
LOGICS FOR COMPUTER SCIENCE:
Classical and Non-Classical

Springer 2019

Anita Wasilewska



Chapter 3
Propositional Semantics: Classical and Many Valued

CHAPTER 3 SLIDES



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 1

PART 1 Formal Propositional Languages: Introduction

PART 2 Propositional Languages: Definitions

Slides Set 2

PART 3 Extensional Semantics M

Slides Set 3

PART 4 Classical Semantics

Slides Set 4

PART 5 Tautologies: Decidability and Verification Methods

PART 6 Sets of Formulas: Consistency and Independence



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 5

PART 7 Classical Tautologies and Logical Equivalences

PART 8 Definability of Connectives and Equivalence of
Languages

Slides Set 6

PART 9 Many Valued Semantics: Łukasiewicz, Heyting,
Kleene, and Bohvar

Slides Set 7

PART 10 M Tautologies, M Consistency, and M Equivalence
of Languages



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 1

PART 1 Formal Propositional Languages: Introduction



Propositional Languages Introduction

We define now a general notion of a propositional language

We show how to obtain, as specific cases, various languages
for propositional classical logic and some non-classical logics

We assume the following

All propositional languages contain an infinitely countable
set of variables VAR, which elements are denoted by

a, b , c, ....

with indices, if necessary

All propositional languages share the general way their sets
of formulas are formed



Propositional Languages

What distinguishes one propositional language from the
other is the choice of its set of propositional connectives

We adopt a notation

LCON

where CON stands for the set of propositional connectives

We use a notation
L

when the set of connectives is fixed



Propositional Languages

For example, the language

L{¬}

denotes a propositional language with only one connective ¬

The language
L{¬,⇒}

denotes that a language with two connectives ¬ and⇒
adopted as propositional connectives

Remember: formal languages deal with symbols only and
are also called symbolic languages



General Principles

General Principles

Symbols for connectives do have intuitive meaning

Semantics provides a formal meaning of the connectives
and is defined separately

One language can have many semantics

Different logics can share the same language

For example, the language

L{¬,∩,∪,⇒}

is used as a propositional language of classical and
intuitionistic logics, some many- valued logics, and we
extend it to the language of many modal logics



General Principles

Several languages can share the same semantics

The classical propositional logic is the best example of such
situation

Due to the functional dependency of classical logic
connectives the languages:

L{¬, ⇒}, L{¬, ∩}, L{¬, ∪}, L{¬, ∩, ∪, ⇒},

L{¬, ∩, ∪,⇒, ⇔}, L{↑}, L{↓}

are all equivalent under the classical semantics

We will define formally languages equivalency in the next
chapter



General Principles

Propositional connectives have well established names and
the way we read them, even if their semantics may differ

We use names negation, conjunction, disjunction and
implication for ¬, ∩, ∪, ⇒, respectively

The connective ↑ is called alternative negation and

A ↑ B reads: not both A and B

The connective ↓ is called joint negation

and A ↓ B reads: neither A nor B



Some Non-Classical Propositional Connectives

Other most common propositional connectives are modal
connectives of possibility and necessity

Modal connectives are not extensional

Standard modal symbols are:
� for necessity and ♦ for possibility

We will also use symbols C and I for modal connectives of
possibility and necessity, respectively.

The formula CA, or ♦A reads: it is possible that A or A is
possible

The formula I A, or �A reads: it is necessary that A or A
is necessary



Modal Propositional Connectives

Symbols C and I are used for their topological meaning in
the algebraic semantics of standard modal logics S4 and S5

In topology C is a symbol for a set closure operation and CA
means a closure of a set A

I is a symbol for a set interior operation and IA denotes an
interior of the set A



Some More Non-Extensional Connectives

Modal logics extend the classical logic

Modal logics languages are for example

L{C ,I,¬,∩,∪,⇒} or L{�,♦,¬,∩,∪,⇒}

Knowledge logics also extend the classical logic by adding
a new one argument knowledge connective
The knowledge connective is often denoted by K

A formula KA reads: it is known that A or A is known

A language of a knowledge logic is for example

L{ K , ¬, ∩, ∪, ⇒}



Some More Non-Extensional Connectives

Autoepistemic logics extend classical logic by adding an
one argument believe connective, often denoted by B

A formula BA reads: it is believed that A

A language of an autoepistemic logic is for example

L{ B , ¬, ∩, ∪, ⇒}



Some More Non-Extensional Connectives

Temporal logics also extend classical logic by adding one
argument temporal connectives

Some of temporal connectives are: F, P, G, H.

Their intuitive meanings are:

FA reads A is true at some future time,

PA reads A was true at some past time,

GA reads A will be true at all future times,

HA reads A has always been true in the past



Propositional Connectives

It is possible to create and there are connectives with more
then one or two arguments

We consider here only one or two argument connectives



Chapter 3
Propositional Semantics: Classical and Many Valued

PART 2 Propositional Languages: Definitions



Propositional Language

Definition

A propositional language is a pair

L = (A,F )

where A,F are called an alphabet and a set of formulas,
respectively

Definition

Alphabet is a set

A = VAR ∪ CON ∪ PAR

VAR, CON, PAR are all disjoint sets of propositional
variables, connectives and parenthesis, respectively

The sets VAR, CON are non-empty



Alphabet Components

Alphabet Components

VAR is a countably infinite set of propositional variables

We denote elements of VAR by

a, b , c, d, ...

with indices if necessary

CON , ∅ is a finite set of propositional connectives

We assume that the set CON of connectives is non-empty,
i.e. that a propositional language always has at least one
connective



Alphabet Components

Notation

We denote the language L with the set of connectives
CON by

LCON

Observe that propositional languages differ only on a
choice of the connectives, hence our notation.



Alphabet Components

PAR is a set of auxiliary symbols

This set may be empty; for example in case of parenthesis
free Polish notation.

Assumptions

We assume that PAR contains only 2 parenthesis and

PAR = {(, )}

We also assume that the set CON of connectives contains
only unary and binary connectives, i.e.

CON = C1 ∪ C2

where C1 is the set of all unary connectives, and C2 is the
set of all binary connectives



Formulas Definition

Definition

The set F of all formulas of a propositional language LCON

is build recursively from the elements of the alphabet A as
follows.

F ⊆ A∗ and F is the smallest set for which the following
conditions are satisfied

(1) VAR ⊆ F
(2) If A ∈ F , 5 ∈ C1, then 5A ∈ F
(3) If A ,B ∈ F , ◦ ∈ C2 i.e ◦ is a two argument

connective, then
(A ◦ B) ∈ F

By (1) propositional variables are formulas and they are
called atomic formulas

The set F is also called a set of all well formed formulas
(wff) of the language LCON



Set of Formulas

Observe that the the alphabet A is countably infinite

Hence the set A∗ of all finite sequences of elements ofA is
also countably infinite

By definition F ⊆ A∗ and hence we get that the set of all
formulas F is also countably infinite

We state as separate fact

Fact

For any propositional language L = (A,F ), its sets of
formulas F is always a countably infinite set

We hence consider here only infinitely countable languages



Main Connectives and Direct Sub-Formulas

5 is called a main connective of the formula 5A ∈ F

A is called its direct sub-formula of 5A

◦ is called a main connective of the formula (A ◦ B) ∈ F

A ,B are called direct sub-formulas of (A ◦ B)



Examples

E1 Main connective of (a ⇒ ¬Nb) is ⇒

a, ¬Nb are direct sub-formulas

E2 Main connective of N(a ⇒ ¬b) is N

(a ⇒ ¬b) is the direct sub-formula

E3 Main connective of ¬(a ⇒ ¬b) is ¬

(a ⇒ ¬b) is the direct sub-formula



Sub-Formulas

We define a notion of a sub-formula in two steps:

Step 1

For any formulas A and B, the formula A is a proper
sub-formula of B if there is sequence of formulas, beginning
with A , ending with B, and in which each term is a direct
sub-formula of the next

Step 2

A sub-formula of a given formula A is any proper sub-formula
of A , or A itself



Sub-Formulas

Example

The formula (¬a ∪ ¬(a ⇒ b))

has two direct sub-formulas: ¬a, ¬(a ⇒ b),

the direct sub-formulas of which are a, (a ⇒ b)

The next direct sub-formulas are a, b

End of the process

The set of all proper sub-formulas of (¬a ∪ ¬(a ⇒ b)) is

S = {¬a, ¬(a ⇒ b), a, (a ⇒ b), b}

The set of all its sub-formulas is

S ∪ {(¬a ∪ ¬(a ⇒ b))}



Formula Degree

Definition

A degree of a formula as a number of occurrences of logical
connectives in the formula.

Example

The degree of (¬a ∪ ¬(a ⇒ b)) is 4

The degree of ¬(a ⇒ b)) is 2

The degree of ¬a is 1

The degree of a is 0



Formula Degree

Observation

The degree of any proper sub-formula of A must be one less
than the degree of A

This is the central fact upon which mathematical induction
arguments are based

Proofs of properties of formulas are usually carried by
mathematical induction on their degrees



Exercise

Exercise 1

Consider a language L = L{¬, ♦, �, ∪, ∩, ⇒} and a set

S = {♦¬a ⇒ (a ∪ b), (♦(¬a ⇒ (a ∪ b))),

♦¬(a ⇒ (a ∪ b))}

1. Determine which of the elements of S are, and which are
not well formed formulas (wff) of L

2. If a formula A is a well formed formula, i.e. A ∈ F ,
determine its its main connective

3. If A < F write the corrected formula and then determine its
main connective



Exercise 1 Solution

Solution

The expression ♦¬a ⇒ (a ∪ b) is not a well formed
formula

The corrected formula is

(♦¬a ⇒ (a ∪ b))

The main connective is ⇒

The formula says: ”If negation of a is possible, then we have
a or b ”

Another corrected formula in is

♦(¬a ⇒ (a ∪ b))

The main connective is ♦

The formula says: ” It is possible that not a implies a or b ”



Exercise 1 Solution

The expression (♦(¬a ⇒ (a ∪ b))) is not a well formed
formula

The correct formula is ♦(¬a ⇒ (a ∪ b))

The main connective is ♦

The formula says: ” It is possible that not a implies a or b”

♦¬(a ⇒ (a ∪ b)) is a well formed formula

The main connective is ♦

The formula says: ” It is possible that it is not true that a
implies a or b ”



Exercise

Exercise 2

Given a formula:

♦((a ∪ ¬a) ∩ b)

1. Determine its degree

2. Write down all its sub-formulas

Solution

The degree is 4

All its sub-formulas are:

♦((a ∪ ¬a) ∩ b), ((a ∪ ¬a) ∩ b),

(a ∪ ¬a), ¬a, b , a



Language Defined by a set S

Definition
Given a set S of formulas of a language LCON

Let CS ⊆ CON be the set of all connectives that appear in
formulas of S
A language LCS

is called the language defined by the set of formulas S
Example
Let S be a set
S = {((a ⇒ ¬b)⇒ ¬a), �(¬♦a ⇒ ¬a)}
All connectives appearing in the formulas in S are:

⇒, ¬, �, ♦

The language defined by the set S is

L{¬, ⇒, �, ♦}



Exercise

Exercise 3

Write the following natural language statement:

From the fact that it is possible that Anne is not a boy we
deduce that it is not possible that Anne is not a boy or, if it is
possible that Anne is not a boy, then it is not necessary that
Anne is pretty

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}



Exercise 3 Solution

1.We translate our statement into a formula
A1 ∈ F1 of the language L{¬, �, ♦, ∩, ∪, ⇒} as follows

Propositional Variables: a,b

a denotes statement: Anne is a boy,

b denotes a statement: Anne is pretty

Propositional Modal Connectives: �, ♦

♦ denotes statement: it is possible that

� denotes statement: it is necessary that

Translation 1: the formula A1 is

(♦¬a ⇒ (¬♦¬a ∪ (♦¬a ⇒ ¬�b)))



Exercise 3 Solution

2. We translate our statement into a formula
A2 ∈ F2 of the language L{¬, ∩, ∪, ⇒} as follows

Propositional Variables: a,b

a denotes statement: it is possible that Anne is not a boy

b denotes a statement: it is necessary that Anne is pretty

Translation 2: the formula A2 is

(a ⇒ (¬a ∪ (a ⇒ ¬b)))



Exercise

Exercise 4

Write the following natural language statement:

For all natural numbers n ∈ N the following implication holds:
if n < 0, then there is a natural number m, such that it is
possible that n + m < 0, or it is not possible that there is a
natural number m, such that m > 0

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, �, ♦, ∩, ∪, ⇒}



Exercise 4 Solution

1. We translate our statement into a formula
A1 ∈ F1 of the language L{¬, ∩, ∪, ⇒} as follows

Propositional Variables: a, b

a denotes statement: For all natural numbers n ∈ N the
following implication holds: if n < 0, then there is a natural
number m, such that it is possible that n + m < 0

b denotes a statement: it is not possible that there is a
natural number m, such that m > 0

Translation: the formula A1 is

(a ∪ ¬b)



Exercise 4 Solution

2. We translate our statement into a formula A2 ∈ F2 of a
language L{¬, �, ♦, ∩, ∪, ⇒} as follows

Propositional Variables: a, b

a denotes statement: For all natural numbers n ∈ N the
following implication holds: if n < 0, then there is a natural
number m, such that it is possible that n + m < 0

b denotes a statement: there is a natural number m, such
that m > 0

Translation: the formula A2 is

(a ∪ ¬♦b)



Exercise

Exercise 5

Write the following natural language statement S:

The following statement holds for all natural numbers n ∈ N:

if n < 0, then there is a natural number m, such that it is
possible that n + m < 0, or it is not possible that there is a
natural number m, such that m > 0

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, �, ♦, ∩, ∪, ⇒}



Exercise 5 Solution

Solution

Observe that the statement S is build as follows

∀n∈NA(n),

where A(n) represents the statement ” if n < 0, then there is
a natural number m, such that it is possible that n + m < 0, or
it is not possible that there is a natural number m, such that
m > 0 ”

From a propositional point of view the statement ∀n∈NA(n)
can only be represented by a propositional variable

a

in a case of both propositional languages L{¬, ∩, ∪, ⇒} and
L{¬, �, ♦, ∩, ∪, ⇒}



Exercise

Exercise 6

Write the following natural language statement:

From the fact that each natural number is greater than zero
we deduce that it is not possible that Anne is a boy or, if it is
possible that Anne is not a boy, then it is necessary that it is
not true that each natural number is greater than zero

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}

Solution is similar to the Exercise 4



Chapter 3
Propositional Semantics: Classical and Many Valued

CHAPTER 3 SLIDES

Slides Set 2



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 2

PART 3 Extensional Semantics M



Extensional Semantics M - Introduction

Given a propositional language LCON, the symbols for its
connectives always have some intuitive meaning

A formal definition of the meaning of these symbols is
called a semantics for the language LCON

A given language LCON can have different semantics but we
always define them in order to single out special formulas of
the language, called tautologies

Tautologies are formulas of the language that are always true
under a given semantics



Extensional Semantics M Introduction

We introduced in Chapter 2 an intuitive notion of a classical
semantics, discussed its motivation and underlying
assumptions

The classical semantics assumption is that it considers only
two logical values. The other one is that all classical
propositional connectives are extensional

We have also observed that in everyday language there are
expressions such as ”I believe that”, ”it is possible that”, ”
certainly”, etc .... and that they are represented by some
propositional connectives which are not extensional



Extensional Semantics M Introduction

Non-extensional connectives do not play any role in
mathematics and so are not discussed in classical logic and
will be studied separately

The extensional connectives are defined intuitively as such
that the logical value of the formulas form by means of these
connectives and certain given formulas depends only on
the logical value(s) of the given formulas



Extensional Connectives Definition

We adopt a following formal definition of extensional
connectives for a propositional language LCON

Definition

Let LCON be such that CON = C1 ∪ C2, where C1,C2 are
the sets of unary and binary connectives, respectively

Let LV be a non-empty set of logical values

A connective 5 ∈ C1 or ◦ ∈ C2 is called extensional if it is
defined by a respective function

5 : LV −→ LV or ◦ : LV × LV −→ LV



Extensional Semantics M Introduction

A semantics M for a language LCON is called extensional
provided all connectives in CON are extensional and its
notion of tautology is defined terms of the connectives and
their logical values

A semantics with a set of m logical values is called a
m-valued extensional
The classical semantics is a special case of a 2-valued
extensional semantics

Classical semantics defines classical logic with its set of
classical propositional tautologies

Many of logics are defined by various extensional semantics
with sets of logical values LV with more then 2 elements



Extensional Semantics M Introduction

The languages of many important logics like modal,
multi-modal, knowledge, believe, temporal, contain
connectives that are not extensional because they are
defined by non-extensional semantics

The intuitionistic logic is based on the same language as the
classical one and its Kripke Models semantics is not
extensional

Defining a semantics for a given language means more
then defining connectives

The ultimate goal of any semantics is to define the notion of
its own tautology



Extensional Semantics M Introduction

In order to define which formulas of a given

LCON

we want to to be tautologies under a given semantics M we
assume that the set LV of logical values of M always has a
distinguished logical value, often denoted by T for
”absolute” truth

We also can distinguish, and often we do, another special
value F representing ”absolute” falsehood

We will use these symbols T, F for ”absolute” truth and
falsehood

We may also use other symbols like 1, 0 or others



Extensional Semantics M Introduction

The ”absolute” truth value T serves to define a notion of a
tautology (as a formula always ”true”)

Extensional semantics share not only the similar pattern of
defining their (extensional) connectives, but also the method
of defining the notion of a tautology

We hence define a general notion of an extensional
semantics as sequence of steps leading to the definition of a
tautology



Extensional Semantics M Introduction

Here are the steps leading to the definition of a tautology

Step 1 We define all extensional connectives of M

Step 2 We define main component of the definition of a
tautology, namely a function v that assigns to any formula
A ∈ F its logical value from LV

The function v is often called a truth assignment and we
will use this name



Extensional Semantics M Introduction

Step 3 Given a truth assignment v and a formula A ∈ F ,
we define what does it mean that

v satisfies A

i.e. we define a notion saying that v is a model for A under
semantics M

Step 4 We define a notion of tautology as follows

A is a tautology under semantics M if and only if all
truth assignments v satisfy A

i.e. that all truth assignments v are models for A



Extensional Semantics M Introduction

We use a notion of a model because it is an important, if not
the most important notion of modern logic

The notion of a model is usually defined in terms of the
notion of satisfaction

In classical propositional logic these notions are the same
and the use of expressions

” v satisfies A” and ”v is a model for A”

is interchangeable

This also is true for of any propositional extensional
semantics and in particular it holds for m-valued semantics
discussed later in this chapter



Extensional Semantics M Introduction

The notions of satisfaction and model are not
interchangeable for predicate languages semantics

We already discussed intuitively the notion of model and
satisfaction for predicate language in chapter 2

We will define them in full formality in chapter 8

The use of the notion of a model also allows us to adopt and
discuss the standard predicate logic definitions of
consistency and independence for propositional case



Extensional Semantics M Formal Definition

Definition

Any formal definition of an extensional semantics M for a
given language LCON consists of specifying the following
steps defining its main components

Step 1 We define a set LV of logical values, its
distinguished value T, and define all connectives of LCON to
be extensional

Step 2 We define notion of a truth assignment and its
extension

Step 3 We define notions of satisfaction, model, counter
model

Step 4 We define notion of a tautology under the
semantics M



Extensional Semantics M Formal Definition

What differs one semantics from the other is the choice of
the set LV of logical values and definition of the
connectives of LCON, that are defined in the first step below

Step 1 We adopt a following formal definition of extensional
connectives of LCON

Definition

Let LCON be such that CON = C1 ∪ C2, where C1,C2 are
the sets of unary and binary connectives, respectively

Let LV be a non-empty set of logical values

A connective 5 ∈ C1 or ◦ ∈ C2 is called extensional if it is
defined by a respective function

5 : LV −→ LV or ◦ : LV × LV −→ LV



M Truth Assignment Formal Definition

Step 2 We define a function called truth assignment and its
extension in terms of the propositional connectives as
defined in the Step 1

Definition

Let LV be the set of logical values of M and VAR the set of
propositional variables of the language LCON

Any function
v : VAR −→ LV

is called a truth assignment under semantics M

We call it for short a M truth assignment

We use the term M truth assignment and M truth extension
to stress that it is defined relatively to a given semantics M



M Truth Extension Formal Definition

Definition
Given a M truth assignment v : VAR −→ LV
We define its extension v∗ to the set F of all formulas of
LCON as any function

v∗ : F −→ LV

such that the following conditions are satisfied.
(i) for any a ∈ VAR,

v∗(a) = v(a);

(ii) For any connectives 5 ∈ C1, ◦ ∈ C2, and for any
formulas A , B ∈ F ,

v∗(5A) = 5v∗(A) and v∗((A ◦ B)) = ◦(v∗(A), v∗(B)

We call the v∗ the M truth extension



M Truth Extension Formal Definition

Remark

The symbols on the left-hand side of the equations

v∗(5A) = 5v∗(A) and v∗((A ◦ B)) = ◦(v∗(A), v∗(B)

represent connectives in their natural language meaning and

the symbols on the right-hand side represent connectives in
their semantical meaning as defined in the Step1



M Truth Extension Formal Definition

We use names ” M truth assignment” and ” M truth
extension” to stress that we define them for the set of logical
values of the semantics M

Notation Remark

For any function g, we use a symbol g∗ to denote its
extension to a larger domain

Mathematician often use the same symbol g for both a
function g and its extension g∗



Satisfaction and Model

Step 3 The notions of satisfaction and model are
interchangeable in M semantics and we define them as
follows.

Definition

Given an M truth assignment v : VAR −→ LV and its
M truth extension v∗. Let T ∈ LV be the distinguished
logical truth value

We say that the truth assignment v M satisfies a formula A
if and only if v∗(A) = T

We write symbolically
v |=M A

Any truth assignment v, such that v |=M A is called an
M model for the formula A



Counter Model

Definition

Given an M truth assignment v : VAR −→ LV and its
M truth extension v∗. Let T ∈ LV be the distinguished
logical truth value

We say that the truth assignment v M does not satisfy a
formula A if and only if v∗(A) , T

We write symbolically
v 6|=M A

Any truth assignment v, such that v 6|=M A is called an
M counter model for the formula A



M Tautology

Step 4 We define the notion of M tautology as follows

Definition

A formula A is an M tautology if and only if

v |=M A , for all truth assignments v : VAR −→ LV

We denote it as
|=M A

We also say that

A is an M tautology if and only if all truth assignments
v : VAR −→ LV are M models for A



M Tautology

Observe that directly from definition of the M model we get
the following equivalent form of the definition of tautology

Definition

A formula A is an M tautology if and only if

v∗(A) = T , for all truth assignments v : VAR −→ LV

We denote by MT the set of all tautologies under the
semantic M, i.e.

MT = {A ∈ F : |=M A }



M Tautology

Obviously, when we develop a logic by defining its
semantics we want the semantics to be such that the logic
has a non empty set of its tautologies

We express it in a form of the following definition

Definition

Given a language LCON and its extensional semantics M

The semantics M is well defined if and only if its set MT
of all tautologies is non empty, i.e. when

MT , ∅



Extensional Semantics M

As the next steps we use the definitions established here to
define and discuss in details the following particular cases of
the extensional semantics M

Sets 3, 4, 5: the classical semantics, tautologies,
consistency, independence, equivalence of languages

Set 6: Some examples of many valued semantics

Set 7: M tautologies, M consistency, and M equivalence of
languages



Extensional Semantics M

Many valued semantics have their beginning in the work of
Łukasiewicz (1920). He was the first to define a 3- valued
extensional semantics for a language L{¬,∩,∪,⇒} of classical
logic, and called it a 3- valued logic, for short

The other logics defined by extensional semantics followed
and we will discuss some of them

In particular we present Heyting’s 3-valued semantics as an
introduction to the discussion of first ever semantics for the
intuitionistic logic and some modal logics



Challenge Exercise

1. Define your own propositional language LCON that
contains also different connectives that the standard
connectives ¬, ∪, ∩, ⇒

Your language LCON does not need to include all (if any!) of
the standard connectives ¬, ∪, ∩, ⇒

2. Describe intuitive meaning of the new connectives of your
language

3. Give some motivation for your own semantic M

4. Define formally your own extensional semantics M for
your language LCON

Write carefully all Steps 1- 4 of the definition of your M



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 3

PART 4 Classical Semantics



Semantics- General Principles

Given a propositional language L = LCON

Symbols for connectives of L always have some intuitive
meaning

Semantics provides a formal definition of the meaning of
these symbols

It also provides a method of defining a notion of a tautology,
i.e. of a formula of the language that is always true under the
given semantics



Extensional Connectives

In Chapter 2 we described the intuitive classical propositional
semantics and its motivation and introduced the following
notion of extensional connectives

Extensional connectives are the propositional connectives
that have the following property:
the logical value of the formulas form by means of these
connectives and certain given formulas depends only on
the logical value(s) of the given formulas

We also assumed that

All classical propositional connectives

¬, ∪, ∩, ⇒, ⇔, ↑, ↓

are extensional



Non-Extensional Connectives

We have also observed the following

Remark

In everyday language there are expressions such as

”I believe that”, ”it is possible that”, ” certainly”, etc....

They are represented by some propositional connectives
which are not extensional

Non- extensional connectives do not play any role in
mathematics and so are not discussed in classical logic
and will be studied separately



General Definition of Extensional Connectives

We will adopt a following general definitions of extensional
connectives and extensional semantics introduced in Lecture
2 to the case of classical semantics, so we repeat it here

Definition

Let LCON be such that CON = C1 ∪ C2, where C1,C2 are
the sets of unary and binary connectives, respectively

Let LV be a non-empty set of logical values

A connective 5 ∈ C1 or ◦ ∈ C2 is called extensional if it is
defined by a respective function

5 : LV −→ LV or ◦ : LV × LV −→ LV



General Extensional Semantics Formal Definition

Definition

Any formal definition of an extensional semantics M
consists of specifying the following steps

Step 1 We define a set LV of logical values, its
distinguished value T, and define all connectives of LCON to
be extensional

Step 2 We define notion of a truth assignment and its
extension

Step 3 We define notions of satisfaction, model, counter
model

Step 4 We define notion of a tautology under the
semantics M



Classical Semantics

We adopt Steps 1- 4 of the definition of extensional semantics
to the case of the classical propositional logic as follows

Step 1 We define the language, set of logical values, and
define all connectives of the language to be extensional

The language is
L{¬, ∪, ∩, ⇒, ⇔}

The set of logical values is

LV = {T , F}

The letters T, F stand as symbols of truth and —bf
falsehood, respectively

We adopt T as the distinguished value



Classical Connectives

Definition of connectives

Negation ¬ is a function:

¬ : {T ,F} −→ {T ,F}

such that
¬T = F , ¬F = T

Notation

We write the name of a two argument function (our
connective) between the arguments, not in front as in
function notation, i.e. we write for any binary connective ◦ as
for example T ◦ T = T instead of ◦(T ,T) = T



Classical Connectives

Conjunction ∩ is a function:

∩ : {T ,F} × {T ,F} −→ {T ,F}

such that

∩(T ,T) = T , ∩(T ,F) = F , ∩(F ,T) = F , ∩(F ,F) = F

We write it as

T ∩ T = T , T ∩ F = F , F ∩ T = F , F ∩ F = F



Classical Connectives

Disjunction ∪ is a function:

∪ : {T ,F} × {T ,F} −→ {T ,F}

such that

∪(T ,T) = T , ∪(T ,F) = T , ∪(F ,T) = T , ∪(F ,F) = F

We write it as

T ∪ T = T , T ∪ F = T , F ∪ T = T , F ∪ F = F



Classical Connectives

Implication ⇒ is a function:

⇒: {T ,F} × {T ,F} −→ {T ,F}

such that

⇒ (T ,T) = T , ⇒ (T ,F) = F , ⇒ (F ,T) = T , ⇒ (F ,F) = T

We write it as

T ⇒ T = T , T ⇒ F = F , F ⇒ T = T , F ⇒ F = T



Classical Connectives

Equivalence ⇔ is a function:

⇔: {T ,F} × {T ,F} −→ {T ,F}

such that

⇔ (T ,T) = T , ⇔ (T ,F) = F , ⇔ (F ,T) = F , ⇔ (T ,T) = T

We write it as

T ⇔ T = T , T ⇔ F = F , F ⇔ T = F , T ⇔ T = T



Classical Connectives Truth Tables

We write the functions defining connectives in a form of
tables, usually called the classical truth tables

Negation

¬T = F , ¬F = T

¬ T F
F T

Conjunction

T ∩ T = T , T ∩ F = F , F ∩ T = F , F ∩ F = F

∩ T F
T T F
F F F



Classical Connectives Truth Tables

Disjunction

T ∪ T = T , T ∪ F = T , F ∪ T = T , F ∪ F = F

∪ T F
T T T
F T F

Implication

T ⇒ T = T , T ⇒ F = F , F ⇒ T = T , F ⇒ F = T

⇒ T F
T T F
F T T



Classical Connectives Truth Tables

Equivalence

T ⇔ T = T , T ⇔ F = F , F ⇔ T = F , F ⇔ F = T

⇔ T F
T T F
F F T

This ends the Step1 of the classical semantics definition



Classical Connectives

Special Properties

Classical semantics is a special one. Classical connectives
have some strong properties that often do not hold under
other semantics, extensional or not

One of them is a property of definability of connectives

The other one is a functional dependency

These are basic properties one asks about any new
semantics and hence a new logic being created



Definability of Connectives

We adopt the following definition
Definition
A connective ◦ ∈ CON is definable in terms of some
connectives ◦1, ◦2, ...◦n ∈ CON iff ◦ is a certain function
composition of functions ◦1, ◦2, ...◦n

Example
Classical implication ⇒ is definable in terms of ∪ and ¬
because⇒ can be defined as a composition of functions ¬
and ∪
More precisely, a function h : {T ,F} × {T ,F} −→ {T ,F}
defined by a formula

h(x, y) = ∪(¬x, y)

is a composition of functions ¬ and ∪ and we prove that
the implication function⇒ is equal with h



Short Review: Equality of Functions

Definition

Given two sets A, B and functions f, g such that

f : A −→ B and g : A −→ B

We say that the functions f, g are equal and write is as f = g
iff f(x) = g(x) for all elements x ∈ A

Example: Consider functions

⇒: {T ,F} × {T ,F} −→ {T ,F} and h : {T ,F} × {T ,F} −→ {T ,F}

where ⇒ is classical implication and h is defined by the
formula h(x, y) = ∪(¬x, y)

We prove that ⇒ = h by evaluating that
⇒ (x, y) = h(x, y) = ∪(¬x, y), for all (x, y) ∈ {T ,F} × {T ,F}



Definability of Classical Implication

We re-write formula ⇒ (x, y) = ∪(¬x, y) in our adopted
notation as

x ⇒ y = ¬x ∪ y for all (x, y) ∈ {T ,F} × {T ,F}

and call it a formula defining ⇒ in terms of ∪ and ¬

We verify correctness of the definition as follows

T ⇒ T = T and ¬T ∪ T = F ∪ T = T yes

T ⇒ F = F and ¬T ∪ F = F ∪ F = F yes

F ⇒ F = T and ¬F ∪ F = T ∪ F = T yes

F ⇒ T = T and ¬F ∪ T = T ∪ T = T yes



Definability of Connectives

Exercise 1

Find formulas defining ∩, ⇔ in terms of ∪ and ¬

Exercise 2

Find formulas defining
⇒, ∪, ⇔ in terms of ∩ and ¬

Exercise 3

Find formulas defining ∩, ∪, ⇔ in terms of⇒ and ¬

Exercise 4

Find a formula defining ∪ in terms of⇒ alone



Two More Classical Connectives

Sheffer Alternative Negation ↑

↑: {T ,F} × {T ,F} −→ {T ,F}

such that

T ↑ T = F , T ↑ F = T , F ↑ T = T , F ↑ F = T

Łukasiewicz Joint Negation ↓

↓: {T ,F} × {T ,F} −→ {T ,F}

such that

T ↓ T = F , T ↓ F = F , F ↓ T = F , F ↓ F = T



Definability of Connectives

Exercise 5

Show that the Sheffer Alternative Negation ↑ defines all
classical connectives ¬, ⇒, ∪, ∩, ⇔

Exercise 6

Show that Łukasiewicz Joint Negation ↓ defines all
classical connectives ¬, ⇒, ∪, ∩, ⇔

Exercise 7

Show that the two binary connectives: ↓ and ↑ suffice, each
of them separately, to define all classical connectives,
whether unary or binary



Functional Dependency of Connectives

Definition

Given a propositional language the set CON and its
extensional semantics M. A property of defining the set CON
in terms of its proper subset is called a functional
dependency of connectives under M

Proving the property of functional dependency consists of
identifying a proper subset CON0 of the set CON, such that
each connective ◦ ∈ CON − CON0 is definable in terms of
connectives from CON0



Functional Dependency of Connectives

Proving functional dependency of a the set CON of a given
language under a given semantics M is usually a difficult, and
often impossible task for many semantic

Functional dependency holds in the classical case and we
express it as follows

Theorem

The set of connectives of the languages

L{ ¬, ∪, ∩, ⇒, ⇔} and L{ ¬, ∪, ∩, ⇒, ⇔, ↑, ↓ }

is functionally dependent under the classical semantics.

The proof follows from Exercises 1 - 7



Semantics Definition: Truth Assignment

Step 2 We define the next components of the classical
semantics in terms of the propositional connectives as
defined in the Step 1 and a function called truth assignment

Definition

A truth assignment is any function

v : VAR −→ {T ,F}

Observe that the domain of truth assignment is the set of
propositional variables, i.e. the truth assignment is defined
only for atomic formulas



Truth Assignment Extension

We extend now the truth assignment v to the set F of all
formulas

We do so in order to define formally the logical value for any
formula A ∈ F

The definition of the extension of the truth assignment v to
the set F follows the same pattern for the all extensional
connectives, i.e. for all extensional semantics



Truth Assignment Extension v∗ to F

Definition

Given the truth assignment

v : VAR −→ {T ,F}

We define its extension v∗ to the set F of all formulas of L
as any function

v∗ : F −→ {T ,F}

such that the following conditions are satisfied

(i) for any a ∈ VAR

v∗(a) = v(a);



Truth Assignment Extension v∗ to F

(ii) and for any A ,B ∈ F we put

v∗(¬A) = ¬v∗(A);

v∗((A ∩ B)) = ∩(v∗(A), v∗(B));

v∗((A ∪ B)) = ∪(v∗(A), v∗(B));

v∗((A ⇒ B)) =⇒(v∗(A), v∗(B));

v∗((A ⇔ B)) =⇔(v∗(A), v∗(B))

The symbols on the left-hand side of the equations represent
connectives in their natural language meaning and

the symbols on the right-hand side represent connectives in
their semantical meaning given by the classical truth tables



Extension v∗ Definition Revisited

Notation
For binary connectives (two argument functions) we adopt a
convention to write the symbol of the connective (name of the
2 argument function) between its arguments as we do in a
case arithmetic operations
The condition (ii) of the definition of the extension v∗ can be
hence written as follows
(ii) for any A ,B ∈ F we put

v∗(¬A) = ¬v∗(A);

v∗((A ∩ B)) = v∗(A)∩v∗(B);

v∗((A ∪ B)) = v∗(A)∪v∗(B);

v∗((A ⇒ B)) = v∗(A)⇒v∗(B);

v∗((A ⇔ B)) = v∗(A)⇔v∗(B)

We will use this notation for the rest of the book



Truth Assignment Extension Example

Consider a formula

((a ⇒ b) ∪ ¬a))

and a truth assignment v such that

v(a) = T , v(b) = F

Observe that we did not specify v(x) of any x ∈ VAR − {a, b},
as these values do not influence the computation of the
logical value v∗(A) of the formula A

We say: ”v such that” - as we consider its values for the set
{a, b} ⊆ VAR

Nevertheless, the domain of v is the set VAR of all variables
and we have to remember that



Truth Assignment Extension Example

Given a formula A: ((a ⇒ b) ∪ ¬a)) and a truth
assignment v such that v(a) = T, v(b) = F

We calculate the logical value of the formula A as follows:

v∗(A) = v∗(((a ⇒ b) ∪ ¬a))) = ∪(v∗((a⇒b), v∗(¬a))=

∪(⇒(v∗(a), v∗(b)),¬v∗(a))) = ∪(⇒(v(a), v(b)),¬v(a)))=

∪(⇒(T ,F),¬T)) = ∪(F ,F) = F

We can also calculate it as follows:

v∗(A) = v∗(((a ⇒ b) ∪ ¬a))) = v∗((a⇒b))∪v∗(¬a) =

(v(a)⇒v(b))∪¬v(a) = (T⇒F)∪¬T = F∪F = F

We write it in a short-hand notation as

(T⇒F)∪¬T = F∪F = F



Semantics: Satisfaction Relation

Step 3 We define notions of satisfaction, model, counter
model

Definition Let v : VAR −→ {T ,F} be a truth assignment

We say that v satisfies a formula A ∈ F if and only if
v∗(A) = T

Notation: v |= A

Definition We say that v does not satisfy a formula
A ∈ F if and only if v∗(A) , T

Notation: v 6|= A

The relation |= is called a satisfaction relation



Semantics: Satisfaction Relation

Observe that v∗(A) , T is is equivalent to the fact that
v∗(A) = F only in 2-valued semantics and so we also write

v 6|= A if and only if v∗(A) = F

Definition

We say that v falsifies A if and only if v∗(A) = F

Remark

For any formula A ∈ F ,

v 6|= A if and only if v falsifies the formula A



Examples

Example 1 : Let A = ((a ⇒ b) ∪ ¬a)) and

v : VAR −→ {T ,F} be such that v(a) = T , v(b) = F

We calculate v∗(A) using a short hand notation as follows

(T ⇒ F) ∪ ¬T = F ∪ F = F

By definitiom

v 6|= ((a ⇒ b) ∪ ¬a))

Observe that we did not need to specify the v(x) of any
x ∈ VAR − {a, b}, as these values do not influence the
computation of the logical value v∗(A)



Examples

Example 2

Let A = ((a ∩ ¬b) ∪ ¬c) and v : VAR −→ {T ,F} be such
that v(a) = T , v(b) = F , v(c) = T

We calculate v∗(A) using a short hand notation as follows

(T ∩ ¬F) ∪ ¬T = (T ∩ T) ∪ F = T ∪ F = T

By definition

v |= ((a ∩ ¬b) ∪ ¬c)



Examples

Example 3

Let A = ((a ∩ ¬b) ∪ ¬c)

Consider now v1 : VAR −→ {T ,F} such that
v1(a) = T , v1(b) = F , v1(c) = T and
v1(x) = F , for all x ∈ VAR − {a, b , c}

Observe that

v(a) = v1(a), v(b) = v1(b), v(c) = v1(c)

Hence we get
v1 |= ((a ∩ ¬b) ∪ ¬c)



Examples

Example 4

Let A = ((a ∩ ¬b) ∪ ¬c)

Consider now v2 : VAR −→ {T ,F} such that

v2(a) = T , v2(b) = F , v2(c) = T , v2(d) = T and

v1(x) = F , for all x ∈ VAR − {a, b , c, d}

Observe that

v(a) = v2(a), v(b) = v2(b), v(c) = v2(c)

Hence we get
v2 |= ((a ∩ ¬b) ∪ ¬c)



Semantics: Model, Counter-Model

Definition:

Given a formula A ∈ F and v : VAR −→ {T , F}

Any v such that v |= A is called a model for A

Any v such that v 6|= A is called a counter model for A

Observe that all truth assignments v , v1, v2 from our
Examples 2, 3, 4 are models for the same formula A



Semantics: Tautology

Step 4 Classical tautology definition
Definition 1
For any formula A ∈ F
A is a tautology if and only if v∗(A) = T , for all
v : VAR −→ {T ,F}

The second definition uses the notion of satisfaction and
model and the fact that in any extensional semantic these
notions interchangeable

Definition 2
A is a tautology if and only if any v : VAR −→ {T ,F},
v |= A , i.e. any v is a model for A
We write symbolically

|= A

for the statement ”A is a tautology”



Semantics: not a tautology

Definition 1
A is not a tautology if and only if there is v, such that
v∗(A) , T

Definition 2
A is not a tautology if and only if A has a
counter-model

Notation
We write 6|= A to denote the statement ”A is not a
tautology”

This ends the formal definition of the classical propositional
semantics that follows the pattern for extensional semantics
established in Lecture 2



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 4

PART 5 Tautologies: Decidability and Verification Methods

PART 6 Sets of Formulas: Consistency and
Independence



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 4

PART 5 Tautologies: Decidability and Verification Methods



Classical Tautologies

There is a large number of basic and important propositional
tautologies listed and discussed in Chapter 2

We assume that at this point everybody is familiar, or will
familiarize with them if needed

Chapter 2 provides the motivation for classical approach to
definition of tautologies as ways of describing correct rules of
our mathematical reasoning

Chapter 2 also contains an informal definition of classical
semantics and discusses some tautology verification
methods



Classical Tautologies

Here is the formal definition of classical tautology

Definition

For any formula A ∈ F

A is a tautology if and only if v∗(A) = T , for all truth
assignments v : VAR −→ {T ,F}. We denote it as

|= A

Our goal now is to prove that the notion of classical tautology
is decidable and to prove correctness of the tautology
verification method presented in Chapter 2

Moreover we present here other tautology verification
methods and prove their correctness



Decidability and Verification

We start now a natural question:

How do we verify whether a given formula A ∈ F is or is
not a tautology?

The answer seems to be very simple

By tautology definition we have to examine all truth
assignments v : VAR −→ {T ,F}

If they all evaluate to T, we proved that |= A

If at least one evaluates to F, we found a counter model
and proved 6|= A

The verification process is decidable, if the we have only a
finite number of v to consider



Decidability and Verification

So now all we have to do is to count how many truth
assignments there are, i.e. how many there are functions
that map the set VAR of propositional variables into the set
{T ,F} of logical values

In order to do so we need to introduce some standard
notations and some known facts

For a given set X, we denote by |X | the cardinality of X

In a case of a finite set , it is called a number of elements of
the set

We write |X | = n to denote that X has n elements, for
any n ∈ N



Cardinality of Sets

We have special names and notations for the cardinalities of
infinite sets

In particular we write
|X | = ℵ0

and say ” cardinality of X is aleph zero,” for any countably
infinite set X, i.e. the set that has the same cardinality as
natural numbers

We write
|X | = C

and say ” cardinality of X is continuum” for any
uncountable set X that has the same cardinality as real
numbers



Counting Functions

Counting Functions Theorem 1

For any sets X ,Y there are |Y ||X | functions that map the set
X into Y

In particular, when the set X is countably infinite and the
set Y is finite, then there are

nℵ0 = C

functions that map the set X into Y



Counting Truth Assignments

In our case of counting the truth assignments

v : VAR −→ {T ,F}

we have that |VAR | = ℵ0 and |{T ,F}| = 2

We know that 2ℵ0 = C and hence we get directly from
Counting Functions Theorem 1 the following

Truth Assignments Theorem

There are uncountably many (exactly as many as real
numbers) of all possible truth assignments
v : VAR −→ {T ,F}



Restricted Truth Assignments

To address and to answer these questions formally we first
introduce some notations and definitions

Notation For any formula A, we denote by

VARA

a set of all variables that appear in A

Definition

Given v : VAR −→ {T ,F}, any function

vA : VARA −→ {T ,F}

such that v(a) = vA (a) for all a ∈ VARA is called a
restriction of v to the formula A



Restricted Model

Restricted Model Theorem
For any formula A, any v, and its restriction vA

v |= A ij and only if vA |= A

Definition: Given a formula A ∈ F , any function

w : VARA −→ {T ,F}

is called a truth assignment restricted to A

Definition Given a formula A ∈ F

Any function

w : VARA −→ {T ,F} such that w∗(A) = T

is called a restricted model for A



Example

Example
A = ((a ∩ ¬b) ∪ ¬c)

VARA = {a, b , c}

Truth assignment restricted to A is any function:

w : {a, b , c} −→ {T ,F}.

We use the following theorem to count all possible truth
assignment restricted to A



Counting Functions

Counting Functions Theorem 2

For any finite sets A and B,

if the set A has n elements and B has m elements, then

there are mn possible functions that map A into B

Proof by Mathematical Induction over m

Example

There are 23 = 8 truth assignments w restricted to

A = ((a ⇒ ¬b) ∪ ¬c)



Counting Functions

Counting Restricted Truth

For any A ∈ F , there are

2|VARA |

possible truth assignments restricted to A



Example

Let A = ((a ∩ ¬b) ∪ ¬c)

All w restricted to A are listed in the table below
w a b c w∗(A) computation w∗(A)
w1 T T T (T ⇒ T) ∪ ¬T = T ∪ F = T T
w2 T T F (T ⇒ T) ∪ ¬F = T ∪ T = T T
w3 T F F (T ⇒ F) ∪ ¬F = F ∪ T = T T
w4 F F T (F ⇒ F) ∪ ¬T = T ∪ F = T T
w5 F T T (F ⇒ T) ∪ ¬T = T ∪ F = T T
w6 F T F (F ⇒ T) ∪ ¬F = T ∪ T = T T
w7 T F T (T ⇒ F) ∪ ¬T = F ∪ F = F F
w8 F F F (F ⇒ F) ∪ ¬F = T ∪ T = T T

w1,w2,w3,w4w5,w6,w8 are restricted models for A

w7 is a restricted counter- model for A



Restrictions and Extensions

Given a formula A and w : VARA −→ {T ,F}

Extension Definition

Any function v, such that v : VAR −→ {T ,F} and
v(a) = w(a), for all a ∈ VARA is called an extension of w to
the set VAR of all propositional variables

Extension Fact

For any formula A, any w restricted to A , and any of its
extensions v

w |= A if and only if v |= A



Tautology Decidability

Tautology Theorem

For any formula A ∈ F ,

|= A if and only if vA |= A for all vA : VARA −→ {T ,F}

Proof Assume |= A

By tautology definition v |= A for all v : VAR −→ {T ,F} ,
hence vA |= A for all vA : VARA −→ {T ,F} as
VARA ⊆ VAR

Assume vA |= A for all vA : VARA −→ {T ,F}

Take any v : VAR −→ {T ,F}. As VARA ⊆ VAR, any
v : VAR −→ {T ,F} is an extension of some vA , i.e.
v(a) = vA (a) for all a ∈ VARA . By the extension definition
we get that v∗(A) = vA

∗(A) = T and v |= A



Tautology Decidability

Directly from Tautology Theorem we get the proof of
decidability of the notion of classical propositional tautology

Decidability Theorem
For any formula A ∈ F , one has to examine at most

2VARA

restricted truth assignments vA : VARA −→ {F ,T } in
order to decide whether

|= A or 6|= A ,

i.e. the notion of classical tautology is decidable

We present now some tautologies verification methods



Tautology Verification Methods

Truth Table Method

The verification method, called a truth table method consists
of examination, for any formula A , all possible truth
assignments restricted to A

If we find a truth assignment which evaluates A to F ,

we stop and give answer: 6|= A

Otherwise we continue

If all truth assignments evaluate A to T ,

we give we stop and answer: |= A

We usually list all restricted truth assignments vA in a form
of a truth table, hence the name of the method



Truth Table Method Example

Consider a formula A:

(a ⇒ (a ∪ b))

We write the Truth Table:

w a b w∗(A) computation w∗(A)
w1 T T (T ⇒ (T ∪ T)) = (T ⇒ T) = T T
w2 T F (T ⇒ (T ∪ F)) = (T ⇒ T) = T T
w3 F T (F ⇒ (F ∪ T)) = (F ⇒ T) = T T
w4 F F (F ⇒ (F ∪ F)) = (F ⇒ F) = T T

We evaluated that for all w restricted to A, i.e. all functions
w : VARA −→ {T ,F}, w |= A
This proves

|= (a ⇒ (a ∪ b))



Tautology Verification

Imagine now that A has for example 200 variables.

To find whether A is a tautology by using the Truth Table
Method one would have to evaluate 200 variables long
expressions - not to mention that one would have to list 2200

restricted truth assignments

We use now and later in case of many valued semantics a
more elegant and faster method called Proof by
Contradiction Method



Tautology - Proof by Contradiction Method

Proof by Contradiction Method

in order to verify whether |= A one works backwards trying
to find a truth assignment v which makes a formula A false

If we find one, it means that A is not a tautology

if we prove that it is impossible, i.e. we got a contradiction

it means that the formula A is a tautology



Example

Let A = (a ⇒ (a ∪ b)

Step 1: Assume that 6|= A , i.e. we write in a shorthand
notion A = F

Step 2: We use shorthand notation to analyze Strep 1

(a ⇒ (a ∪ b)) = F if and only if a = T and (a ∪ b) = F

Step 3: Analyze Step 2

a = T and (a ∪ b) = F , i.e. (T ∪ b) = F

This is impossible by the definition of ∪

We got a contradiction, hence

|= (a ⇒ (a ∪ b))



Substitution Example

Observe that exactly the same reasoning proves that for
any formulas A ,B ∈ F ,

|= (A ⇒ (A ∪ B))

The following formulas are also tautologies

((((a ⇒ b) ∩ ¬c)⇒ ((((a ⇒ b) ∩ ¬c) ∪ ¬d))

(((a ⇒ b)∩¬c)∪d)∩¬e)⇒ (((a ⇒ b)∩¬c)∪d)∩¬e)∪((a ⇒ ¬e)))

because they are particular cases - substitutions - of
(a ⇒ (a ∪ b))



Substitution Method

Substitution Method

This method allows us to obtain new tautologies from
formulas already proven to be tautologies.

Example

We can obtain the formula

((((a ⇒ b) ∩ ¬c)⇒ ((((a ⇒ b) ∩ ¬c) ∪ ¬d)

from a formula (a ⇒ (a ∪ b)) by a proper substitutions
(replacements) of more complicated formulas for the variables
a and b in a formula (a ⇒ (a ∪ b))



Substitution Method

We write

A(a, b) = (a ⇒ (a ∪ b))

to denote that (a ⇒ (a ∪ b)) is a formula A with two
variables a and b

We denote by
A(a/A1, b/A2)

a result of a substitution of formulas A1, A2 on a place of
the variables a and b , everywhere where they appear in the
formula A(a, b)



Substitution Example

Example

Given a formula A(a, b) = (a ⇒ (a ∪ b))

Making a substitution s1

A(a/((a ⇒ b) ∩ ¬c), b/¬d)

we get a formula

((((a ⇒ b) ∩ ¬c)⇒ ((((a ⇒ b) ∩ ¬c) ∪ ¬d))



Substitution Example

Making a substitution s2

A(a/((a ⇒ b) ∩ ¬c), b/((a ⇒ ¬e))

we get a formula

(((a ⇒ b)∩¬c)∪d)∩¬e)⇒ (((a ⇒ b)∩¬c)∪d)∩¬e)∪((a ⇒ ¬e)))

We know |= (a ⇒ (a ∪ b))

By correctness (to be proved) of the Substitution Method
we know that also both formulas obtained by substitutions s1
and s2 are also tautologies



Substitution Correctness

Given a formula A(a1, a2, ...an), and A1, ...An be any formulas

We denote by
A(a1/A1, ..., an/An)

the result of simultaneous substitution (replacement) in
A(a1, a2, ...an) the variables a1, a2, ...an by formulas A1, ...An,
respectively

Substitution Method correctness is established by the
following Theorem

Correctness Theorem

For any formulas A(a1, a2, ...an), A1, . . . , An ∈ F ,

If |= A(a1, a2, ...an) and B = A(a1/A1, ..., an/An), then |= B



Proof of Substitution Correctness

Correctness Theorem

For any formulas A , A1, ...An ∈ F ,

If |= A(a1, a2, ...an) and B = A(a1/A1, ..., an/An),

then |= B

Proof: Let B = A(a1/A1, ..., an/An) and let b1, b2, ...bm be
all propositional variables which occur in A1, ...An

Given a truth assignment v : VAR −→ {T ,F}, the values
v(b1), v(b2), ...v(bm) define v∗(A1), ...v∗(An) and, in turn

define v∗(A(a1/A1, ..., an/An))



Proof of Substitution Method Correctness

Let now w : VAR −→ {T ,F} be a truth assignment such that
w(a1) = v∗(A1), w(a2) = v∗(A2), ...w(an) = v∗(An)

Obviously, v∗(B) = w∗(A)

Since |= A and w∗(A) = T , for all possible w, hence
v∗(B) = w∗(A) = T for all truth assignments w and

we have |= B



Constructing New Tautologies

Observation

The Correctness Theorem establishes validity of use of the
Substitution Method as a method of constructing new
tautologies from given tautologies

Example

We know that |= (a ∪ ¬a) and A(a) is (a ∪ ¬a)

Making a substitution

A(a/((a ⇒ b) ∩ ¬c)

we get a new tautology

(((a ⇒ b) ∩ ¬c) ∪ ((a ⇒ b) ∩ ¬c))



Generalization Method

Generalization Method consists of representing,

if it is possible, a given formula A as a particular case

of some much simpler and more general formula B

We then can use any other verification method to examine

whether the representation B of the given formula A

is or is not a tautology



Generalization Method

Example

Given a formula

((((a ⇒ b) ∩ ¬c)⇒ ((((a ⇒ b) ∩ ¬c) ∪ ¬d))

We represent it as a simple and more general formula

(A ⇒ (A ∪ B))

for A = ((a ⇒ b) ∩ ¬c) and B = ¬d

We then prove using, for example, Proof by Contradiction
Method that

|= (A ⇒ (A ∪ B))



Tautologies, Contradictions

Set of all Tautologies

T = {A ∈ F : |= A }

Definition

A formula A ∈ F is called a contradiction if it does not
have a model. We denote it as

= | A

Directly from the definition we have that

= |A if and only if v 6|= A for all v : VAR −→ {T ,F}

Set of all Contradictions

C = {A ∈ F : = | A }



Examples

Tautology (A ⇒ (B ⇒ A))

Contradiction (A ∩ ¬A)

Neither (a ∪ ¬b)

Consider the formula (a ∪ ¬b)

Any v such that v(a) = T is a model for (a ∪ ¬b), so it is
not a contradiction

Any v such that v(a) = F , v(b) = T is a counter-model
for (a ∪ ¬b) so 6|= (a ∪ ¬b)



Simple Properties

Theorem 1 For any formula A ∈ F the following conditions
are equivalent.

(1) A ∈ T

(2) ¬A ∈ C

(3) For all v, v |= A

Theorem 2 For any formula A ∈ F the following conditions
are equivalent.

(1) A ∈ C

(2) ¬A ∈ T

(6) For all v, v 6|= A



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 4

PART 6 Sets of Formulas: Consistency and Independence



Models for Sets of Formulas

Consider L = LCON and let S , ∅ be any non empty set of
formulas of L, i.e.

S ⊆ F

We adopt the following definition.

Definition

A truth truth assignment v : VAR −→ {T ,F}

is a model for the set S of formulas if and only if

v |= A for all formulas A ∈ S

We write
v |= S

to denote that v is a model for the set S of formulas



Counter- Models for Sets of Formulas

Similarly, we define a notion of a counter-model

Definition

A truth assignment v : VAR −→ {T ,F}

is a counter-model for the set S , ∅ of formulas

if and only if

v 6|= A for some formula A ∈ S

We write
v 6|= S

to denote that v is a counter- model for the set S of
formulas



Restricted Model for Sets of Formulas

Remark that the set S can be finite, or infinite

In a case when S is a finite subset of formulas we define, as
before, a notion of restricted model and restricted
counter-model

Definition

Let S be a finite subset of formulas and v |= S

Any restriction of the model v to the domain

VARS =
⋃

A∈S
VARA

is called a restricted model for S



Restricted Counter - Model for Sets of Formulas

Definition

Any restriction of a counter-model v of a set S , ∅ of
formulas to the domain

VARS =
⋃

A∈S
VARA

is called a restricted counter-model for S



Example

Example

Let L = L{¬,∩} and let

S = {a, (a ∩ ¬b), c, ¬b}

We have VARS = {a, b , c} and atruth assignment
v : VARS → {T ,F} such that
v(a) = T , v(c) = T , v(b) = F

is a restricted model for S

A truth assignment v : VARS → {T ,F} such that v(a) = F

is a restricted counter-model for S



Models for Infinite Sets

The set S from the previous example was a finite set

Some natural questions arise:

Q1 Give an example of an infinite set S that has a model

Q2 Give an example of an infinite set S that does not have
model

Here are simple, natural examples

Q1 Example

Consider set T of all tautologies

It is a countably infinite set and by definition of a tautology
any v is a model for T, i.e. v |= T



Models for Infinite Sets

Q2 Give an example of an infinite set S that does not have
model

Q2 Example

Consider set C of all contradictions

It is a countably infinite set and

for any v, v 6|= C by definition of a contradiction, i.e. any
any v is a counter-model for C



Models for Infinite Sets

Here are some more a bit more difficult natural questions

Q3 Give an example of an infinite set S, such that S , T
and S has a model

Q4 Give an example of an infinite set S, such that
S ∩ T = ∅ and S has a model

Q5 Give an example of an infinite set S, such that S , C
and S does not have a model

Q6 Give an example of an infinite set S, such that
S , C and S has a counter model

Q7 Give an example of an infinite set S, such that
S ∩ C = ∅ and S has a counter model



Consistent Sets of Formulas

Definition

A set G ⊆ F of formulas is called consistent

if and only if G has a model, i.e. we say hat

G ⊆ F is consistent if and only if

there is v such that v |= G

Otherwise G is called inconsistent



More Questions

Here are some more of natural questions

Q8 Give an example of an infinite set S, such that S , T
and S is consistent

Q9 Give an example of an infinite set S, such that
S ∩ T = ∅ and S is consistent

Q10 Give an example of an infinite set S, such that
S , C and S is inconsistent

Q11 Give an example of an infinite set S, such that
S ∩ C = ∅ and S is inconsistent



Independent Statements

Definition

A formula A is called independent from a set G ⊆ F

if and only if there are truth assignments v1, v2 such that

v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

i.e. we say that a formula A is independent

if and only if

G ∪ {A } and G ∪ {¬A } are consistent



Example

Example

Given a set

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

Show that G is consistent

Solution

We have to find v : VAR −→ {T ,F} such that

v |= G

It means that we need to find v such that

v∗((a ∩ b)⇒ b) = T , v∗(a ∪ b) = T , v∗(¬a) = T



Consistent: Example

To prove hat G is consistent we have to consider the
following case

1. Formula ((a ∩ b)⇒ b) is a tautology, i.e.
v∗((a ∩ b)⇒ b) = T for any v and we do not need to
consider it anymore.

2. Formula ¬a = T (we use shorthand notation) if and only if
a = F so we get that v must be such that v(a) = F

3. We want (a ∪ b) = T but v is such that v(a) = F so
(a ∪ b) = F ∪ b = T) if and only if b = T

This means that for any v : VAR −→ {T ,F} such that
v(a) = F , v(b) = T

v |= G

and we proved that G is consistent



Independent: Example

Example

Show that a formula A = ((a ⇒ b) ∩ c) is independent of

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

Solution

We construct v1, v2 : VAR −→ {T ,F} such that

v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

We have just proved that any v : VAR −→ {T ,F} such that
v(a) = F , v(b) = T is a model for G



Independent: Example

Take as v1 any truth assignment such that

v1(a) = v(a) = F , v1(b) = v(b) = T , v1(c) = T

We evaluate v1
∗(A) = v1

∗((a ⇒ b) ∩ c) = (F ⇒ T) ∩ T = T

This proves that v1 |= G ∪ {A }

Take as v2 any truth assignment such that

v2(a) = v(a) = F , v2(b) = v(b) = T , v2(c) = F

We evaluate v2
∗(¬A) = v2

∗(¬(a ⇒ b) ∩ c)) = T ∩ T = T

This proves that v2 |= G ∪ {¬A }

It ends the proof that A is independent of G



Not Independent: Example

Example

Show that a formula A = (¬a ∩ b) is not independent of

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

Solution

We have to show that it is impossible to construct v1, v2

such that
v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

Observe that we have just proved that any v such that
v(a) = F , and v(b) = T is the only model restricted to the
set of variables {a, b} for G and {a, b} = VARA

So we have to check now if it is possible v |= A and
v |= ¬A



Not Independent: Example

We have to evaluate v∗(A) and v∗(¬A) for

v(a) = F , and v(b) = T

v∗(A) = v∗((¬a ∩ b) = ¬v(a) ∩ v(b) = ¬F ∩ T = T ∩ T = T
and so v |= A

v∗(¬A) = ¬v∗(A) = ¬T = F

and so v 6|= ¬A

This end the proof that A is not independent of G



Independent: Another Example

Example
Given a set G = {a, (a ⇒ b)}, find a formula A that is
independent from G

Observe that v such that v(a) = T , v(b) = T is the only
restricted model for G
So we have to come up with a formula A such that there are
two different truth assignments, v1 and v2, and

v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

Let’s consider A = c, then G ∪ {A } = {a, (a ⇒ b), c}
A truth assignment v1, such that v1(a) = T , v1(b) = T and
v1(c) = T is a model for G ∪ {A }
Likewise for G ∪ {¬A } = {a, (a ⇒ b),¬c}
Any v2, such that v2(a) = T , v2(b) = T and v2(c) = F is a
model for G ∪ {¬A } and so the formula A is independent



Challenge Problem

Challenge Problem

Find an infinite number of formulas that are independent of
a set

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}



Challenge Problem Solution

This my solution - there are many others- this one seemed to
me the most simple

Solution

We just proved that any v such that v(a) = F , v(b) = T is
the only model restricted to the set of variables {a, b} and so
all other possible models for G must be extensions of v



Challenge Problem Solution

We define a countably infinite set of formulas (and their
negations) and corresponding extensions of v (restricted to
to the set of variables {a, b}) such that v |= G as follows

Observe that all extensions of v restricted to to the set of
variables {a, b} have as domain the infinitely countable set

VAR = {a1, a2, . . . , an. . . . }

We take as an infinite set of formulas in which every formula
independent of G the set of atomic formulas

F0 = {a1, a2, . . . , an. . . . } − {a, b}



Challenge Problem Solution

Let c ∈ F0 = {a1, a2, . . . , an. . . . } − {a, b}

We define truth assignments v1, v2 : VAR −→ {T ,F} such
that

v1 |= G ∪ {c} and v2 |= G ∪ {¬c}

as follows

v1(a) = v(a) = F , v1(b) = v(b) = T and v1(c) = T for
any c ∈ F0

v2(a) = v(a) = F , v2(b) = v(b) = T and v2(c) = F for
any c ∈ F0



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 5

PART 7 Classical Tautologies and Logical Equivalences

PART 8 Definability of Connectives and Equivalence of
Languages



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 5

PART 7 Classical Tautologies and Logical Equivalences



Classical Tautologies and Equivalence of Languages

We present here as a first step a set of most widely used
classical tautologies. We will use them, in one form or other,
in our investigations in future chapters

An extended list of tautologies is presented in Chapter 2

As the second step we define notions of a logical
equivalence and an equivalence of languages

We prove that all of the languages

L{¬⇒}, L{¬∩}, L{¬∪}, L{¬,∩,∪,⇒}, L{¬,∩,∪,⇒,⇔}, L{↑}, L{↓}

are equivalent under classical semantics and hence can
be used (and are) as different languages for classical
propositional logic



Classical Tautologies

Some Tautologies

For any A ,B ∈ F , the following formulas are tautologies

Implication and Negation

(A ⇒ (B ⇒ A)), ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C))),

((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)), (A ⇒ A), (B ⇒ ¬¬B),

(¬¬B ⇒ B), (¬A ⇒ (A ⇒ B)), (A ⇒ (¬B ⇒ ¬(A ⇒ B))),

((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B)), ((¬A ⇒ A)⇒ A)



Classical Tautologies

Disjunction, Conjunction

(A ⇒ (A ∪ B)), (B ⇒ (A ∪ B)), ((A ∩ B)⇒ A),

((A ∩ B)⇒ A), ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C))),

(((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C)),

(¬(A ∩ B)⇒ (¬A ∪ ¬B)), ((¬A ∪ ¬B)⇒ ¬(A ∩ B)),

((¬A ∪ B)⇒ (A ⇒ B)), ((A ⇒ B)⇒ (¬A ∪ B)),

(A ∪ ¬A)



Classical Tautologies

Contraposition (1)

((A ⇒ B)⇔ (¬B ⇒ ¬A)), ((B ⇒ A)⇔ (¬A ⇒ ¬B))

Contraposition (2)

((¬A ⇒ B)⇔ (¬B ⇒ A)), ((A ⇒ ¬B)⇔ (B ⇒ ¬A))

Double Negation

(¬¬A ⇔ A)



Logical Equivalences

Logical equivalence is a very useful notion to use when we
want to obtain new formulas or new tautologies, if needed, on
a base of some already known in a way that guarantee
preservation of the logical value of the initial formula

We say that two formulas formulas A , B are logically
equivalent if they always have the same logical value. We
write it symbolically as

A ≡ B

We have to remember that the symbol ≡ is not a logical
connective. It is a metalanguage symbol for saying ” A, B
are logically equivalent”



Logical Equivalences

≡ is a very useful symbol. It says that two formulas always
have the same logical value, hence can be used in the same
way we use the equality symbol =. Formally we define it as
follows.

Definition

For any formulas A ,B ∈ F ,

A ≡ B if and only if v∗(A) = v∗(B) for all v : VAR → {T ,F}

The following property follows directly from the definition

Property

For any formulas A ,B ∈ F ,

A ≡ B if and only if |= (A ⇔ B)



Logical Equivalences

We, for example write the laws of contraposition, and the laws
of double negation as logical equivalences as follows

E - Contraposition (1)

(A ⇒ B) ≡ (¬B ⇒ ¬A), (B ⇒ A) ≡ (¬A ⇒ ¬B)

E - Contraposition (2)

(¬A ⇒ B) ≡ (¬B ⇒ A), (A ⇒ ¬B) ≡ (B ⇒ ¬A)

E - Double Negation

¬¬A ≡ A



Use of Logical Equivalence

We use logical equivalences to obtain new Laws from some
already known (proved). For example, we obtain new Law of
Contraposition from the E - Contraposition (1) Law and the
E - Double Negation Law as follows

(¬A ⇒ B) ≡ (¬B ⇒ ¬¬A) ≡ (¬B ⇒ A)

We proved a new Law of Contraposition (1):

(¬A ⇒ B) ≡ (¬B ⇒ A)

(A ⇒ ¬B) ≡ (¬¬B ⇒ ¬A) ≡ (B ⇒ ¬A)

We proved another new Law of Contraposition (2):

(A ⇒ ¬B) ≡ (B ⇒ ¬A)



Substitution Theorem

The correctness of the above procedure of proving new
Laws of equivalences from the known ones is established by
the following theorem

Substitution Theorem

Let a formula B1 be obtained from a formula A1 by a
substitution of a formula B for one or more occurrences of
a sub-formula A of A1, what we denote as

B1 = A1(A/B)

Then the following holds

If A ≡ B , then A1 ≡ B1



Use of Substitution Theorem

Example
Let A1 be a formula (C ∪ D), i.e.

A1 = (C ∪ D)

and let B = ¬¬C , A = C
We get

B1 = A1(C/B) = A1(C/¬¬C) = (¬¬C ∪ D)

By Double Negation Law

¬¬C ≡ C i.e. A ≡ B

So we get by Substitution Theorem that

(C ∪ D) ≡ (¬¬C ∪ D)



Use of Substitution Theorem

Exercise

Transform formula a

((C ⇒ ¬B)⇒ (B ∪ C))

into its logically equivalent formula without implication

Hint: use the the Substitution Theorem and the already
known Definability of Connectives equivalence

(A ⇒ B) ≡ (¬A ∪ B)

Remark that it is not the only one equivalence we can use.



Use of Substitution Theorem

We transform via the Substitution Theorem a formula

((C ⇒ ¬B)⇒ (B ∪ C))

into its logically equivalent formula as follows

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(C ⇒ ¬B) ∪ (B ∪ C)))

≡ ¬(¬C ∪ ¬B) ∪ (B ∪ C)) and we get that

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(¬C ∪ ¬B) ∪ (B ∪ C))

Observe that if the formulas B, C contain⇒ as logical
connective we can continue this process until we obtain a
logically equivalent formula not containing ⇒ at all



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 5

PART 8 Definability of Connectives and Equivalence of
Languages



Definability of Connectives Equivalences

The next set of equivalences correspond the notion of
definability of connectives discussed earlier in the chapter

For example, a tautology

|= ((A ⇒ B)⇔ (¬A ∪ B))

makes it possible to define implication in terms of disjunction
and negation. We state it in a form of a logical equivalence
and call it as follows

Definability of Implication in terms of negation and
disjunction

(A ⇒ B) ≡ (¬A ∪ B)



Definability of Connectives Equivalences

Observation

The direct proof of Definability of Connectives equivalences
presented here follow directly from the definability formulas
developed earlier in the chapter in the the proof of the
Definability of Connectives Theorem, hence the names

We use the notion of logical equivalence instead of the
tautology notion because it makes the manipulation of
formulas much easier



Definability of Connectives Equivalences

Example

Let A = ((C ⇒ ¬B)⇒ (B ∪ C))

We use the Definability of Implication equivalence to
transform A into a logically equivalent formula not
containing ⇒ as follows

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(C ⇒ ¬B) ∪ (B ∪ C)))

≡ (¬(¬C ∪ ¬B) ∪ (B ∪ C)))

and hence

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(¬C ∪ ¬B) ∪ (B ∪ C)))



Definability of Connectives Equivalences

Definability of Implication equivalence

(A ⇒ B) ≡ (¬A ∪ B)

allows us, via the Substitution Theorem, replace any
sub-formula of the form (A ⇒ B) of any formula by a formula

(¬A ∪ B)

Hence it allows us to recursively transform a given formula
containing implication into an logically equivalent formula
that does not contain implication but contains negation and
disjunction instead



Equivalence of Languages

The Substitution Theorem and the equivalence

(A ⇒ B) ≡ (¬A ∪ B)

let us transform a language that contains implication into a
language that does not contain the implication, but contains
negation and disjunction instead

Observe that we use this equivalence recursively, i.e. if the
formulas A, B contain⇒ as logical connective we continue
this process until we obtain a logically equivalent formula not
containing ⇒ at all



Equivalence of Languages

Example

The language L1 = L{¬,∩,⇒} becomes a language
L2 = L{¬,∩,∪} such that all its formulas are logically
equivalent to the formulas of the language L1

We write it as the following condition

C1: For any formula A of a language L1, there is a formula B
of the language L2, such that A ≡ B.



Connectives Elimination

In order to be able to transform any formula of a language
containing disjunction (and some other connectives)

into a language with negation and implication (and some
other connectives),
but without disjunction we use the following logical
equivalence

Definability of Disjunction in terms of negation and
implication

(A ∪ B) ≡ (¬A ⇒ B)



Connectives Elimination

Example

Consider a formula C = ((A ∪ B) ∩ ¬A)

We transform C into its logically equivalent form not
containing ∪ but containing ⇒ as follows

((A ∪ B) ∩ ¬A) ≡ ((¬A ⇒ B) ∩ ¬A)

The Definability of Disjunction equivalence allows us
transform for example a language

L2 = L{¬, ∩, ∪}

into a language
L1 = L{¬,∩,⇒}

with all its formulas being logically equivalent



Equivalence of Languages

We write it as the following condition C2 similar to the
condition C1

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D

The languages L1 and L2 for which the conditions C1, C2
hold are called logically equivalent.

We denote it by
L1 ≡ L2.

A general, formal definition goes as follows.



Equivalence of Languages Definition

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are logically equivalent, i.e.

L1 ≡ L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1 , there is a formula B of L2,
such that A ≡ B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D



Equivalence of Languages

Example

To prove the logical equivalence

L{¬,∪} ≡ L{¬,⇒}

we need the following logical equivalences

Definability of Implication in terms of disjunction and
negation

(A ⇒ B) ≡ (¬A ∪ B),

Definability of Disjunction in terms of implication and
negation

(A ∪ B) ≡ (¬A ⇒ B)

and the Substitution Theorem



Equivalence of Languages

Example

To prove the logical equivalence of the languages

L{¬,∩,∪,⇒} ≡ L{¬,∩,∪}

we need only the definability of implication equivalence

It proves, by Substitution Theorem that

for any formula A of L{¬,∩,∪,⇒} there is a formula B of
L{¬,∩,∪} such that A ≡ B and the condition C1 holds

Observe that any formula A of language L{¬,∩,∪} is also a
formula of the language L{¬,∩,∪,⇒} and of course A ≡ A so
the condition C2 also holds



Equivalence of Languages

Example

The logical equivalences:

Definability of Conjunction in terms of implication and
negation

(A ∩ B) ≡ ¬(A ⇒ ¬B)

and Definability of Implication in terms of conjunction and
negation

(A ⇒ B) ≡ ¬(A ∩ ¬B)

and the Substitution Theorem prove that

L{¬,∩} ≡ L{¬,⇒}.



Equivalence of Languages

Exercise

Prove that
L{∩,¬} ≡ L{∪,¬}

Solution

The equivalence holds due to the Substitution Theorem and
two following Definability of Connectives equivalences:

(A ∩ B) ≡ ¬(¬A ∪ ¬B), (A ∪ B) ≡ ¬(¬A ∩ ¬B)

They transform recursively any formula from L{∩,¬} into a
formula of L{∪,¬} and vice-versa, respectively



Logical Equivalences

Here are some more frequently used logical equivalences

Idempotent

(A ∩ A) ≡ A (A ∪ A) ≡ A

Associativity

((A ∩ B) ∩ C) ≡ (A ∩ (B ∩ C))

((A ∪ B) ∪ C) ≡ (A ∪ (B ∪ C))

Commutativity

(A ∩ B) ≡ (B ∩ A) (A ∪ B) ≡ (B ∪ A)



Logical Equivalences

Here are some more frequently used logical equivalences

Distributivity

(A ∩ (B ∪ C)) ≡ ((A ∩ B) ∪ (A ∩ C))

(A ∪ (B ∩ C)) ≡ ((A ∪ B) ∩ (A ∪ C))

De Morgan Laws

¬(A ∪ B) ≡ (¬A ∩ ¬B)

¬(A ∩ B) ≡ (¬A ∪ ¬B)

Negation of Implication

¬(A ⇒ B) ≡ (A ∩ ¬B)



Equivalence of Languages

Exercise

Transform a formula A = ¬(¬(¬a ∩ ¬b) ∩ a) of L{∩,¬}
into a logically equivalent formula B of L{∪,¬}
Solution

¬(¬(¬a ∩ ¬b) ∩ a)

≡ ¬(¬¬(¬¬a ∪ ¬¬b) ∩ a)

≡ ¬((a ∪ b) ∩ a)

≡ ¬(¬(a ∪ b) ∪ ¬a)

The formula B of L{∪,¬} equivalent to A is

B = ¬(¬(a ∪ b) ∪ ¬a)



Equivalence of Languages

Exercise

Prove by transformation, using proper logical equivalences
that

¬(A ⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩ B))

Solution
¬(A ⇔ B)

≡def¬((A ⇒ B) ∩ (B ⇒ A))

≡de Morgan(¬(A ⇒ B) ∪ ¬(B ⇒ A))

≡neg impl((A ∩ ¬B) ∪ (B ∩ ¬A))

≡commut((A ∩ ¬B) ∪ (¬A ∩ B))



Equivalence of Languages

Exercise

Prove by transformation, using proper logical equivalences
that

((B ∩ ¬C)⇒ (¬A ∪ B))

≡ ((B ⇒ C) ∪ (A ⇒ B))

Solution
((B ∩ ¬C)⇒ (¬A ∪ B))

≡impl(¬(B ∩ ¬C) ∪ (¬A ∪ B))

≡de Morgan((¬B ∪ ¬¬C) ∪ (¬A ∪ B))

≡neg((¬B ∪ C) ∪ (¬A ∪ B))

≡impl((B ⇒ C) ∪ (A ⇒ B))



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 6

PART 9 Many Valued Semantics: Łukasiewicz, Heyting,
Kleene, and Bohvar



First Many Valued Logics

The study of many valued logics in general and 3-valued
logics in particular has its beginning in the work of a Polish
mathematician Jan Leopold Łukasiewicz in 1920

Łukasiewicz was the first to define a 3 - valued semantics
for the language

L{¬,∩,∪,⇒}

of classical logic, and called it a logic for short

He left the problem of finding a proper axiomatic proof
system for it open



First Many Valued Logics

The other 3 - valued semantics presented here were also
first called logics and this terminology is still widely used

Nevertheless, as these logics were defined only
semantically, i.e. defined only by providing a semantics for
their languages we call them semantics (for logics to be
developed), not logics



Creating a Logic

Existence of a proper axiomatic proof system for a given
semantics and proving its completeness is always a next
open question to be answered (when it is possible)

A process of creating a logic (based on a given language) is
three fold: we have to

define semantics,

create axiomatic proof system and

prove completeness theorem that establishes a relationship
between semantics and proof system



First Many Valued Logics

We present here some of the first 3-valued extensional
semantics, historically called 3-valued logics

They are named after their authors: Łukasiewicz, Kleene,
Heyting, and Bochvar

We assume that the language of all semantics (logics)
considered here except of Bochvar semantics is

L{¬, ∪, ∩, ⇒}



3-Valued Semantics

All three valued semantics considered here enlist a third
logical value which we denote by ⊥, or m in case of
Bochvar semantics

The third logical value denotes a notion of unknown,
uncertain, undefined, or even the notion of we don’t have a
complete information about depending on the context and
motivation for the semantics (logic)

The symbol ⊥ is the most frequently used for different
concepts of unknown



Many Valued Semantics

The third value ⊥ corresponds also to some notion of
incomplete information, inconsistent information, or to a
notion of being undefined , or unknown

Historically all these semantics, and many others were and
still are called logics

We will also use the name logic for them, instead saying each
time ” logic defined semantically”, or ”semantics for a given
logic”



3 Valued Semantics Assumptions

We assume that the third logical value is intermediate
between truth and falsity, i.e.

the set of logical values is ordered and we have the following

Assumption 1

F <⊥< T , and F < m < T

Assumption 2

We take T as designated value, i.e. T is the value that
defines the notions of satisfiability and tautology



Many Valued Extensional Semantics

Formal definition of all many valued semantics presented
here follows the definition of the extensional semantics M in
general, and the pattern presented in detail for the classical
semantics in particular

It consists of giving definitions of the following main
components:

Step 1: given the language L we define a set of logical
values and its distinguish value T and define all extensional
logical connectives of L

Step 2: we define notions of a truth assignment and its
extension

Step 3: we define notions of satisfaction, model, counter
model

Step 4: we define notions tautology under the semantics M



Łukasiewicz Semantics L

Motivation

Łukasiewicz developed his semantics (called logic ) to deal
with future contingent statements

Contingent statements are not just neither true nor false but
are indeterminate in some metaphysical sense

It is not only that we do not know their truth value but rather
that they do not possess one



L Semantics: Language

We define all the steps in case of Łukasiewicz semantics
(logic) to establish a pattern and proper notation and leave
adopting all steps to the case of other semantics as an
exercise

Step 1 The language is L{¬,∩,∪, ⇒}

Observe that the language is the same as in the classical
semantics case

The set F of formulas is defined in a standard way



L Semantics: Connectives

Step 1 Connectives

We assumed: F <⊥< T and we define the connectoves as
follows

Negation ¬ is a function

¬ : {T ,⊥,F} −→ {T ,⊥,F}

such that ¬ ⊥=⊥, ¬T = F , ¬F = T

Conjunction ∩ is a function

∩ : {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F}, we put

x ∩ y = min{x, y}



L Semantics: Connectives

Disjunction ∪ is a function

∪ : {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that for any (a, b) ∈ {T ,⊥,F} × {T ,⊥,F}, we put

x ∪ y = max{x, y}

Implication ⇒ is a function

⇒: {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F}, we put

x ⇒ y =

{
¬x ∪ y if x > y
T otherwise



L Connectives Truth Tables

Negation

¬ F ⊥ T
T ⊥ F

Conjunction

∩ F ⊥ T
F F F F
⊥ F ⊥ ⊥

T F ⊥ T



L Connectives Truth Tables

Disjunction

∪ F ⊥ T
F F ⊥ T
⊥ ⊥ ⊥ T
T T T T

Implication

⇒ F ⊥ T
F T T T
⊥ ⊥ T T
T F ⊥ T



L Semantics: Truth Assignment

Step 2 Truth assignment and its extension

Definition

A truth assignment is any function

v : VAR −→ {F , ⊥, T }

Observe that the domain of truth assignment is the set of
propositional variables, i.e. the truth assignment is defined
only for atomic formulas



Truth Assignment Extension v∗

Definition

Given a truth assignment v : VAR −→ {T , ⊥, F}

We define its extension v∗ : F −→ {T , ⊥, F} by the
induction on the degree of formulas as follows

(i) for any a ∈ VAR, v∗(a) = v(a);

(ii) and for any A ,B ∈ F we put

v∗(¬A) = ¬v∗(A);

v∗((A ∩ B)) = v∗(A)∩v∗(B);

v∗((A ∪ B)) = v∗(A)∪v∗(B);

v∗((A ⇒ B)) = v∗(A)⇒v∗(B)



L Semantics: Satisfaction Relation

Step 3 Satisfaction, Model, Counter Model

Definition

Let v : VAR −→ {T , ⊥ F}

We say that a truth assignment v L satisfies a formula
A ∈ F if and only if v∗(A) = T

Notation: v |=L A

Definition

We say that a truth assignment v does not L satisfy a
formula A ∈ F if and only if v∗(A) , T

Notation: v 6|=L A



L Semantics: Model, Counter Model

Model
Any truth assignment v : VAR −→ {F , ⊥, T } such that

v |=L A

is called a L model for A

Counter Model

Any v such that
v 6|=L A

is called a L counter model for the formula A



L Semantics: Tautology

Step 4 Tautology

For any A ∈ F ,

A is a L tautology if and only if v∗(A) = T for all
v : VAR −→ {F ,⊥,T }

We also say that

A is a L tautology if and only if all truth assignments
v : VAR −→ {F ,⊥,T } are L models for A

Notation
|=L A



L Tautologies

We denote the set of all L tautologies by

LT = {A ∈ F : |=L A }

Let LT, T be the sets of all L tautologies and the classical
tautologies, respectively.

Q1 Is the
¯
L logic (defined semantically!) really different

from the classical logic?
It means are theirs sets of tautologies different?

Answer: YES, they are different sets
We know that

|= (¬a ∪ a)

We will show that
6|=L (¬a ∪ a)



Classical and L Tautologies

Consider the formula (¬a ∪ a)

Take a truth assignment v such that

v(a) =⊥

Evaluate

v∗(¬a ∪ a) = v∗(¬a) ∪ v∗(a) = ¬v(a) ∪ v(a)

= ¬ ⊥ ∪ ⊥=⊥ ∪ ⊥= ⊥

This proves that v is a counter-model for (¬a ∪ a), i.e.

6|=L (¬a ∪ a)

and we proved
LT , T



Classical and L Tautologies

Q2 Do the L and classical logics have something more in
common besides the same language?

YES, they also share some tautologies

Q3 Is there relationship (if any) between their sets of
tautologies LT and T?

YES, their sets of tautologies LT and T do have an
interesting relationship



Classical and L Tautologies

Let’s restrict the functions defining L connectives (Truth
Tables for L connectives) to the values T and F

Observe that by doing so we get the Truth Tables for classical
connectives, i.e. the following holds for any A ∈ F

If v∗(A) = T for all v : VAR −→ {F ,⊥,T },

then v∗(A) = T for all v : VAR −→ {F ,T }

We have hence proved that

LT ⊂ T



Exercise

Exercise

Use the fact that v : VAR −→ {F ,⊥,T } is such that

v∗((a ∩ b)⇒ ¬b) =⊥

under L semantics to evaluate

v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b))

Use shorthand notation.



Exercise

Solution

Observe that ((a ∩ b)⇒ ¬b) =⊥ in two cases

c1: (a ∩ b) =⊥ and ¬b = F

c12: (a ∩ b) = T and ¬b =⊥

Consider c1

We have ¬b = F , i.e. b = T

Hence (a ∩ T) =⊥ if and only if a =⊥

We get that v is such that v(a) =⊥ and v(b) = T



Exercise

We got from analyzing case c1 that v is such that v(a) =⊥
and v(b) = T

We evaluate v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b)) =
(((T ⇒ ¬ ⊥)⇒ (⊥⇒ ¬T)) ∪ (⊥⇒ T)) = ((⊥⇒⊥) ∪ T) = T

Consider c2

We have ¬b =⊥, i.e. b =⊥ and (a∩ ⊥) = T , what is
impossible

Hence v from case c1 is the only one and

v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b)) = T



Łukasiewicz Life, Works and Logics

Jan Leopold Łukasiewicz was born on 21 December 1878 in
Lwow, historically a Polish city, at that time the capital of
Austrian Galicia

He died on 13 February 1956 in Ireland and is buried in
Glasnevin Cemetery in Dublin, ” far from dear Lwow and
Poland ”, as his gravestone reads

Here is a very good, interesting and extended entry in
Stanford Encyclopedia of Philosophy about his life,
influences, achievements, and logics

http://plato.stanford.edu/entries/lukasiewicz/index.html



Heyting Semantics H

Motivation and History

We discuss here the Heyting semantics H because of its
connection with intuitionistic logic

The H connectives are defined as operations on the set
{F ,⊥,T } in such a way that they form a 3-element
pseudo-Boolean algebra

Pseudo-Boolean algebras were created by McKinsey and
Tarski in 1948 to provide semantics for the intuitionistic logic

Pseudo-Boolean algebras are often called Heyting algebras



Motivation and History

The intuitionistic logic, was defined by its inventor Brouwer
and his school in 1900s as a proof system only

Heyting provided provided its first axiomatization which
everybody accepted

McKinsey and Tarski proved in 1942 the completeness of
the Heyting axiomatization with respect to their pseudo
Boolean algebras semantics

The pseudo boolean algebras are also called Heyting
algebras in his honor and so is our semantics H



Motivation and History

A formula A is an intuitionistic tautology if and only if it is
true in all pseudo boolean algebras

We prove that the operations defined by H connectives form a
3-element pseudo boolean algebra

Hence, if A is an intuitionistic tautology, it is also a tautology
under the 3- valued Heyting semantics

If A is not a 3- valued Heyting tautology, then it is not an
intuitionistic tautology

It means that the 3-valued Heyting semantics is a good
candidate for a counter model for the formulas that might
not be intuitionistic tautologies



H Logic and Intuitionistic Logic

Denote by IT, HT the sets of all tautologies of the
intuitionistic logic and Heyting 3-valued logic (semantics),
respectively .

We have that
IT ⊂ HT

We conclude that for any formula A ,

If 6|=H A then 6|=I A

It means that if we show that a formula A has an H counter
model, then we have proved that A it is not an intuitionistic
tautology



Kripke Models

The other type of semantics for the intuitionistic logic were
defined by Kripke in 1964

They are called Kripke models

The Kripke models were later proved to be equivalent to the
pseudo boolean algebras models in case of the intuitionistic
logic

Kripke models also provide a general method of defining
semantics for many classes of logics

That includes semantics for various modal logics and new
logics developed and being developed by computer scientists



H Semantics

Language
L{¬,⇒,∪,∩}

Connectives

∪ and ∩ are the same as in the case of Ł semantics, i.e.
for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F} we put

x ∪ y = max{x, y}, x ∩ y = min{x, y}

where F <⊥< T



H Semantics

Implication

⇒: {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F} we put

x ⇒ y =

{
T if x ≤ y
y otherwise

Negation
¬x = x ⇒ F



H Truth Tables

Implication
⇒ F ⊥ T
F T T T
⊥ F T T
T F ⊥ T

Negation
¬ F ⊥ T

T F F



Sets of Tautologies Relationships

HT, T, LT denote the set of all tautologies of the H, classical,
and L semantics, respectively

Relationships
HT , T , LT

HT ⊂ T

Proof of HT , T

For the formula (¬a ∪ a) we have:

|= (¬a ∪ a) and 6|=H (¬a ∪ a)



Sets of Tautologies Relationships

Proof of HT , LT

Take a truth assignment v such that

v(a) = v(b) =⊥

We verify that

6|=H (¬(a ∩ b)⇒ (¬a ∪ ¬b))

and
|=L(¬(a ∩ b)⇒ (¬a ∪ ¬b))



Sets of Tautologies Relationships

Proof of HT ⊂ T

Observe that if we restrict the truth tables for H connectives
to logical values T and F only we get the truth tables for the
classical connectives and the following holds for any formula
A

If v∗(A) = T for all v : VAR −→ {F ,⊥,T },

then v∗(A) = T for all v : VAR −→ {F ,T }

All together we have proved that the classical semantics
extends both L and H semantics, i.e.

LT ⊂ T and HT ⊂ T



Kleene Semantics K

Motivation

Kleene’s semantics was originally conceived to accommodate
undecided mathematical statements

It models a situation where the third logical value ⊥ intuitively
represents the notion of ”undecided” , or ”state of partial
ignorance”

A sentence is assigned a value ⊥ just in case it is not
known to be either true or false



Kleene Semantics K

For example imagine a detective trying to solve a murder

He may conjecture that Jones killed the victim

He cannot, at present, assign a truth value T or F to his
conjecture, so we assign the value ⊥

But it is certainly either true or false and hence ⊥
represents our ignorance rather then total unknown



Kleene Semantics K

Language
We adopt the same language as in a case of classical,
Łukasiewicz’s L, and Heyting H semantics, i.e.

L{¬,⇒,∪,∩}

Connectives
We assume, as before, that F <⊥< T
The connectives ¬,∪,∩ of K are defined as in L, H
semantics, i.e.

¬ ⊥=⊥, ¬F = T , ¬T = F

and for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F} we put

x ∪ y = max{x, y}

x ∩ y = min{x, y}



K Semantics: Connectives

K Implication

Kleene’s implication differ from L and H semantics

The K implication is defined by the same formula as the
classical, i.e. for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F}

x ⇒ y = ¬x ∪ y

The connectives truth tables for the K negation, disjunction
and conjunction are the same as the tables for L, H

K implication table is

⇒ F ⊥ T
F T T T
⊥ ⊥ ⊥ T
T F ⊥ T



K Semantics: Tautologies

Set of all K tautologies is

KT = {A ∈ F : |=K A }

Relationship between Ł, H, K, and classical semantics is

LT , KT, HT , KT, and KT ⊂ T

Proof Obviously |=L (a ⇒ a) and |= (a ⇒ a) We take v
such that v(a) =⊥ and evaluate in K semantics

v∗(a ⇒ a) = (v(a)⇒ v(a)) = (⊥⇒⊥) = ⊥

This proves that 6|=K (a ⇒ a) and hence

LT , KT and LT , KT



K Tautologies

The third property
KT ⊂ T

follows directly from the the fact that, as in the L , H case, if
we restrict the K connectives definitions functions to the
values T and F only we get the functions defining the
classical connectives

All together we have proved that the classical semantics
extends all three L , H and K semantics, i.e.

LT ⊂ T, HT ⊂ T, and K ⊂ T



L, H, K Decidability

Verification and Decidability

The following theorem justifies the correctness of the truth
table method of tautology verification for for L, H, K
semantics

Theorem 1

For any formula A of L{¬,⇒,∪,∩}, for any M ∈ {L,H,K}

|=M A if and only if vA |=M A

for all vA : VARA −→ {T ,⊥,F}

We also say that

|=M A if and only if all vA are restricted M models for A,

and M ∈ {L,H,K}



L, H, K Decidability

The following theorem proves the decidability of the tautology
verification procedure for L, H, K semantics

Theorem 2

For any formula A of L{¬,⇒,∪,∩}, one has to examine at
most 3VARA truth assignments vA : VARA −→ {F ,⊥,T }
in order to decide whether

|=M A or 6|=M A

i.e. the notion of M tautology is decidable

for any semantics M ∈ {L,H,K}

Proofs of Theorems 1, 2 are carried in the same way as in
case of classical semantics and are left as an exercise



K Tautologies Revisited

Exercise

We know that formulas

((a ∩ b)⇒ a), (a ⇒ (a ∪ b)), (a ⇒ (b ⇒ a))

are classical tautologies

Show that none of them is K tautology

Solution

Consider any v such that v(a) = v(b) =⊥

We evaluate (in short hand notation)

v∗(((a ∩ b)⇒ a) = (⊥ ∩ ⊥)⇒⊥=⊥⇒⊥=⊥



K Tautologies Revisited

v∗((a ⇒ (a ∪ b))) =⊥⇒ (⊥ ∪ ⊥) =⊥⇒⊥=⊥ and

v∗((a ⇒ (b ⇒ a))) = (⊥⇒ (⊥⇒⊥) =⊥⇒⊥=⊥

This proves that any v such that

v(a) = v(b) =⊥

is a counter model for all of them

We generalize this example and prove (by induction over the
degree of a formula) that a truth assignment v such that

v(a) =⊥ for all a ∈ VAR

is a counter model for any formula A of L{¬,⇒,∪,∩}



K Tautologies Revisited

We proved the following

Theorem

For any formula A of L{¬,⇒,∪,∩}, 6|=K A

In particular, the set of all K tautologies is empty, i.e.

KT = ∅

Observe that the Theorem does not invalidate relationships

LT , KT, HT , KT, and KT ⊂ T

between Ł, H, K, and classical semantics

They become now perfectly true statements

LT , ∅, T , ∅, and ∅ ⊂ T



K Tautologies Revisited

When we develop a new logic by defining its semantics we
must make sure for the semantics to be such that it has a non
empty set of its tautologies

This is why we adopted ( Set 2) the following definition

Definition

Given a language LCON and its semantics M

We say that the semantics M is well defined if and only if
its set MT of all tautologies is non empty, i.e. when

MT , ∅



K Tautologies Revisited

The semantics K is an example of a correctly and carefully
defined semantics that is not well defined in terms of the
above definition

Obviously the semantics L and H are well defined

We write is as a following separate fact



K Tautologies Revisited

Fact

The semantics L and H are well defined, but the Kleene
semantics K is not

K semantics also provides a justification for a need of
introducing a distinction between correctly and well defined
semantics

This is the main reason, beside its historical value, why it is
included here



Bochvar Semantics B

Motivation

Consider a semantic paradox given by a sentence:

this sentence is false.

If it is true it must be false,

if it is false it must be true.

According to Bochvar, such sentences are neither true of false
but rather paradoxical or meaningless



B Semantics

Bochvar’s semantics follows the principle that the third logical
value, denoted now by m (for miningless) is in some sense
”infectious”;

if one component of the formula is assigned the value m
then the formula is also assigned the value m

Bochvar also adds an one assertion operator S that asserts
the logical value of T and F , i.e.

SF = F , ST = T

S also asserts that meaningfulness m is false, i.e

Sm = F



B Semantics: Language

Language: we add a new one argument connective S and
get

LB = L{¬,S,⇒,∪,∩}

We denote by FB the set of all formulas of the language
LB and by F the set of formulas of the language
L{¬,⇒,∪,∩} common to the classical and all 3 valued logics
considered till now.

Observe that directly from the definition we have that

F ⊂ FB

The formula SA reads ”assert A”



B Semantics: Connectives

Negation

¬ F m T
T m F

Conjunction

∩ F m T
F F m F
m m m m
T F m T



B Semantics: Connectives

Disjunction

∪ F m T
F F m T
m m m m
T T m T

Implication

⇒ F m T
F T m T
m m m m
T F m T



B Semantics: Connectives, Tautology

Assertion

S F m T
F F T

For all other steps of definition of B semantics we follow the
standard established for the M semantics, as we did in all
previous cases

In particular the set of all B tautologies is

BT = {A ∈ F : |=B A }



B Semantics: Tautology

We get by easy evaluation that

|=B (Sa ∪ ¬Sa)

This proves that BT , ∅, what means that

B semantics is well defined



B Semantics: Tautology

Observe that not all formulas containing the connective S
are B tautologies, for example we have that

6|=B (a ∪ ¬Sa), 6|=B (Sa ∪ ¬a), 6|=B (Sa ∪ S¬a)

as any truth assignment v such that

v(a) = m

is a counter model for all of them, because

m ∪ x = m for all x ∈ {F ,m,T } and

Sm ∪ S¬m = F ∪ Sm = F ∪ F = F



B Semantics: Tautology

Let A be a formula that do not contain the assertion operator
S, i.e. the formula A ∈ F of the language L{¬,⇒,∪,∩}

Any v, such that v(a) = m for at least one variable in the
formula A ∈ F is a counter-model for that formula, i.e.

T ∩ BT = ∅

Observation

A formula A ∈ FB to be considered to be a B tautology
must contain the connective S in front of each variable
appearing in A



Chapter 3
Propositional Semantics: Classical and Many Valued

Slides Set 7

PART 10 M Tautologies, M Consistency, and M Equivalence
of Languages



M Tautologies Verification Methods

The classical truth tables verification method and classical
decidability theorem hold in a proper form in all of L. H, K
and B semantics

We didn’t discuss other classical tautologies verification
methods of substitution and generalization

We do it now in a general and unifying way for a special
case of an extensional semantics M

Namely, we assume now that the set LV of logical values of
the semantics M is finite



M Tautologies Verification Methods

We introduce, as we did in classical and other cases, a notion
of a restricted model vA and prove the following theorems

Truth TablesTheorem

For any formula A ∈ F ,

|=M A if and only if all vA are restricted models for A

M Decidability Theorem

For any formula A ∈ F , one has examine at most

|LV |VARA

truth assignments vA : VARA −→ LV in order to decide
whether

|=M A or 6|=M A

i.e. the notion of M tautology is decidable



M Truth Table Method

M Truth Table Method

A tautology verification method, called a M truth table
method consists of examination, for any formula A , all
possible M truth assignments restricted to A

By M Decidability Theorem we have to perform at most
|LV ||VARA | steps

If we find a restricted truth assignment which evaluates A to
a value different then T , we stop the process and give
answer

6|=M A

Otherwise we continue

If all M truth assignments restricted to A evaluate A to T ,
we give answer

|=M A



Example

Example

Consider a formula (¬¬a ⇒ a) and H semantics

We evaluate

v a v∗(A) computation v∗(A)

v1 T ¬¬T ⇒ T = ¬F ⇒ T = F ⇒ T = T T
v2 ⊥ ¬¬ ⊥⇒⊥= ¬F ⇒⊥= T ⇒⊥=⊥ ⊥

It proves that
6|=H (¬¬a ⇒ a)



Example

Example

Consider a formula (¬¬a ⇒ a) and L semantics

We evaluate

v a v∗(A) computation v∗(A)

v1 T ¬¬T ⇒ T = ¬F ⇒ T = F ⇒ T = T T
v2 ⊥ ¬¬ ⊥⇒⊥= ¬ ⊥⇒⊥=⊥⇒⊥= T T
v3 F ¬¬F ⇒ F = ¬T ⇒ F = F ⇒ F = T T

It proves that
|=L (¬¬a ⇒ a)



M Proof by Contradiction Method

M Proof by Contradiction Method

In this method, in order to prove that |=M A we assume that
6|=M A

We work with this assumption

If we get a contradiction, we have proved that 6|=M A is
impossible

We hence proved |=M A

If we do not get a contradiction, it means that the assumption
6|=M A is true, i.e. we have proved that A is not M tautology



M Proof by Contradiction Method

Observe that correctness of the M Proof by Contradiction
method is based on the classical reasoning

Its correctness, in turn, is based on the Reductio ad
Absurdum classical tautology

((¬A ⇒ (B ∩ ¬B))⇒ A)

The contradiction to be obtained depends on the properties
of the M semantics under consideration



M Substitution Method

Substitution Method

The Substitution Method allows us to obtain, as in a case of
classical semantics new M tautologies from formulas already
proven to be M tautologies

The following theorem establishes its correctness and its
proof is a straightforward modification of the classical one

Theorem

For any formulas A(a1, a2, ...an), A1, . . . , An ∈ F ,

If |=M A(a1, a2, ...an) and B = A(a1/A1, ..., an/An) , then
|=M B



M Generalization Method

M Generalization Method

In this method we represent, if it is possible, a given formula
A as a particular instance of some simpler and more
general formula B

We then use other verification methods to examine the
simpler formula B thus obtained

Remark

Observe that Proof by Contradiction, Substitution and
Generalization Methods are valid for any extensional
semantics M while the M Truth Table Method is valid only for
semantics M with finite the set LV of logical values



M Substitution Method

Example

In order to prove

|=L (¬¬(¬((a ∩ ¬b)⇒ ((c ⇒ (¬f ∪ d)) ∪ e))⇒
((a ∩¬b)∩ (¬(c ⇒ (¬f ∪d))∩¬e)))⇒ (¬((a ∩¬b)⇒ ((c ⇒
(¬f ∪ d)) ∪ e))⇒ ((a ∩ ¬b) ∩ (¬(c ⇒ (¬f ∪ d)) ∩ ¬e))))

we observe that that our formula is a particular case of a
more general formula

(¬¬A ⇒ A)

for A = (¬((a ∩ ¬b)⇒ ((c ⇒ (¬f ∪ d)) ∪ e))⇒
((a ∩ ¬b) ∩ (¬(c ⇒ (¬f ∪ d)) ∩ ¬e)))

As the next step we observe (or easily prove) that

|=L (¬¬A ⇒ A)



M Consistency

One of the most important notion in mathematics and hence
even in propositional logic is the notion of consistency and
inconsistency

We formulate them now for the general case of extensional
semantics M and examine them particular cases of L and H
semantics

Definition

A truth truth assignment v : VAR −→ LV is a M model for
the set G of formulas if and only if v |=M A for all
formulas A ∈ G. We denote it by v |=M G



M Consistency

Definition

A set G ⊆ F is called M consistent if and only if there is
v : VAR −→ LV , such that v |=M G

Otherwise the set G is called M inconsistent

Observe that the definition of inconsistency can be stated as
follows

Definition

A set G ⊆ F is called M inconsistent if and only if for all
v : VAR −→ LV there is a formula A ∈ G, such that v∗(A) , T



M Consistency Exercise

Example

The set
G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

is L, H, and K consistent

Proof

Consider a truth assignment v : VAR −→ {T ,⊥,F}. By the
definition of M consistency v must be such that

v∗(((a ∩ b)⇒ b)) = T , v∗((a ∪ b) = T), and v∗(¬a) = T

We want to prove that such v exists

Observe that ((a ∩ b)⇒ b) is classical tautology, so let’s try
to find v : VAR −→ {T ,F} such that
v∗((a ∪ b)) = T , v∗(¬a) = T

This holds when v(a) = F and hence F ∪ v(b) = T

This gives us v(a) = F and v(b) = T



M Consistency Exercise

We proved that the connectives of L, H, and K semantics
when restricted to the values T and F become classical
connectives

Hence any v such that v(a) = F and v(b) = T is a L, H,
and K model for G

The same argument prove the following general fact.

Fact
For any non empty set G of formulas of a language L{¬,⇒,∪,∩},

if G is consistent under classical semantics, then it is L, H,
and K consistent



M Consistency Exercise

Exercise

Give an example of an infinite set G of formulas of a
language

LB = L{¬,S,⇒,∪,∩}

that is L, H, K and B consistent

Solution

Observe that for the set G to be considered to be L, H, K
consistent its formulas must belong to the sub language
L{¬,⇒,∪,∩} of the language LB



M Consistency Exercise

Let’s take, for example a set

G = {(a ∪ ¬b) : a, b ∈ VAR}

G is infinite since the set VAR of propositional variables is
infinite

Consider any of the truth assignments

v : VAR −→ {F ,m,T } or v : VAR −→ {F ,⊥,T }

such that v(a) = T , v(b) = F

We have that

v∗(a ∪ b) = v(a) ∪ v(b) = T ∪ T = T

in all semantics L, H, K, B
This proves that G is L, H, K and B consistent



M Consistency Exercise

Exercise

Give an example of sets G1,G2 containing some formulas
that include the S connective of the language

LB = L{¬,S,⇒,∪,∩}

such that G1 is B consistent and G2 is B inconsistent

Solution

There are many such sets G, here are just two simple
examples

G1 = {(Sa ∪ S¬a), (a ⇒ ¬b), S¬(a ⇒ b), (b ⇒ Sa)}

G2 = {Sa, (a ⇒ b), (¬b∪, S¬a}



M Consistency Exercise

Consider

G1 = {(Sa ∪ S¬a), (a ⇒ ¬b), S¬(a ⇒ b), (b ⇒ Sa)}

and any truth assignment

v : VAR −→ {F ,m,T }

such that v(a) = T , v(b) = F (short hand notation)

We evaluate

(ST ∪ S¬T) = T ∪ T = T , (T ⇒ ¬F) = T , S¬(T ⇒ F) =
S¬F = T , (F ⇒ ST) = F ⇒ T = T

This proves that v is a B model for G1, and G1 is consistent



M Consistency Exercise

Consider now

G2 = {Sa, (a ⇒ b), (¬b∪, S¬a}

Assume that there is

v : VAR −→ {F ,m,T }

such that v |=B G2

In particular v∗(Sa) = T

By definition of B connectives this is possible if and only if
v(a) = T

Then v∗(S¬a) = SF = F

This contradicts the assumption v |=B G2

Hence G2 is B inconsistent



M Independence

Definition

Given a language L{¬,⇒,∪,∩}

A formula A ∈ F is called M independent from a set
G ⊆ F if and only if the sets

G ∪ {A } and G ∪ {¬A }

are both M consistent

I.e. when there are truth assignments v1, v2 such that

v1|=M G ∪ {A } and v2|=M G ∪ {¬A }.



M Independence Exercises

Given a set

G = {((a ∩ b)⇒ b), (a ∪ b), a}

1. Find a formula A that is L independent from a set G

2. Find a formula A that is H independent from a set G

3. Find an infinite number of that are L independent from a
set G

4. Find an infinite number of that are H independent from a
set G



M Logical Equivalence and M Equivalence of Languages

Given an extensional semantics M defined for a propositional
language

LCON

with the set F of formulas and a set LV , ∅ of logical
values

We extend now the classical notions of logical equivalence
and equivalence of languages to the semantics M



M Logical Equivalence

Definition

For any formulas A ,B ∈ F , we say that

A , B are M logically equivalent if and only if they
always have the same logical value assigned by the
semantics M, i.e. when

v∗(A) = v∗(B) for all v : VAR → LV

We write
A ≡M B

to denote that A ,B are M logically equivalent.



M Logical Equivalence

Remember that ≡M is not a logical connective

It is just a metalanguage symbol for saying ” formulas A ,B
are logically equivalent under the semantics M”

We use symbol ≡ for classical logical equivalence only



M Logical Equivalence

Exercise

The classical logical equivalence

(A ∪ B) ≡ (¬A ⇒ B)

holds for all formulas A, B and is defining ∪ in terms of
negation and implication

Show that it does not hold under L semantics, i.e. that there
are formulas A, B, such that

(A ∪ B) .L (¬A ⇒ B)



M Logical Equivalence

Solution
Consider a case when A = a and B = b
We have to show v∗((a ∪ b)) , v∗((¬a ⇒ b))
for some v : VAR → {F ,⊥,T }
Observe that v∗((a ∪ b)) = v∗((¬a ⇒ b)) for all
v : VAR → {F ,T }
So we have to check only truth assignments that involve ⊥
Let v be such that v(a) = v(b) =⊥
We evaluate v∗((a ∪ b) =⊥ ∪ ⊥=⊥ and
v∗((¬a ⇒ b)) = ¬ ⊥⇒⊥= F ⇒⊥= T .
This proves that

(a ∪ b) .L (¬a ⇒ b)

and hence we have proved

(A ∪ B) .L (¬A ⇒ B)



M Equivalence of Languages

We extend now, in a natural way, the classical notion
equivalence of languages

Definition

Given two languages

L1 = LCON1 and L2 = LCON2 for CON1 , CON2

We say that L1 and L2 are M logically equivalent and
denote it by

L1 ≡M L2

if and only if the following conditions C1, C2 hold

C1 For any formula A of L1, there is a formula B of L2,
such that A ≡M B

C2 For any formula C of L2, there is a formula D of L1,
such that C ≡M D



Exercise

Exercise

Prove that
L{¬,⇒} ≡L L{¬,⇒,∪}

Solution

Condition C1 holds because any formula of language L{¬,⇒}
is also a formula of L{¬,⇒,∪}
Condition C2 holds because the equivalence

(A ∪ B)≡L((A ⇒ B)⇒ B)


