), y)

P ∈ P stands for two argument relation >

f ∈ F stands for two argument function +

c ∈ C stands for the number 2

Translations to Formulas of L

Step 3 We write the statement S a formula with restricted
quantifiers (if needed)

Step 4 We apply the transformations rules for restricted
quantifiers to the formula obtained in the Step 3

In case of a translation from mathematical statement written
without logical symbols we add a following step.

Step 0 We identify propositional connectives and quantifiers
and use them to re-write the statement in a form that is as
close to the structure of a logical formula as possible

Translations Examples

Exercise

Given a mathematical statement S written with logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

1. Translate it into a proper logical formula with restricted
quantifiers i.e. into a formula of L that uses the restricted
domain quantifiers.

2. Translate your restricted quantifiers formula into a correct
formula without restricted domain quantifiers, i.e. into a
proper formula of L

A long and detailed solution is given in Chapter 2, page 28.

A short statement of the exercise and a short solution
follows

Translations Examples

Exercise

Given a mathematical statement S written with logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

Translate it into a proper formula of L

Short Solution
The basic statements in S are:

x ∈ N, x ≥ 0, y ∈ Z , y = 1

The corresponding atomic formulas of L are

N(x), G(x, c1), Z(y), E(y, c2)

Translations Examples

The statement S becomes restricted quantifiers formula

(∀N(x)G(x, c1) ∩ ∃Z(y) E(y, c2))

By the Transformation Rules we get the formula A ∈ F

(∀x(N(x)⇒ G(x, c1)) ∩ ∃y(Z(y) ∩ E(y, c2)))

Translations Examples

Exercise

Here is a mathematical statement S

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

1. Re-write S as a symbolic mathematical statement SF that
only uses mathematical and logical symbols.

2. Translate the symbolic statement SF into to a
corresponding formula A ∈ F of the predicate language L

Translations Examples

Solution

The statement S is

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

S becomes a symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

We write R(x) for x ∈ R, N(y) for n ∈ N, a constant c for the
number 0. We use L ∈ P to denote the relation <. We use
f ∈ F to denote the function +

The statement x < 0 becomes an atomic formula

L(x, c)

Translations Examples

The statement x + n < 0 becomes an atomic formula

L(f(x, y), c)

The symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

becomes a restricted quantifiers formula

∀R(x)(L(x, c)⇒ ∃N(y)L(f(x, y), c))

We apply now the transformation rules and get a
corresponding formula A ∈ F

∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(x, y), c)))

Translations from Natural Language

Exercise

Translate a natural language statement S

”Any friend of Mary is a friend of John and Peter is not John’s
friend. Hence Peter is not May’s friend”

into a formula A ∈ F of the predicate language L

Solution
Step 1 We identify the basic relations and functions (if any)
and translate them into atomic formulas

We have only one relation of ”being a friend”

We translate it into an atomic formula

F(x, y),

where F(x, y) stands for ”x is a friend of y”

Translations from Natural Language

”Any friend of Mary is a friend of John and Peter is not John’s
friend. Hence Peter is not May’s friend”

We use constants m, j, p for Mary, John, and Peter,
respectively

Step 2 We hence have the following atomic formulas:

F(x,m), F(x, j), F(p, j)

where F(x, m) stands for ”x is a friend of Mary”,

F(x, j) stands for ”x is a friend of John”, and

F(p, j) stands for ”Peter is a friend of John”

Translations from Natural Language

Step 3 Statement ”Any friend of Mary is a friend of John”
translates into a restricted quantifier formula

∀F(x,m) F(x, j)

Statement ”Peter is not John’s friend” translates into

¬F(p, j)

and ”Peter is not May’s friend” translates into

¬F(p,m)

Translations from Natural Language

Restricted quantifiers formula for S is

((∀F(x,m)F(x, j) ∩ ¬F(p, j))⇒ ¬F(p,m))

4 By the Transformation Rules, the formula A ∈ F of L
corresponding to S is

((∀x(F(x,m)⇒ F(x, j)) ∩ ¬F(p, j))⇒ ¬F(p,m))

Rules of Translations

Rules of translation from natural language to the predicate
language L

Given a statement S

1. Identify the basic relations and functions (if any) and
translate them into atomic formulas

2. Identify propositional connectives and use symbols
¬,∪,∩,⇒,⇔ for them

3. Identify quantifiers: restricted ∀A(x), ∃A(x), and
non-restricted ∀x, ∃x

4. Use the symbols from 1. - 3. and write logic formula
containing restricted and non-restricted quantifiers, if any

5. Use the restricted quantifiers Transformation Rules to
write A ∈ F of the predicate language L corresponding to S

Translation Example

Exercise

Given a natural language statement

S: ”For any bird one can find some birds that white”

Show that the translation of S into a formula of the
predicate language L is

∀x(B(x)⇒ ∃x(B(x) ∩W(x)))

Solution

We follow the Rules of Translation as flollows

1. Atomic formulas: B(x), W(x)

where B(x) stands for ” x is a bird”

and W(x) stands for ” x is white”

Translation Example

2. There is no propositional connectives in S

3. Restricted quantifiers:

∀B(x) for ”any bird ”

∃B(x) for ”one can find some birds”

4. Restricted quantifiers formula for S is

∀B(x)∃B(x) W(x)

5. By the Transformation Rules we get a required formula of
the predicate language L:

∀x(B(x)⇒ ∃x(B(x) ∩W(x)))

Translation Example

Exercise

Translate into L a natural language statement
S: ” Some patients like all doctors”

Solution

1. Atomic formulas: P(x), D(x), L(x, y)

P(x) stands for ” x is a patient”,

D(x) stands for ” x is a doctor”, and

L(x,y) stands for ” x likes y”

2. There is no propositional connectives in S

Translation Example

3. Restricted quantifiers:

∃P(x) for ”some patients ” and ∀D(x) for ”all doctors”

Observe that we can’t write L(x, D(y)) for ”x likes doctor y”

D(y) is a predicate, not a term, and hence L(x, D(y)) is not
a formula

We have to express the statement ” x likes all doctors y” in
terms of restricted quantifiers and the predicate L(x,y) only

Translation Example

Observe that the statement ” x likes all doctors y” means
also ” all doctors y are liked by x”

We hence re- write it as ”for all doctors y, x likes y” what
translates to a formula

∀D(y)L(x, y)

Hence the statement S translates to

∃P(x)∀D(x)L(x, y)

4. By the Transformation Rules we get the following
translation of S into L

∃x(P(x) ∩ ∀y(D(y)⇒ L(x, y)))

Chapter 2
Introduction to Classical Logic Languages and Semantics

Slides Set 3

PART 6: Predicate Tautologies - Laws for Quantifiers

Predicate Tautologies

The notion of predicate tautology is much more complicated

then that of the propositional one

We introduce it intuitively here and define it formally in

chapter 8

Predicate tautologies are also called valid formulas, or

laws of quantifiers to distinguish them from the

propositional case

We provide here a motivation, some examples and

intuitive definitions

We also list and discuss the most used and useful predicate

tautologies and equational laws of quantifiers

Interpretation

The formulas of the predicate language L have a meaning

only when an interpretation is given for its symbols

We define the interpretation I in a set U , ∅ by interpreting
predicate and functional symbols of L as concrete

relations and functions defined in the set U

We interpret constants symbols as elements of the set U

The set U is called the universe of the interpretation I

Model Structure

We define a model structure for the predicate language L as
a pair

M = (U, I)

where the set U is called the structure universe and of the I
is the structure interpretation in the universe U

Given a formula A of L, and the model structure M = (U, I)

We denote by
AI

a statement defined in the structure M = (U, I) that is
determined by the formula A and the interpretation I in the
universe U

Model Structure

When the formula A is a sentence, it means it is a formula
without free variables, the model structure statement

AI

represents a proposition that is true or false in the

universe U, under the interpretation I

When the formula A is not a sentence, it contains free
variables and may be satisfied (i.e. true) for some values in
the universe U and not satisfied (i.e. false) for the others

Lets look at few simple examples

Examples

Example

Let A be a formula ∃xP(x, c)

Consider a model structure M1 = (N, I1)

The universe of the interpretation I1 is the set N of natural
numbers

We define I1 as follows:

We interpret the two argument predicate P as a relation <
and the constant c as number 5, i.e we put

PI1 : = and cI1 : 5

Examples

The formula A: ∃xP(x, c) under the interpretation I1
becomes a mathematical statement

∃x x < 0

defined in the set N of natural numbers

We write it for short

AI1 : ∃x∈N x = 5

AI1 is obviously a true mathematical statement in the model
structure M1 = (N, I1)

We write it symbolically as

M1 |= ∃xP(x, c)

and say: M1 is a model for the formula A

Examples

Example

Consider now a model structure M2 = (N, I2) and the
formula A: ∃xP(x, c)

We interpret now the predicate P as relation < in the set N
of natural numbers and the constant c as number 0

We write it as
PI2 : < and cI2 : 0

Examples

The formula A: ∃xP(x, c) under the interpretation I2
becomes a mathematical statement ∃x x < 0 defined in the
set N of natural numbers

We write it for short

AI2 : ∃x∈N x < 0

AI2 is obviously a false mathematical statement.

We say: the formula A: ∃xP(x, c) is false under the
interpretation I2 in M2, or we say for short: A is false in M2

We write it symbolically as

M2 6|= ∃xP(x, c)

and say that M2 is a counter-model for the formula A

Examples

Example

Consider now a model structure

M3 = (Z , I3) and the formula A: ∃xP(x, c)

We define an interpretation I3 in the set of all integers Z
exactly as the interpretation I1 was defined, i.e. we put

PI3 : < and cI3 : 0

Examples

In this case we get

AI3 : ∃x∈Z x < 0

Obviously AI3 is a true mathematical statement

The formula A is true under the interpretation I3 in M3 (A is
satisfied, true in M3)

We write it symbolically as

M3 |= ∃xP(x, c)

M3 is yet another model for the formula A

Examples

When a formula A is not a closed, i.e. is not a sentence, the
situation gets more complicated

A can be satisfied (i.e. true) for some values in the universe
U of a M = (U, I)

But also and can be not satisfied (i.e. false) for some other
values in the universe U of a M = (U, I)

We explain it in the following examples

Examples

Example

Consider a formula
A1 : R(x, y),

We define a model structure

M = (N, I)

where R is interpreted as a relation ≤ defined in the set N
of all natural numbers, i.e. we put RI : ≤

In this case we get
A1I : x ≤ y

and A1 : R(x, y) is satisfied in model structure M = (N, I)
by all n,m ∈ N such that n ≤ m

Examples

Example

Consider a following formula

A2 : ∀yR(x, y)

and the same model structure M = (N, I), where R is
interpreted as a relation ≤ defined in the set N of all natural
numbers, i.e. we put

RI : ≤

In this case we get that

A2I : ∀y∈N x ≤ y

and so the formula A2 : ∀yR(x, y) is satisfied in M = (N, I)

only by the natural number 0

Examples

Example

Consider now a formula

A3 : ∃x∀yR(x, y)

and the same model structure M = (N, I), where R is
interpreted as a relation ≤ defined in the set N of all natural
numbers, i.e. we put RI : ≤

In this case the statement

A3I : ∃x∈N∀y∈N x ≤ y

asserts that there is a smallest number

This is a true statement and we call the structure M = (N, I)
ia model for the formula A3 : ∃x∀yR(x, y)

Predicate Tautology Definition

We want the predicate language tautologies to have the
same property as the tautologies of the propositional
language, namely to be always true

In this case, we intuitively agree that it means that we want
the predicate tautologies to be formulas that are true under
any interpretation in any possible universe

A rigorous definition of the predicate tautology is provided in

Chapter 8

Predicate Tautology Definition

We construct the rigorous definition of a predicate tautology

in a following sequence of steps

S1 We define formally the notion of interpretation I of
symbols of the language L in a set U , ∅, i.e. in a model
structure M = (U, I) for L

S2 We define formally a notion

” a formula A of L is true in the structure M = (U, I)”

We write it symbolically M |= A and call thestructure
M = (U, I) a model for the formula A

Predicate Tautology Definition

S3 We define a notion ”A is a predicate tautology” as follows

Defintion

For any formula A of predicate language L,

A is a predicate tautology (valid formula) if and only if

M |= A

for all model structures M = (U, I) for the language L

Predicate Tautology Definition

Directly from the above definition we get the following
definition of a notion ” A is not a predicate tautology”

Defintion

For any formula A of predicate language L,

A is not a predicate tautology if and only if

there is a model structure M = (U, I) for L , such that

M 6|= A

We call such model structure M a counter-model for A

Predicate Tautology Definition

The definition of a notion

” A is not a predicate tautology”

says that in order to prove that a formula A is not a predicate
tautology one has to show a counter- model for it

It means that one has to define a non-empty set U and
define an interpretation I, such that we can prove that

AI

is false

Predicate Tautology Definition

We use terms predicate tautology or valid formula instead
of just saying a tautology in order to distinguish tautologies
belonging to two very different languages

For the same reason we usually reserve the symbol |= for
propositional case

Sometimes we use symbols

|=p or |=f

to denote predicate tautologies

p stands for predicate and f stands first order

Predicate tautologies are also called laws of quantifiers

We will use both names

Predicate Tautologies Examples

Here are some examples of predicate tautologies and
counter models for formulas that are not tautologies

Example

For any formula A(x) with a free variable x:

|=p (∀x A(x)⇒ ∃x A(x))

Observe that the formula

(∀x A(x)⇒ ∃x A(x))

represents an infinite number of formulas.

It is a tautology for any formula A(x) of L with a free
variable x

Predicate Tautologie Examples

The inverse implication to (∀x A(x)⇒ ∃x A(x)) is not a
predicate tautology, i.e.

6|=p (∃x A(x)⇒ ∀x A(x))

To prove it we have to provide an example of a concrete
formula A(x) and construct a counter-model M = (U, I) for
the formula

F : (∃x A(x)⇒ ∀x A(x))

Let the concrete A(x) be an atomic formula P(x, c)

We define M = (N, I) for N set of natural numbers and
PI : <, cI : 3

The formula F becomes an obviously false mathematical
statement

FI : (∃n∈Nn < 3⇒ ∀n∈Nn < 3)

Restricted Quantifiers Laws

We have to be very careful when we deal with restricted
domain quantifiers

For example, the most basic predicate tautology

(∀x A(x)⇒ ∃x A(x))

fails when written with the restricted domain quantifiers, i.e.

We show that

6|=p (∀B(x) A(x)⇒ ∃B(x) A(x))

To prove this we have to show that corresponding formula of
L obtained by the restricted quantifiers transformations rules
is not a predicate tautology, i.e. to prove:

6|=p (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩ A(x))).

Restricted Quantifiers Laws

We construct a counter-model M for the formula

F : (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩ A(x)))

We take
M = (N, I),

where N is the set of natural numbers

We take as the concrete formulas B(x), A(x) atomic
formulas

Q(x, c) and P(x, c),

respectively, and the interpretation I i defined as

QI : <, PI : >, cI :

Restricted Quantifiers Laws

The formula

F : (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩ A(x)))

becomes a mathematical statement

FI : (∀n∈N (x < 0⇒ n > 0)⇒ ∃n∈N(n < 0 ∩ n > 0))

The satement FI is a false

because the statement n < 0 is false for all natural numbers
and the implication false ⇒ B is true for any logical value of B

Hence ∀n∈N (n < 0⇒ n > 0) is a true statement and
∃n∈N(n < 0 ∩ n > 0) is obviously false

Restricted Quantifiers Laws

Restricted quantifiers law corresponding to the predicate
tautology

(∀x A(x)⇒ ∃x A(x))

is
|=p (∀B(x) A(x)⇒ (∃x B(x)⇒ ∃B(x) A(x)))

We remind that it means that we prove that the corresponding
proper formula of L obtained by the restricted quantifiers
transformations rules is a predicate tautology, i.e. that

|=p (∀x(B(x)⇒ A(x))⇒ (∃x B(x)⇒ ∃x (B(x) ∩ A(x))))

Quantifiers Laws

Another basic predicate tautology called a dictum de omni
law is

|=p (∀x A(x)⇒ A(y))

where A(x) are any formulas with a free variable x and
y ∈ VAR

The corresponding restricted quantifiers law is:

|=p (∀B(x) A(x)⇒ (B(y)⇒ A(y))),

where A(x), B(x) are any formulas with a free variable x and
y ∈ VAR

Quantifiers Laws

The next important laws are the Distributivity Laws

Distributivity of existential quantifier over conjunction holds
only in one direction, namely the following is a predicate
tautology

|=p (∃x (A(x) ∩ B(x)) ⇒ (∃xA(x) ∩ ∃xB(x))),

where A(x),B(x) are any formulas with a free variable x

The inverse implication is not a predicate tautology, i.e.

6|=p ((∃xA(x) ∩ ∃xB(x))⇒ ∃x (A(x) ∩ B(x)))

Quantifiers Laws

To prove it we have to find an example of concrete formulas
A(x), B(x) ∈ F and a model structure M = (U, I) with the
interpretation I, such that M is counter- model for the formula

F : ((∃xA(x) ∩ ∃xB(x))⇒ ∃x (A(x) ∩ B(x)))

We define the counter - model for F is as follows

Take M = (R , I) where R is the set of real numbers

Let A(x), B(x) be atomic formulas Q(x, c), ¶(x, c)

We define the interpretation I as QI : >, PI : <, cI : 0.

The formula F becomes an obviously false mathematical
statement

FI : ((∃x∈R x > 0 ∩ ∃x∈R x < 0)⇒ ∃x∈R (x > 0 ∩ x < 0))

Quantifiers Laws

Distributivity of universal quantifier over disjunction holds
only on one direction, namely the following is a predicate
tautology for any formulas A(x),B(x) with a free variable x.

|=p ((∀xA(x) ∪ ∀xB(x))⇒ ∀x (A(x) ∪ B(x))).

The inverse implication is not a predicate tautology, i.e.

6|=p (∀x (A(x) ∪ B(x))⇒ (∀xA(x) ∪ ∀xB(x)))

Quantifiers Laws

To prove it we have to find an example of concrete formulas
A(x), B(x) ∈ F and a model structure M = (U, I) that is
counter- model for the formula

F : (∀x (A(x) ∪ B(x))⇒ (∀xA(x) ∪ ∀xB(x)))

We take M = (R , I) where R is the set of real numbers, and
A(x), B(x) are atomic formulas Q(x, c), R(x, c)

We define QI :≥ and RI :<, cI : 0

The formula F becomes an obviously false mathematical
statement

FI : (∀x∈R (x ≥ 0 ∪ x < 0)⇒ (∀x∈R x ≥ 0 ∪ ∀x∈R x < 0))

Logical Equivalence

The most frequently used laws of quantifiers have a form of a
logical equivalence, symbolically written as ≡

Remember that ≡ is not a new logical connective

This is a very useful symbol

It says that two formulas always have the same logical value

It can be used in the same way we the equality symbol =

Logical Equivalence

We formally define the logical equivalence as follows

Definition

For any formulas A ,B ∈ F of the predicate language L,

A ≡ B if and only if |=p (A ⇔ B).

We have also a similar definition for the propositional
language and propositional tautology

Equational Laws for Quantifiers

De Morgan

For any formula A(x) ∈ F with a free variable x,

¬∀xA(x) ≡ ∃x¬A(x), ¬∃xA(x) ≡ ∀x¬A(x)

Definability

For any formula A(x) ∈ F with a free variable x,

∀xA(x) ≡ ¬∃x¬A(x), ∃xA(x) ≡ ¬∀x¬A(x)

Equational Laws for Quantifiers

Renaming the Variables

Let A(x) be any formula with a free variable x

and let y be a variable that does not occur in A(x).

Let A(x/y) be a result of replacement of each occurrence of
x by y, then the following holds.

∀xA(x) ≡ ∀yA(y), ∃xA(x) ≡ ∃yA(y)

Alternations of Quantifiers

Let A(x, y) be any formula with a free variables x and y.

∀x∀y (A(x, y) ≡ ∀y∀x (A(x, y),

∃x∃y (A(x, y) ≡ ∃y∃x (A(x, y)

Equational Laws for Quantifiers

Introduction and Elimination Laws

If B is a formula such that B does not contain any free
occurrence of x, then the following logical equivalences hold.

∀x(A(x) ∪ B) ≡ (∀xA(x) ∪ B),

∃x(A(x) ∪ B) ≡ (∃xA(x) ∪ B),

∀x(A(x) ∩ B) ≡ (∀xA(x) ∩ B),

∃x(A(x) ∩ B) ≡ (∃xA(x) ∩ B)

Equational Laws for Quantifiers

Introduction and Elimination Laws

If B is a formula such that B does not contain any free
occurrence of x, then the following logical equivalences hold.

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B),

∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B),

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x)),

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x))

Equational Laws for Quantifiers

Distributivity Laws

Let A(x), B(x) be any formulas with a free variable x

Distributivity of universal quantifier over conjunction.

∀x (A(x) ∩ B(x)) ≡ (∀xA(x) ∩ ∀xB(x))

Distributivity of existential quantifier over disjunction.

∃x (A(x) ∪ B(x)) ≡ (∃xA(x) ∪ ∃xB(x))

Equational Laws for Quantifiers

We also define the notion of logical equivalence ≡ for the
formulas of the propositional language and its semantics

For any formulas A ,B ∈ F of the propositional languageL,

A ≡ B if and only if |= (A ⇔ B)

Moreover, we prove that any substitution of propositional
tautology by a formulas of the predicate language is a
predicate tautology

The same holds for the logical equivalence

Equational Laws for Quantifiers

In particular, we transform the propositional tautologies into
the following corresponding predicate equivalences.

For any formulas A ,B of the predicate language L,

(A ⇒ B) ≡ (¬A ∪ B),

(A ⇒ B) ≡ (¬A ∪ B)

We use them to prove the following De Morgan Laws for
restricted quantifiers.

Equational Laws for Quantifiers

Restricted De Morgan

For any formulas A(x),B(x) ∈ F with a free variable x,

¬∀B(x) A(x) ≡ ∃B(x) ¬A(x), ¬∃B(x) A(x) ≡ ∀B(x)¬A(x)

Here is a poof of first equality. The proof of the second one is
similar and is left as an exercise.

¬∀B(x) A(x)≡¬∀x (B(x)⇒ A(x))

≡ ¬∀x (¬B(x) ∪ A(x))

≡ ∃x ¬(¬B(x) ∪ A(x)) ≡ ∃x (¬¬B(x) ∩ ¬A(x))

≡ ∃x (B(x) ∩ ¬A(x)) ≡ ∃B(x) ¬A(x))

