LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

Chapter 3
Propositional Semantics: Classical and Many Valued

CHAPTER 3 SLIDES

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 1

PART 1 Formal Propositional Languages: Introduction
PART 2 Propositional Languages: Definitions
Slides Set 2
PART 3 Extensional Semantics M
Slides Set 3
PART 4 Classical Semantics

Slides Set 4

PART 5 Tautologies: Decidability and Verification Methods
PART 6 Sets of Formulas: Consistency and Independence

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 5

PART 7 Classical Tautologies and Logical Equivalences
PART 8 Definability of Connectives and Equivalence of Languages

Slides Set 6

PART 9 Many Valued Semantics: Łukasiewicz, Heyting, Kleene, and Bohvar

Slides Set 7

PART 10 M Tautologies, M Consistency, and M Equivalence of Languages

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 1

PART 1 Formal Propositional Languages: Introduction

Propositional Languages Introduction

We define now a general notion of a propositional language We show how to obtain, as specific cases, various languages for propositional classical logic and some non-classical logics We assume the following
All propositional languages contain an infinitely countable set of variables VAR, which elements are denoted by

$$
a, b, c, \ldots
$$

with indices, if necessary
All propositional languages share the general way their sets of formulas are formed

Propositional Languages

What distinguishes one propositional language from the other is the choice of its set of propositional connectives
We adopt a notation

$$
\mathcal{L}_{\mathrm{CON}}
$$

where CON stands for the set of propositional connectives
We use a notation

$$
\mathcal{L}
$$

when the set of connectives is fixed

Propositional Languages

For example, the language

$$
\mathcal{L}_{\{\neg\}}
$$

denotes a propositional language with only one connective \neg
The language

$$
\mathcal{L}_{\{\neg, \Rightarrow\}}
$$

denotes that a language with two connectives \neg and \Rightarrow adopted as propositional connectives
Remember: formal languages deal with symbols only and are also called symbolic languages

General Principles

General Principles

Symbols for connectives do have intuitive meaning
Semantics provides a formal meaning of the connectives and is defined separately
One language can have many semantics
Different logics can share the same language
For example, the language

$$
\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}
$$

is used as a propositional language of classical and intuitionistic logics, some many- valued logics, and we extend it to the language of many modal logics

General Principles

Several languages can share the same semantics
The classical propositional logic is the best example of such situation

Due to the functional dependency of classical logic connectives the languages:

$$
\begin{gathered}
\mathcal{L}_{\{\neg, \Rightarrow\}}, \quad \mathcal{L}_{\{\neg, \cap\}}, \quad \mathcal{L}_{\{\neg, \cup\}}, \quad \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}, \\
\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow, \Leftrightarrow\}}, \quad \mathcal{L}_{\{\uparrow\}}, \quad \mathcal{L}_{\{\downarrow\}}
\end{gathered}
$$

are all equivalent under the classical semantics We will define formally languages equivalency in the next chapter

General Principles

Propositional connectives have well established names and the way we read them, even if their semantics may differ

We use names negation, conjunction, disjunction and implication for $\neg, \cap, \cup, \Rightarrow$, respectively

The connective \uparrow is called alternative negation and $A \uparrow B$ reads: not both A and B

The connective \downarrow is called joint negation and $A \downarrow B$ reads: neither A nor B

Some Non-Classical Propositional Connectives

Other most common propositional connectives are modal connectives of possibility and necessity
Modal connectives are not extensional
Standard modal symbols are:
\square for necessity and \diamond for possibility
We will also use symbols C and I for modal connectives of possibility and necessity, respectively.
The formula $C A$, or $\diamond A$ reads: it is possible that A or A is possible
The formula $\mid A$, or $\square A$ reads: it is necessary that A or A is necessary

Modal Propositional Connectives

Symbols C and I are used for their topological meaning in the algebraic semantics of standard modal logics S4 and S5

In topology C is a symbol for a set closure operation and CA means a closure of a set A

I is a symbol for a set interior operation and IA denotes an interior of the set A

Some More Non-Extensional Connectives

Modal logics extend the classical logic

Modal logics languages are for example

$$
\mathcal{L}_{\{C, l, \neg, \cap, U, \Rightarrow\}} \quad \text { or } \quad \mathcal{L}_{\{\square, \diamond, \neg, \cap, \cup, \Rightarrow\}}
$$

Knowledge logics also extend the classical logic by adding a new one argument knowledge connective
The knowledge connective is often denoted by K

A formula $K A$ reads: it is known that A or A is known

A language of a knowledge logic is for example

$$
\mathcal{L}_{\{K, \neg, \cap, \cup, \Rightarrow\}}
$$

Some More Non-Extensional Connectives

Autoepistemic logics extend classical logic by adding an one argument believe connective, often denoted by B

A formula BA reads: it is believed that A
A language of an autoepistemic logic is for example

$$
\mathcal{L}_{\{B, \neg, \cap, \cup, \Rightarrow\}}
$$

Some More Non-Extensional Connectives

Temporal logics also extend classical logic by adding one argument temporal connectives
Some of temporal connectives are: F, P, G, H.
Their intuitive meanings are:
FA reads A is true at some future time,
PA reads A was true at some past time,
GA reads A will be true at all future times,
HA reads A has always been true in the past

Propositional Connectives

It is possible to create and there are connectives with more then one or two arguments

We consider here only one or two argument connectives

Chapter 3

Propositional Semantics: Classical and Many Valued

PART 2 Propositional Languages: Definitions

Propositional Language

Definition

A propositional language is a pair

$$
\mathcal{L}=(\mathcal{A}, \mathcal{F})
$$

where \mathcal{A}, \mathcal{F} are called an alphabet and a set of formulas, respectively
Definition
Alphabet is a set

$$
\mathcal{A}=V A R \cup C O N \cup P A R
$$

VAR, CON, PAR are all disjoint sets of propositional variables, connectives and parenthesis, respectively
The sets VAR, CON are non-empty

Alphabet Components

Alphabet Components

VAR is a countably infinite set of propositional variables We denote elements of VAR by

$$
a, b, c, d, \ldots
$$

with indices if necessary
$C O N \neq \emptyset$ is a finite set of propositional connectives

We assume that the set CON of connectives is non-empty,
i.e. that a propositional language always has at least one connective

Alphabet Components

Notation

We denote the language \mathcal{L} with the set of connectives CON by
$\mathcal{L}_{\text {CON }}$
Observe that propositional languages differ only on a choice of the connectives, hence our notation.

Alphabet Components

PAR is a set of auxiliary symbols
This set may be empty; for example in case of parenthesis free Polish notation.
Assumptions
We assume that PAR contains only 2 parenthesis and

$$
P A R=\{(,)\}
$$

We also assume that the set CON of connectives contains only unary and binary connectives, i.e.

$$
C O N=C_{1} \cup C_{2}
$$

where C_{1} is the set of all unary connectives, and C_{2} is the set of all binary connectives

Formulas Definition

Definition

The set \mathcal{F} of all formulas of a propositional language $\mathcal{L}_{\text {CON }}$ is build recursively from the elements of the alphabet \mathcal{A} as follows.
$\mathcal{F} \subseteq \mathcal{A}^{*}$ and \mathcal{F} is the smallest set for which the following conditions are satisfied
(1) $V A R \subseteq \mathcal{F}$
(2) If $A \in \mathcal{F}, \nabla \in C_{1}$, then $\nabla A \in \mathcal{F}$
(3) If $A, B \in \mathcal{F}, \circ \in C_{2}$ i.e \circ is a two argument connective, then

$$
(A \circ B) \in \mathcal{F}
$$

By (1) propositional variables are formulas and they are called atomic formulas
The set \mathcal{F} is also called a set of all well formed formulas (wff) of the language $\mathcal{L}_{\text {CON }}$

Set of Formulas

Observe that the the alphabet \mathcal{A} is countably infinite Hence the set \mathcal{A}^{*} of all finite sequences of elements of \mathcal{A} is also countably infinite
By definition $\mathcal{F} \subseteq \mathcal{A}^{*}$ and hence we get that the set of all formulas \mathcal{F} is also countably infinite
We state as separate fact

Fact

For any propositional language $\mathcal{L}=(\mathcal{A}, \mathcal{F})$, its sets of formulas \mathcal{F} is always a countably infinite set

We hence consider here only infinitely countable languages

Main Connectives and Direct Sub-Formulas

∇ is called a main connective of the formula $\nabla A \in \mathcal{F}$
A is called its direct sub-formula of ∇A

- is called a main connective of the formula $(A \circ B) \in \mathcal{F}$
A, B are called direct sub-formulas of $(A \circ B)$

Examples

E1 Main connective of $(a \Rightarrow \neg N b)$ is \Rightarrow
a, $\neg N b$ are direct sub-formulas
E2 Main connective of $N(a \Rightarrow \neg b)$ is N

$$
(a \Rightarrow \neg b) \quad \text { is the direct sub-formula }
$$

E3 Main connective of $\neg(a \Rightarrow \neg b)$ is \neg
$(a \Rightarrow \neg b)$ is the direct sub-formula

Sub-Formulas

We define a notion of a sub-formula in two steps:

Step 1

For any formulas A and B, the formula A is a proper sub-formula of B if there is sequence of formulas, beginning with A, ending with B, and in which each term is a direct sub-formula of the next
Step 2
A sub-formula of a given formula A is any proper sub-formula of A, or A itself

Sub-Formulas

Example

The formula $\quad(\neg a \cup \neg(a \Rightarrow b))$
has two direct sub-formulas: $\neg a, \quad \neg(a \Rightarrow b)$,
the direct sub-formulas of which are $a, \quad(a \Rightarrow b)$
The next direct sub-formulas are a, b
End of the process
The set of all proper sub-formulas of $(\neg a \cup \neg(a \Rightarrow b))$ is

$$
S=\{\neg a, \neg(a \Rightarrow b), a,(a \Rightarrow b), b\}
$$

The set of all its sub-formulas is

$$
S \cup\{(\neg a \cup \neg(a \Rightarrow b))\}
$$

Formula Degree

Definition

A degree of a formula as a number of occurrences of logical connectives in the formula.

Example

The degree of $(\neg a \cup \neg(a \Rightarrow b))$ is 4
The degree of $\neg(a \Rightarrow b))$ is 2
The degree of $\neg a$ is 1
The degree of a is 0

Formula Degree

Observation

The degree of any proper sub-formula of A must be one less than the degree of A

This is the central fact upon which mathematical induction arguments are based

Proofs of properties of formulas are usually carried by mathematical induction on their degrees

Exercise

Exercise 1

Consider a language $\quad \mathcal{L}=\mathcal{L}_{\{\neg, \diamond, \square, \cup, \cap, \Rightarrow\}}$ and a set

$$
\begin{aligned}
S=\{\diamond \neg a \Rightarrow & (a \cup b), \quad(\diamond(\neg a \Rightarrow(a \cup b))), \\
& \diamond \neg(a \Rightarrow(a \cup b))\}
\end{aligned}
$$

1. Determine which of the elements of S are, and which are not well formed formulas (wff) of \mathcal{L}
2. If a formula A is a well formed formula, i.e. $A \in \mathcal{F}$, determine its its main connective
3. If $A \notin \mathcal{F}$ write the corrected formula and then determine its main connective

Exercise 1 Solution

Solution

The expression $\diamond \neg a \Rightarrow(a \cup b)$ is not a well formed formula

The corrected formula is

$$
(\diamond \neg a \Rightarrow(a \cup b))
$$

The main connective is \Rightarrow
The formula says: "If negation of a is possible, then we have a or b"
Another corrected formula in is

$$
\diamond(\neg a \Rightarrow(a \cup b))
$$

The main connective is \diamond
The formula says: "It is possible that not a implies a or b"

Exercise 1 Solution

The expression $(\diamond(\neg a \Rightarrow(a \cup b)))$ is not a well formed formula
The correct formula is $\diamond(\neg a \Rightarrow(a \cup b))$
The main connective is \diamond
The formula says: "It is possible that not a implies a or b"
$\diamond \neg(a \Rightarrow(a \cup b)) \quad$ is a well formed formula
The main connective is \diamond
The formula says: "It is possible that it is not true that a implies a or b"

Exercise

Exercise 2

Given a formula:

$$
\diamond((a \cup \neg a) \cap b)
$$

1. Determine its degree
2. Write down all its sub-formulas

Solution

The degree is 4
All its sub-formulas are:

$$
\begin{gathered}
\diamond((a \cup \neg a) \cap b), \quad((a \cup \neg a) \cap b), \\
(a \cup \neg a), \quad \neg a, \quad b, \quad a
\end{gathered}
$$

Language Defined by a set S

Definition

Given a set S of formulas of a language $\mathcal{L}_{\text {CON }}$
Let $C S \subseteq C O N$ be the set of all connectives that appear in formulas of S
A language $\mathcal{L}_{\text {CS }}$
is called the language defined by the set of formulas S
Example
Let S be a set
$S=\{((a \Rightarrow \neg b) \Rightarrow \neg a), \square(\neg \diamond a \Rightarrow \neg a)\}$
All connectives appearing in the formulas in S are:

$$
\Rightarrow, \neg, \square, \diamond
$$

The language defined by the set S is

$$
\mathcal{L}_{\{\neg, \Rightarrow, \square, \Delta\}}
$$

Exercise

Exercise 3

Write the following natural language statement:
From the fact that it is possible that Anne is not a boy we deduce that it is not possible that Anne is not a boy or, if it is possible that Anne is not a boy, then it is not necessary that Anne is pretty
in the following two ways

1. As a formula
$A_{1} \in \mathcal{F}_{1} \quad$ of a language $\quad \mathcal{L}_{\{\neg, \square, \diamond, \cap, u, \Rightarrow\}}$
2. As a formula
$A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Exercise 3 Solution

1.We translate our statement into a formula
$A_{1} \in \mathcal{F}_{1}$ of the language $\mathcal{L}_{\{\neg, \square, \Delta, \cap, u, \Rightarrow\}}$ as follows
Propositional Variables: a,b
a denotes statement: Anne is a boy,
b denotes a statement: Anne is pretty
Propositional Modal Connectives: \square, \diamond
\diamond denotes statement: it is possible that
\square denotes statement: it is necessary that
Translation 1: the formula A_{1} is

$$
(\diamond \neg a \Rightarrow(\neg \diamond \neg a \cup(\diamond \neg a \Rightarrow \neg \square b)))
$$

Exercise 3 Solution

2. We translate our statement into a formula
$A_{2} \in \mathcal{F}_{2}$ of the language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ as follows

Propositional Variables: a,b

a denotes statement: it is possible that Anne is not a boy
b denotes a statement: it is necessary that Anne is pretty
Translation 2: the formula A_{2} is

$$
(a \Rightarrow(\neg a \cup(a \Rightarrow \neg b)))
$$

Exercise

Exercise 4

Write the following natural language statement:
For all natural numbers $n \in N$ the following implication holds:
if $n<0$, then there is a natural number m, such that it is possible that $n+m<0$, or it is not possible that there is a natural number m, such that $m>0$
in the following two ways

1. As a formula
$A_{1} \in \mathcal{F}_{1} \quad$ of a language $\quad \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$
2. As a formula
$A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \square, \Delta, \cap, \cup, \Rightarrow\}}$

Exercise 4 Solution

1. We translate our statement into a formula
$A_{1} \in \mathcal{F}_{1} \quad$ of the language $\quad \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ as follows
Propositional Variables: a, b
a denotes statement: For all natural numbers $n \in N$ the following implication holds: if $n<0$, then there is a natural number m, such that it is possible that $n+m<0$
b denotes a statement: it is not possible that there is a natural number m, such that $m>0$
Translation: the formula A_{1} is

$$
(a \cup \neg b)
$$

Exercise 4 Solution

2. We translate our statement into a formula $A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}}$ as follows

Propositional Variables: a, b

a denotes statement: For all natural numbers $n \in N$ the following implication holds: if $n<0$, then there is a natural number m, such that it is possible that $n+m<0$
b denotes a statement: there is a natural number m, such that $m>0$
Translation: the formula A_{2} is

$$
(a \cup \neg \diamond b)
$$

Exercise

Exercise 5

Write the following natural language statement S:
The following statement holds for all natural numbers $n \in N$:
if $n<0$, then there is a natural number m, such that it is possible that $n+m<0$, or it is not possible that there is a natural number m, such that $m>0$
in the following two ways

1. As a formula
$A_{1} \in \mathcal{F}_{1} \quad$ of a language $\quad \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$
2. As a formula
$A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \square, \Delta, \cap, \cup, \Rightarrow\}}$

Exercise 5 Solution

Solution

Observe that the statement \mathbf{S} is build as follows

$$
\forall_{n \in N} A(n),
$$

where $A(n)$ represents the statement " if $n<0$, then there is a natural number m, such that it is possible that $n+m<0$, or it is not possible that there is a natural number m , such that $m>0$ "

From a propositional point of view the statement $\forall_{n \in N} A(n)$ can only be represented by a propositional variable
in a case of both propositional languages $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ and $\mathcal{L}_{\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}}$

Exercise

Exercise 6

Write the following natural language statement:
From the fact that each natural number is greater than zero we deduce that it is not possible that Anne is a boy or, if it is possible that Anne is not a boy, then it is necessary that it is not true that each natural number is greater than zero in the following two ways

1. As a formula
$A_{1} \in \mathcal{F}_{1} \quad$ of a language $\quad \mathcal{L}_{\{\neg, \square, \Delta, \cap, \cup, \Rightarrow\}}$
2. As a formula
$A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Solution is similar to the Exercise 4

Chapter 3
Propositional Semantics: Classical and Many Valued

CHAPTER 3 SLIDES

Slides Set 2

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 2

PART 3 Extensional Semantics M

Extensional Semantics M - Introduction

Given a propositional language $\mathcal{L}_{C O N}$, the symbols for its connectives always have some intuitive meaning

A formal definition of the meaning of these symbols is called a semantics for the language $\mathcal{L}_{\text {CON }}$

A given language $\mathcal{L}_{\text {CON }}$ can have different semantics but we always define them in order to single out special formulas of the language, called tautologies

Tautologies are formulas of the language that are always true under a given semantics

Extensional Semantics M Introduction

We introduced in Chapter 2 an intuitive notion of a classical semantics, discussed its motivation and underlying assumptions

The classical semantics assumption is that it considers only two logical values. The other one is that all classical propositional connectives are extensional

We have also observed that in everyday language there are expressions such as "I believe that", "it is possible that", certainly", etc and that they are represented by some propositional connectives which are not extensional

Extensional Semantics M Introduction

Non-extensional connectives do not play any role in mathematics and so are not discussed in classical logic and will be studied separately

The extensional connectives are defined intuitively as such that the logical value of the formulas form by means of these connectives and certain given formulas depends only on the logical value(s) of the given formulas

Extensional Connectives Definition

We adopt a following formal definition of extensional connectives for a propositional language \mathcal{L} CON
Definition
Let $\mathcal{L}_{\text {CON }}$ be such that $C O N=C_{1} \cup C_{2}$, where C_{1}, C_{2} are the sets of unary and binary connectives, respectively
Let LV be a non-empty set of logical values
A connective $\nabla \in C_{1}$ or $\circ \in C_{2}$ is called extensional if it is defined by a respective function

$$
\nabla: L V \longrightarrow L V \text { or } \quad \circ: L V \times L V \longrightarrow L V
$$

Extensional Semantics M Introduction

A semantics \mathbf{M} for a language $\mathcal{L}_{\text {CON }}$ is called extensional provided all connectives in CON are extensional and its notion of tautology is defined terms of the connectives and their logical values

A semantics with a set of m logical values is called a m -valued extensional
The classical semantics is a special case of a 2-valued extensional semantics

Classical semantics defines classical logic with its set of classical propositional tautologies

Many of logics are defined by various extensional semantics with sets of logical values LV with more then 2 elements

Extensional Semantics M Introduction

The languages of many important logics like modal, multi-modal, knowledge, believe, temporal, contain connectives that are not extensional because they are defined by non-extensional semantics

The intuitionistic logic is based on the same language as the classical one and its Kripke Models semantics is not extensional

Defining a semantics for a given language means more then defining connectives

The ultimate goal of any semantics is to define the notion of its own tautology

Extensional Semantics M Introduction

In order to define which formulas of a given

$$
\mathcal{L}_{\mathrm{CON}}
$$

we want to to be tautologies under a given semantics M we assume that the set LV of logical values of \mathbf{M} always has a distinguished logical value, often denoted by T for "absolute" truth

We also can distinguish, and often we do, another special value F representing "absolute" falsehood

We will use these symbols T, F for "absolute" truth and falsehood

We may also use other symbols like 1,0 or others

Extensional Semantics M Introduction

The "absolute" truth value T serves to define a notion of a tautology (as a formula always "true")

Extensional semantics share not only the similar pattern of defining their (extensional) connectives, but also the method of defining the notion of a tautology

We hence define a general notion of an extensional semantics as sequence of steps leading to the definition of a tautology

Extensional Semantics M Introduction

Here are the steps leading to the definition of a tautology

Step 1 We define all extensional connectives of \mathbf{M}

Step 2 We define main component of the definition of a tautology, namely a function v that assigns to any formula $A \in \mathcal{F}$ its logical value from LV

The function v is often called a truth assignment and we will use this name

Extensional Semantics M Introduction

Step 3 Given a truth assignment v and a formula $A \in \mathcal{F}$, we define what does it mean that
v satisfies A
i.e. we define a notion saying that v is a model for A under semantics M

Step 4 We define a notion of tautology as follows

A is a tautology under semantics \mathbf{M} if and only if all truth assignments v satisfy A
i.e. that all truth assignments v are models for A

Extensional Semantics M Introduction

We use a notion of a model because it is an important, if not the most important notion of modern logic

The notion of a model is usually defined in terms of the notion of satisfaction

In classical propositional logic these notions are the same and the use of expressions
" v satisfies A" and "v is a model for A"
is interchangeable

This also is true for of any propositional extensional semantics and in particular it holds for m-valued semantics discussed later in this chapter

Extensional Semantics M Introduction

The notions of satisfaction and model are not interchangeable for predicate languages semantics

We already discussed intuitively the notion of model and satisfaction for predicate language in chapter 2

We will define them in full formality in chapter 8

The use of the notion of a model also allows us to adopt and discuss the standard predicate logic definitions of consistency and independence for propositional case

Extensional Semantics M Formal Definition

Definition

Any formal definition of an extensional semantics \mathbf{M} for a given language $\mathcal{L}_{\text {CON }}$ consists of specifying the following steps defining its main components
Step 1 We define a set LV of logical values, its distinguished value T , and define all connectives of $\mathcal{L}_{\text {CON }}$ to be extensional

Step 2 We define notion of a truth assignment and its extension

Step 3 We define notions of satisfaction, model, counter model

Step 4 We define notion of a tautology under the semantics M

Extensional Semantics M Formal Definition

What differs one semantics from the other is the choice of the set LV of logical values and definition of the connectives of $\mathcal{L}_{\text {CON }}$, that are defined in the first step below Step 1 We adopt a following formal definition of extensional connectives of $\mathcal{L}_{\text {CON }}$

Definition

Let $\mathcal{L}_{\text {CON }}$ be such that $C O N=C_{1} \cup C_{2}$, where C_{1}, C_{2} are the sets of unary and binary connectives, respectively
Let LV be a non-empty set of logical values
A connective $\nabla \in C_{1}$ or $\circ \in C_{2}$ is called extensional if it is defined by a respective function

$$
\nabla: L V \longrightarrow L V \text { or } \quad \circ: L V \times L V \longrightarrow L V
$$

M Truth Assignment Formal Definition

Step 2 We define a function called truth assignment and its extension in terms of the propositional connectives as defined in the Step 1

Definition

Let LV be the set of logical values of M and VAR the set of propositional variables of the language \mathcal{L} CON
Any function

$$
v: V A R \longrightarrow L V
$$

is called a truth assignment under semantics \mathbf{M}
We call it for short a M truth assignment

We use the term \mathbf{M} truth assignment and \mathbf{M} truth extension to stress that it is defined relatively to a given semantics \mathbf{M}

M Truth Extension Formal Definition

Definition

Given a M truth assignment $v: V A R \longrightarrow L V$
We define its extension v^{*} to the set \mathcal{F} of all formulas of
$\mathcal{L}_{\text {CON }}$ as any function

$$
v^{*}: \mathcal{F} \longrightarrow L V
$$

such that the following conditions are satisfied.
(i) for any $a \in V A R$,

$$
v^{*}(a)=v(a) ;
$$

(ii) For any connectives $\nabla \in C_{1}$, $\circ \in C_{2}$, and for any formulas $A, B \in \mathcal{F}$,

$$
v^{*}(\nabla A)=\nabla v^{*}(A) \text { and } v^{*}((A \circ B))=\circ\left(v^{*}(A), v^{*}(B)\right.
$$

We call the v^{*} the M truth extension

M Truth Extension Formal Definition

Remark

The symbols on the left-hand side of the equations

$$
v^{*}(\nabla A)=\nabla v^{*}(A) \text { and } v^{*}((A \circ B))=\circ\left(v^{*}(A), v^{*}(B)\right.
$$

represent connectives in their natural language meaning and the symbols on the right-hand side represent connectives in their semantical meaning as defined in the Step1

M Truth Extension Formal Definition

We use names " M truth assignment" and "M truth extension" to stress that we define them for the set of logical values of the semantics M

Notation Remark

For any function g , we use a symbol g^{*} to denote its extension to a larger domain
Mathematician often use the same symbol g for both a function g and its extension g^{*}

Satisfaction and Model

Step 3 The notions of satisfaction and model are interchangeable in M semantics and we define them as follows.

Definition

Given an \mathbf{M} truth assignment $v: V A R \longrightarrow L V$ and its \mathbf{M} truth extension v^{*}. Let $T \in L V$ be the distinguished logical truth value

We say that the truth assignment $v \quad \mathbf{M}$ satisfies a formula A if and only if $v^{*}(A)=T$
We write symbolically

$$
v \models_{\mathbf{M}} A
$$

Any truth assignment v, such that $v \models_{\mathrm{M}} A$ is called an M model for the formula A

Counter Model

Definition

Given an M truth assignment $v: V A R \longrightarrow L V$ and its M truth extension v^{*}. Let $T \in L V$ be the distinguished logical truth value

We say that the truth assignment v M does not satisfy a formula A if and only if $v^{*}(A) \neq T$
We write symbolically

$$
v \not \models_{\mathbf{M}} A
$$

Any truth assignment v, such that $v \forall_{\mathrm{M}} A$ is called an M counter model for the formula A

M Tautology

Step 4 We define the notion of M tautology as follows

Definition

A formula A is an M tautology if and only if
$v \models_{\mathrm{m}} A$, for all truth assignments $v: V A R \longrightarrow L V$
We denote it as

$$
\models_{\mathbf{M}} A
$$

We also say that
A is an M tautology if and only if all truth assignments $v: V A R \longrightarrow L V$ are M models for A

M Tautology

Observe that directly from definition of the M model we get the following equivalent form of the definition of tautology

Definition

A formula A is an M tautology if and only if
$v^{*}(A)=T$, for all truth assignments $v: V A R \longrightarrow L V$

We denote by MT the set of all tautologies under the semantic M, i.e.

$$
\mathbf{M T}=\left\{A \in \mathcal{F}: \models_{\mathbf{M}} A\right\}
$$

M Tautology

Obviously, when we develop a logic by defining its semantics we want the semantics to be such that the logic has a non empty set of its tautologies
We express it in a form of the following definition

Definition

Given a language $\mathcal{L}_{\text {CON }}$ and its extensional semantics \mathbf{M}
The semantics \mathbf{M} is well defined if and only if its set MT of all tautologies is non empty, i.e. when

$$
\text { MT } \neq \emptyset
$$

Extensional Semantics M

As the next steps we use the definitions established here to define and discuss in details the following particular cases of the extensional semantics \mathbf{M}

Sets 3, 4, 5: the classical semantics, tautologies, consistency, independence, equivalence of languages

Set 6: Some examples of many valued semantics

Set 7: M tautologies, M consistency, and M equivalence of languages

Extensional Semantics M

Many valued semantics have their beginning in the work of Łukasiewicz (1920). He was the first to define a 3-valued extensional semantics for a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ of classical logic, and called it a 3 - valued logic, for short

The other logics defined by extensional semantics followed and we will discuss some of them

In particular we present Heyting's 3-valued semantics as an introduction to the discussion of first ever semantics for the intuitionistic logic and some modal logics

Challenge Exercise

1. Define your own propositional language $\mathcal{L}_{\text {CON }}$ that contains also different connectives that the standard connectives $\neg, \cup, \cap, \Rightarrow$
Your language $\mathcal{L}_{\text {CON }}$ does not need to include all (if any!) of the standard connectives $\neg, \cup, \cap, \Rightarrow$
2. Describe intuitive meaning of the new connectives of your language
3. Give some motivation for your own semantic M
4. Define formally your own extensional semantics M for your language $\mathcal{L}_{\text {CON }}$
Write carefully all Steps 1-4 of the definition of your M

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 3

PART 4 Classical Semantics

Semantics- General Principles

Given a propositional language $\mathcal{L}=\mathcal{L}_{\text {CON }}$
Symbols for connectives of \mathcal{L} always have some intuitive meaning
Semantics provides a formal definition of the meaning of these symbols
It also provides a method of defining a notion of a tautology, i.e. of a formula of the language that is always true under the given semantics

Extensional Connectives

In Chapter 2 we described the intuitive classical propositional semantics and its motivation and introduced the following notion of extensional connectives
Extensional connectives are the propositional connectives that have the following property:
the logical value of the formulas form by means of these connectives and certain given formulas depends only on the logical value(s) of the given formulas
We also assumed that
All classical propositional connectives

$$
\neg, \cup, \cap, \Rightarrow, \Leftrightarrow, \uparrow, \downarrow
$$

are extensional

Non-Extensional Connectives

We have also observed the following

Remark

In everyday language there are expressions such as
"I believe that", "it is possible that", " certainly", etc....
They are represented by some propositional connectives which are not extensional

Non- extensional connectives do not play any role in mathematics and so are not discussed in classical logic and will be studied separately

General Definition of Extensional Connectives

We will adopt a following general definitions of extensional connectives and extensional semantics introduced in Lecture 2 to the case of classical semantics, so we repeat it here Definition
Let $\mathcal{L}_{\text {CON }}$ be such that $C O N=C_{1} \cup C_{2}$, where C_{1}, C_{2} are the sets of unary and binary connectives, respectively
Let LV be a non-empty set of logical values
A connective $\nabla \in C_{1}$ or $\circ \in C_{2}$ is called extensional if it is defined by a respective function

$$
\nabla: L V \longrightarrow L V \text { or } \quad \circ: L V \times L V \longrightarrow L V
$$

General Extensional Semantics Formal Definition

Definition

Any formal definition of an extensional semantics M consists of specifying the following steps
Step 1 We define a set LV of logical values, its distinguished value T , and define all connectives of $\mathcal{L}_{\text {CON }}$ to be extensional

Step 2 We define notion of a truth assignment and its extension

Step 3 We define notions of satisfaction, model, counter model

Step 4 We define notion of a tautology under the semantics M

Classical Semantics

We adopt Steps 1-4 of the definition of extensional semantics to the case of the classical propositional logic as follows

Step 1 We define the language, set of logical values, and define all connectives of the language to be extensional
The language is

$$
\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow, \Leftrightarrow\}}
$$

The set of logical values is

$$
L V=\{T, F\}
$$

The letters T, F stand as symbols of truth and —bf falsehood, respectively
We adopt T as the distinguished value

Classical Connectives

Definition of connectives

Negation \neg is a function:

$$
\neg:\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
\neg T=F, \quad \neg F=T
$$

Notation

We write the name of a two argument function (our connective) between the arguments, not in front as in function notation, i.e. we write for any binary connective \circ as for example $T \circ T=T$ instead of $\circ(T, T)=T$

Classical Connectives

Conjunction \cap is a function:

$$
\cap:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
\cap(T, T)=T, \quad \cap(T, F)=F, \quad \cap(F, T)=F, \quad \cap(F, F)=F
$$

We write it as

$$
T \cap T=T, \quad T \cap F=F, \quad F \cap T=F, \quad F \cap F=F
$$

Classical Connectives

Disjunction \cup is a function:

$$
\cup:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
\cup(T, T)=T, \quad \cup(T, F)=T, \quad \cup(F, T)=T, \quad \cup(F, F)=F
$$

We write it as

$$
T \cup T=T, \quad T \cup F=T, \quad F \cup T=T, \quad F \cup F=F
$$

Classical Connectives

Implication \Rightarrow is a function:

$$
\Rightarrow: \quad\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that
$\Rightarrow(T, T)=T, \quad \Rightarrow(T, F)=F, \quad \Rightarrow(F, T)=T, \quad \Rightarrow(F, F)=T$
We write it as

$$
T \Rightarrow T=T, \quad T \Rightarrow F=F, \quad F \Rightarrow T=T, \quad F \Rightarrow F=T
$$

Classical Connectives

Equivalence \Leftrightarrow is a function:

$$
\Leftrightarrow: \quad\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that
$\Leftrightarrow(T, T)=T, \quad \Leftrightarrow(T, F)=F, \quad \Leftrightarrow(F, T)=F, \quad \Leftrightarrow(T, T)=T$
We write it as

$$
T \Leftrightarrow T=T, \quad T \Leftrightarrow F=F, \quad F \Leftrightarrow T=F, \quad T \Leftrightarrow T=T
$$

Classical Connectives Truth Tables

We write the functions defining connectives in a form of tables, usually called the classical truth tables

Negation

$$
\begin{aligned}
& \neg T=F, \quad \neg F=T \\
& \neg \left\lvert\, \begin{array}{ll}
\mathrm{T} & \mathrm{~F} \\
\hline & \mathrm{~F} \\
\hline
\end{array}\right.
\end{aligned}
$$

Conjunction

$$
T \cap T=T, \quad T \cap F=F, \quad F \cap T=F, \quad F \cap F=F
$$

\cap	T	F
T	T	F
F	F	F

Classical Connectives Truth Tables

Disjunction

$$
\begin{aligned}
& T \cup T=T, \quad T \cup F=T, \quad F \cup T=T, \quad F \cup F=F \\
& \\
& \cup \\
& \cup \mathrm{~T} \\
& \hline \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~F} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~F}
\end{aligned}
$$

Implication

$$
\begin{aligned}
& T \Rightarrow T=T, \quad T \Rightarrow F=F, \quad F \Rightarrow T=T, \quad F \Rightarrow F=T \\
& \Rightarrow \\
& \Rightarrow \mathrm{~T} \\
& \hline \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~F} \\
& \mathrm{~T} \\
& \mathrm{~T} \\
& \mathrm{~T}
\end{aligned}
$$

Classical Connectives Truth Tables

Equivalence

$$
\left.\begin{aligned}
& T \Leftrightarrow T=T, T \Leftrightarrow F=F, F \Leftrightarrow T=F, F \Leftrightarrow F=T \\
& \\
& \Leftrightarrow
\end{aligned} \right\rvert\, \mathrm{T}, \mathrm{~F},
$$

This ends the Step1 of the classical semantics definition

Classical Connectives

Special Properties

Classical semantics is a special one. Classical connectives have some strong properties that often do not hold under other semantics, extensional or not

One of them is a property of definability of connectives
The other one is a functional dependency

These are basic properties one asks about any new semantics and hence a new logic being created

Definability of Connectives

We adopt the following definition

Definition

A connective $\circ \in C O N$ is definable in terms of some connectives $\circ_{1}, \circ_{2}, \ldots \circ_{n} \in C O N$ iff \circ is a certain function composition of functions $\circ_{1}, \circ_{2}, \ldots \circ_{n}$

Example

Classical implication \Rightarrow is definable in terms of \cup and \neg because \Rightarrow can be defined as a composition of functions \neg and \cup
More precisely, a function $h:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}$ defined by a formula

$$
h(x, y)=\cup(\neg x, y)
$$

is a composition of functions \neg and \cup and we prove that the implication function \Rightarrow is equal with h

Short Review: Equality of Functions

Definition

Given two sets A, B and functions f, g such that

$$
f: A \longrightarrow B \text { and } g: A \longrightarrow B
$$

We say that the functions f, g are equal and write is as $f=g$ iff $f(x)=g(x)$ for all elements $x \in A$
Example: Consider functions
$\Rightarrow:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}$ and $h:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}$
where \Rightarrow is classical implication and h is defined by the
formula $h(x, y)=\cup(\neg x, y)$
We prove that $\Rightarrow=h$ by evaluating that
$\Rightarrow(x, y)=h(x, y)=\cup(\neg x, y)$, for all $(x, y) \in\{T, F\} \times\{T, F\}$

Definability of Classical Implication

We re-write formula $\Rightarrow(x, y)=\cup(\neg x, y)$ in our adopted notation as

$$
x \Rightarrow y=\neg x \cup y \quad \text { for all } \quad(x, y) \in\{T, F\} \times\{T, F\}
$$

and call it a formula defining \Rightarrow in terms of \cup and \neg We verify correctness of the definition as follows

$$
\begin{array}{lll}
T \Rightarrow T=T \text { and } \neg T \cup T=F \cup T=T & \text { yes } \\
T \Rightarrow F=F & \text { and } \neg T \cup F=F \cup F=F & \text { yes } \\
F \Rightarrow F=T \text { and } \neg F \cup F=T \cup F=T & \text { yes } \\
F \Rightarrow T=T \text { and } \neg F \cup T=T \cup T=T & \text { yes }
\end{array}
$$

Definability of Connectives

Exercise 1

Find formulas defining \cap, \Leftrightarrow in terms of \cup and \neg

Exercise 2

Find formulas defining
$\Rightarrow, \cup, \Leftrightarrow$ in terms of \cap and \neg
Exercise 3
Find formulas defining $\cap, \cup, \Leftrightarrow$ in terms of \Rightarrow and \neg
Exercise 4
Find a formula defining \cup in terms of \Rightarrow alone

Two More Classical Connectives

Sheffer Alternative Negation \uparrow

$$
\uparrow:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
T \uparrow T=F, \quad T \uparrow F=T, \quad F \uparrow T=T, \quad F \uparrow F=T
$$

Łukasiewicz Joint Negation \downarrow

$$
\downarrow:\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
T \downarrow T=F, \quad T \downarrow F=F, \quad F \downarrow T=F, \quad F \downarrow F=T
$$

Definability of Connectives

Exercise 5

Show that the Sheffer Alternative Negation \uparrow defines all classical connectives $\neg, \Rightarrow, \cup, \cap, \Leftrightarrow$
Exercise 6
Show that Łukasiewicz Joint Negation \downarrow defines all classical connectives $\neg, \Rightarrow, \cup, \cap, \Leftrightarrow$
Exercise 7
Show that the two binary connectives: \downarrow and \uparrow suffice, each of them separately, to define all classical connectives, whether unary or binary

Functional Dependency of Connectives

Definition

Given a propositional language the set CON and its extensional semantics M. A property of defining the set CON in terms of its proper subset is called a functional dependency of connectives under M

Proving the property of functional dependency consists of identifying a proper subset $C O N_{0}$ of the set CON, such that each connective $\circ \in C O N-C O N_{0}$ is definable in terms of connectives from CON_{0}

Functional Dependency of Connectives

Proving functional dependency of a the set CON of a given language under a given semantics \mathbf{M} is usually a difficult, and often impossible task for many semantic

Functional dependency holds in the classical case and we express it as follows

Theorem

The set of connectives of the languages

$$
\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow, \Leftrightarrow\}} \quad \text { and } \quad \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow, \Leftrightarrow, \uparrow, \downarrow\}}
$$

is functionally dependent under the classical semantics.
The proof follows from Exercises 1-7

Semantics Definition: Truth Assignment

Step 2 We define the next components of the classical semantics in terms of the propositional connectives as defined in the Step 1 and a function called truth assignment

Definition

A truth assignment is any function

$$
v: V A R \longrightarrow\{T, F\}
$$

Observe that the domain of truth assignment is the set of propositional variables, i.e. the truth assignment is defined only for atomic formulas

Truth Assignment Extension

We extend now the truth assignment v to the set \mathcal{F} of all formulas

We do so in order to define formally the logical value for any formula $A \in \mathcal{F}$

The definition of the extension of the truth assignment v to the set \mathcal{F} follows the same pattern for the all extensional connectives, i.e. for all extensional semantics

Truth Assignment Extension v^{*} to \mathcal{F}

Definition

Given the truth assignment

$$
v: V A R \longrightarrow\{T, F\}
$$

We define its extension v^{*} to the set \mathcal{F} of all formulas of \mathcal{L} as any function

$$
v^{*}: \mathcal{F} \longrightarrow\{T, F\}
$$

such that the following conditions are satisfied
(i) for any a $\in V A R$

$$
v^{*}(a)=v(a)
$$

Truth Assignment Extension v^{*} to \mathcal{F}

(ii) and for any $A, B \in \mathcal{F}$ we put

$$
\begin{aligned}
v^{*}(\neg A) & =\neg v^{*}(A) ; \\
v^{*}((A \cap B)) & =\cap\left(v^{*}(A), v^{*}(B)\right) ; \\
v^{*}((A \cup B)) & =\cup\left(v^{*}(A), v^{*}(B)\right) ; \\
v^{*}((A \Rightarrow B)) & =\Rightarrow\left(v^{*}(A), v^{*}(B)\right) ; \\
v^{*}((A \Leftrightarrow B)) & =\Leftrightarrow\left(v^{*}(A), v^{*}(B)\right)
\end{aligned}
$$

The symbols on the left-hand side of the equations represent connectives in their natural language meaning and the symbols on the right-hand side represent connectives in their semantical meaning given by the classical truth tables

Extension v^{*} Definition Revisited

Notation

For binary connectives (two argument functions) we adopt a convention to write the symbol of the connective (name of the 2 argument function) between its arguments as we do in a case arithmetic operations
The condition (ii) of the definition of the extension v^{*} can be hence written as follows
(ii) for any $A, B \in \mathcal{F}$ we put

$$
\begin{aligned}
v^{*}(\neg A) & =\neg v^{*}(A) \\
v^{*}((A \cap B)) & =v^{*}(A) \cap v^{*}(B) \\
v^{*}((A \cup B)) & =v^{*}(A) \cup v^{*}(B) \\
v^{*}((A \Rightarrow B)) & =v^{*}(A) \Rightarrow v^{*}(B) \\
v^{*}((A \Leftrightarrow B)) & =v^{*}(A) \Leftrightarrow v^{*}(B)
\end{aligned}
$$

We will use this notation for the rest of the book

Truth Assignment Extension Example

Consider a formula

$$
((a \Rightarrow b) \cup \neg a))
$$

and a truth assignment v such that

$$
v(a)=T, \quad v(b)=F
$$

Observe that we did not specify $v(x)$ of any $x \in V A R-\{a, b\}$, as these values do not influence the computation of the logical value $v^{*}(A)$ of the formula A
We say: " v such that" - as we consider its values for the set $\{a, b\} \subseteq V A R$
Nevertheless, the domain of v is the set VAR of all variables and we have to remember that

Truth Assignment Extension Example

Given a formula A: $((a \Rightarrow b) \cup \neg a))$ and a truth assignment v such that $v(a)=T, \quad v(b)=F$

We calculate the logical value of the formula A as follows:
$\left.v^{*}(A)=v^{*}(((a \Rightarrow b) \cup \neg a))\right)=\cup\left(v^{*}\left((a \Rightarrow b), v^{*}(\neg a)\right)=\right.$
$\left.\left.\cup\left(\Rightarrow\left(v^{*}(a), v^{*}(b)\right), \neg v^{*}(a)\right)\right)=\cup(\Rightarrow(v(a), v(b)), \neg v(a))\right)=$
$\cup(\Rightarrow(T, F), \neg T))=\cup(F, F)=F$
We can also calculate it as follows:
$\left.v^{*}(A)=v^{*}(((a \Rightarrow b) \cup \neg a))\right)=v^{*}((a \Rightarrow b)) \cup v^{*}(\neg a)=$ $(v(a) \Rightarrow v(b)) \cup \neg v(a)=(T \Rightarrow F) \cup \neg T=F \cup F=F$
We write it in a short-hand notation as
$(T \Rightarrow F) \cup \neg T=F \cup F=F$

Semantics: Satisfaction Relation

Step 3 We define notions of satisfaction, model, counter model

Definition Let $v: V A R \longrightarrow\{T, F\}$ be a truth assignment We say that v satisfies a formula $A \in \mathcal{F}$ if and only if $v^{*}(A)=T$
Notation: $\quad v \vDash A$

Definition We say that v does not satisfy a formula $A \in \mathcal{F}$ if and only if $v^{*}(A) \neq T$
Notation: $\quad v \not \vDash A$

The relation \models is called a satisfaction relation

Semantics: Satisfaction Relation

Observe that $v^{*}(A) \neq T$ is is equivalent to the fact that $v^{*}(A)=F$ only in 2-valued semantics and so we also write

$$
v \not \models A \text { if and only if } v^{*}(A)=F
$$

Definition

We say that v falsifies A if and only if $v^{*}(A)=F$ Remark

For any formula $A \in \mathcal{F}$,
$v \notin A$ if and only if $\quad v$ falsifies the formula A

Examples

Example 1: Let $A=((a \Rightarrow b) \cup \neg a))$ and
$v: V A R \longrightarrow\{T, F\}$ be such that $v(a)=T, v(b)=F$
We calculate $v^{*}(A)$ using a short hand notation as follows

$$
(T \Rightarrow F) \cup \neg T=F \cup F=F
$$

By definitiom

$$
v \not \vDash((a \Rightarrow b) \cup \neg a))
$$

Observe that we did not need to specify the $v(x)$ of any $x \in V A R-\{a, b\}$, as these values do not influence the computation of the logical value $v^{*}(A)$

Examples

Example 2

Let $A=((a \cap \neg b) \cup \neg c)$ and $v: V A R \longrightarrow\{T, F\}$ be such that $v(a)=T, v(b)=F, v(c)=T$

We calculate $v^{*}(A)$ using a short hand notation as follows

$$
(T \cap \neg F) \cup \neg T=(T \cap T) \cup F=T \cup F=T
$$

By definition

$$
v \models((a \cap \neg b) \cup \neg c)
$$

Examples

Example 3

Let $A=((a \cap \neg b) \cup \neg c)$

Consider now $v_{1}: V A R \longrightarrow\{T, F\}$ such that $v_{1}(a)=T, v_{1}(b)=F, v_{1}(c)=T \quad$ and
$v_{1}(x)=F, \quad$ for all $\quad x \in \operatorname{VAR}-\{a, b, c\}$

Observe that
$v(a)=v_{1}(a), \quad v(b)=v_{1}(b), \quad v(c)=v_{1}(c)$
Hence we get

$$
v_{1} \models((a \cap \neg b) \cup \neg c)
$$

Examples

Example 4

Let $A=((a \cap \neg b) \cup \neg c)$

Consider now $\quad v_{2}: V A R \longrightarrow\{T, F\}$ such that

$$
\begin{aligned}
& v_{2}(a)=T, v_{2}(b)=F, v_{2}(c)=T, v_{2}(d)=T \text { and } \\
& v_{1}(x)=F, \quad \text { for all } x \in \operatorname{VAR}-\{a, b, c, d\}
\end{aligned}
$$

Observe that
$v(a)=v_{2}(a), v(b)=v_{2}(b), v(c)=v_{2}(c)$
Hence we get

$$
v_{2} \models((a \cap \neg b) \cup \neg c)
$$

Semantics: Model, Counter-Model

Definition:

Given a formula $A \in \mathcal{F}$ and $v: V A R \longrightarrow\{T, F\}$

Any v such that $v \vDash A$ is called a model for A

Any v such that $v \not \vDash A$ is called a counter model for A

Observe that all truth assignments v, v_{1}, v_{2} from our Examples 2, 3, 4 are models for the same formula A

Semantics: Tautology

Step 4 Classical tautology definition
Definition 1
For any formula $A \in \mathcal{F}$
A is a tautology if and only if $v^{*}(A)=T$, for all
$v: V A R \longrightarrow\{T, F\}$

The second definition uses the notion of satisfaction and model and the fact that in any extensional semantic these notions interchangeable

Definition 2

A is a tautology if and only if any $v: V A R \longrightarrow\{T, F\}$, $v \models A$, i.e. any v is a model for A
We write symbolically
for the statement " A is a tautology"

Semantics: not a tautology

Definition 1

A is not a tautology if and only if there is v, such that $v^{*}(A) \neq T$

Definition 2
A is not a tautology if and only if A has a counter-model

Notation

We write $\quad \notin A$ to denote the statement " A is not a tautology"

This ends the formal definition of the classical propositional semantics that follows the pattern for extensional semantics established in Lecture 2

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 4

PART 5 Tautologies: Decidability and Verification Methods

PART 6 Sets of Formulas: Consistency and Independence

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 4

PART 5 Tautologies: Decidability and Verification Methods

Classical Tautologies

There is a large number of basic and important propositional tautologies listed and discussed in Chapter 2

We assume that at this point everybody is familiar, or will familiarize with them if needed

Chapter 2 provides the motivation for classical approach to definition of tautologies as ways of describing correct rules of our mathematical reasoning

Chapter 2 also contains an informal definition of classical semantics and discusses some tautology verification methods

Classical Tautologies

Here is the formal definition of classical tautology
Definition
For any formula $A \in \mathcal{F}$
A is a tautology if and only if $v^{*}(A)=T$, for all truth assignments $v: V A R \longrightarrow\{T, F\}$. We denote it as $\vDash A$

Our goal now is to prove that the notion of classical tautology is decidable and to prove correctness of the tautology verification method presented in Chapter 2

Moreover we present here other tautology verification methods and prove their correctness

Decidability and Verification

We start now a natural question:
How do we verify whether a given formula $A \in \mathcal{F}$ is or is not a tautology?

The answer seems to be very simple

By tautology definition we have to examine all truth assignments $v: V A R \longrightarrow\{T, F\}$
If they all evaluate to T, we proved that $\models A$
If at least one evaluates to F, we found a counter model and proved $\vDash A$
The verification process is decidable, if the we have only a finite number of v to consider

Decidability and Verification

So now all we have to do is to count how many truth assignments there are, i.e. how many there are functions that map the set VAR of propositional variables into the set $\{T, F\}$ of logical values

In order to do so we need to introduce some standard notations and some known facts
For a given set X , we denote by $|X|$ the cardinality of X In a case of a finite set, it is called a number of elements of the set

We write $|X|=n$ to denote that X has n elements, for any $n \in N$

Cardinality of Sets

We have special names and notations for the cardinalities of infinite sets
In particular we write

$$
|X|=\aleph_{0}
$$

and say " cardinality of X is aleph zero," for any countably infinite set X, i.e. the set that has the same cardinality as natural numbers

We write

$$
|X|=C
$$

and say " cardinality of X is continuum" for any uncountable set X that has the same cardinality as real numbers

Counting Functions

Counting Functions Theorem 1

For any sets X, Y there are $|Y|^{|X|}$ functions that map the set X into Y

In particular, when the set X is countably infinite and the set Y is finite, then there are

$$
n^{\aleph_{0}}=C
$$

functions that map the set X into Y

Counting Truth Assignments

In our case of counting the truth assignments

$$
v: V A R \longrightarrow\{T, F\}
$$

we have that $|V A R|=\aleph_{0}$ and $|\{T, F\}|=2$
We know that $2^{N_{0}}=C$ and hence we get directly from Counting Functions Theorem 1 the following

Truth Assignments Theorem

There are uncountably many (exactly as many as real numbers) of all possible truth assignments $v: V A R \longrightarrow\{T, F\}$

Restricted Truth Assignments

To address and to answer these questions formally we first introduce some notations and definitions
Notation For any formula A, we denote by

$$
V A R_{A}
$$

a set of all variables that appear in A

Definition

Given $v: V A R \longrightarrow\{T, F\}$, any function

$$
v_{A}: V A R_{A} \longrightarrow\{T, F\}
$$

such that $v(a)=v_{A}(a)$ for all $a \in V A R_{A}$ is called a restriction of v to the formula A

Restricted Model

Restricted Model Theorem

For any formula A, any v, and its restriction v_{A}

$$
v \models A \quad \text { ij and only if } \quad v_{A} \models A
$$

Definition: Given a formula $A \in \mathcal{F}$, any function

$$
w: \quad V A R_{A} \longrightarrow\{T, F\}
$$

is called a truth assignment restricted to A

Definition Given a formula $A \in \mathcal{F}$
Any function

$$
w: \quad V_{A} \longrightarrow\{T, F\} \quad \text { such that } \quad w^{*}(A)=T
$$

is called a restricted model for A

Example

Example

$$
\begin{gathered}
A=((a \cap \neg b) \cup \neg c) \\
V A R_{A}=\{a, b, c\}
\end{gathered}
$$

Truth assignment restricted to A is any function:

$$
w: \quad\{a, b, c\} \longrightarrow\{T, F\} .
$$

We use the following theorem to count all possible truth assignment restricted to A

Counting Functions

Counting Functions Theorem 2

For any finite sets A and B,
if the set A has n elements and B has m elements, then there are m^{n} possible functions that map A into B

Proof by Mathematical Induction over m

Example

There are $2^{3}=8$ truth assignments w restricted to

$$
A=((a \Rightarrow \neg b) \cup \neg c)
$$

Counting Functions

Counting Restricted Truth

For any $A \in \mathcal{F}$, there are

$$
2^{\left|V A R_{A}\right|}
$$

possible truth assignments restricted to A

Example

Let $A=((a \cap \neg b) \cup \neg c)$
All w restricted to A are listed in the table below

w	a	b	c	$w^{*}(A)$ computation	$w^{*}(A)$
w_{1}	T	T	T	$(T \Rightarrow T) \cup \neg T=T \cup F=T$	T
w_{2}	T	T	F	$(T \Rightarrow T) \cup \neg F=T \cup T=T$	T
w_{3}	T	F	F	$(T \Rightarrow F) \cup \neg F=F \cup T=T$	T
w_{4}	F	F	T	$(F \Rightarrow F) \cup \neg T=T \cup F=T$	T
w_{5}	F	T	T	$(F \Rightarrow T) \cup \neg T=T \cup F=T$	T
w_{6}	F	T	F	$(F \Rightarrow T) \cup \neg F=T \cup T=T$	T
w_{7}	T	F	T	$(T \Rightarrow F) \cup \neg T=F \cup F=F$	F
w_{8}	F	F	F	$(F \Rightarrow F) \cup \neg F=T \cup T=T$	T

$w_{1}, w_{2}, w_{3}, w_{4} w_{5}, w_{6}, w_{8}$ are restricted models for A w_{7} is a restricted counter- model for A

Restrictions and Extensions

Given a formula A and $w: V A R_{A} \longrightarrow\{T, F\}$
Extension Definition
Any function v, such that $v: V A R \longrightarrow\{T, F\}$ and
$v(a)=w(a)$, for all $a \in V A R_{A}$ is called an extension of w to the set VAR of all propositional variables

Extension Fact

For any formula A, any w restricted to A, and any of its extensions v

$$
w \models A \quad \text { if and only if } \quad v \models A
$$

Tautology Decidability

Tautology Theorem

For any formula $A \in \mathcal{F}$,
$\vDash A \quad$ if and only if $\quad v_{A} \models A$ for all $v_{A}: V A R_{A} \longrightarrow\{T, F\}$

Proof Assume $\models A$
By tautology definition $v \models A$ for all $v: V A R \longrightarrow\{T, F\}$, hence $v_{A} \models A$ for all $v_{A}: V A R_{A} \longrightarrow\{T, F\}$ as $V A R_{A} \subseteq V A R$
Assume $v_{A} \models A$ for all $v_{A}: V A R_{A} \longrightarrow\{T, F\}$
Take any $v: V A R \longrightarrow\{T, F\}$. As $V A R_{A} \subseteq V A R$, any
$v: V A R \longrightarrow\{T, F\}$ is an extension of some v_{A}, i.e.
$v(a)=v_{A}(a)$ for all $a \in V A R_{A}$. By the extension definition we get that $v^{*}(A)=v_{A}{ }^{*}(A)=T$ and $v \models A$

Tautology Decidability

Directly from Tautology Theorem we get the proof of decidability of the notion of classical propositional tautology

Decidability Theorem

For any formula $A \in \mathcal{F}$, one has to examine at most

$$
2^{V A R_{A}}
$$

restricted truth assignments $V_{A}: V A R_{A} \longrightarrow\{F, T\}$ in order to decide whether

$$
\vDash A \quad \text { or } \quad \vDash A \text {, }
$$

i.e. the notion of classical tautology is decidable

We present now some tautologies verification methods

Tautology Verification Methods

Truth Table Method

The verification method, called a truth table method consists of examination, for any formula A, all possible truth assignments restricted to A

If we find a truth assignment which evaluates A to F, we stop and give answer: $\not \models A$
Otherwise we continue
If all truth assignments evaluate A to T,
we give we stop and answer: $\models A$

We usually list all restricted truth assignments v_{A} in a form of a truth table, hence the name of the method

Truth Table Method Example

Consider a formula A:

$$
(a \Rightarrow(a \cup b))
$$

We write the Truth Table:

w	a	b	$w^{*}(A)$ computation	$w^{*}(A)$
w_{1}	T	T	$(T \Rightarrow(T \cup T))=(T \Rightarrow T)=T$	T
w_{2}	T	F	$(T \Rightarrow(T \cup F))=(T \Rightarrow T)=T$	T
w_{3}	F	T	$(F \Rightarrow(F \cup T))=(F \Rightarrow T)=T$	T
w_{4}	F	F	$(F \Rightarrow(F \cup F))=(F \Rightarrow F)=T$	T

We evaluated that for all w restricted to A, i.e. all functions $w: V A R_{A} \longrightarrow\{T, F\}, \quad w \models A$
This proves

$$
\vDash(a \Rightarrow(a \cup b))
$$

Tautology Verification

Imagine now that A has for example 200 variables.
To find whether A is a tautology by using the Truth Table Method one would have to evaluate 200 variables long expressions - not to mention that one would have to list 2^{200} restricted truth assignments

We use now and later in case of many valued semantics a more elegant and faster method called Proof by Contradiction Method

Tautology - Proof by Contradiction Method

Proof by Contradiction Method

in order to verify whether $\models A$ one works backwards trying to find a truth assignment v which makes a formula A false

If we find one, it means that A is not a tautology
if we prove that it is impossible, i.e. we got a contradiction it means that the formula A is a tautology

Example

Let $A=(a \Rightarrow(a \cup b)$
Step 1: Assume that $\forall A$, i.e. we write in a shorthand notion $A=F$

Step 2: We use shorthand notation to analyze Strep 1
$(a \Rightarrow(a \cup b))=F$ if and only if $a=T \quad$ and $(a \cup b)=F$
Step 3: Analyze Step 2
$a=T$ and $(a \cup b)=F$, i.e. $(T \cup b)=F$
This is impossible by the definition of \cup
We got a contradiction, hence

$$
\models(a \Rightarrow(a \cup b))
$$

Substitution Example

Observe that exactly the same reasoning proves that for any formulas $A, B \in \mathcal{F}$,

$$
\models(A \Rightarrow(A \cup B))
$$

The following formulas are also tautologies
$((((a \Rightarrow b) \cap \neg c) \Rightarrow((((a \Rightarrow b) \cap \neg c) \cup \neg d))$ $(((a \Rightarrow b) \cap \neg c) \cup d) \cap \neg e) \Rightarrow(((a \Rightarrow b) \cap \neg c) \cup d) \cap \neg e) \cup((a \Rightarrow \neg e)))$
because they are particular cases - substitutions - of $(a \Rightarrow(a \cup b))$

Substitution Method

Substitution Method

This method allows us to obtain new tautologies from formulas already proven to be tautologies.

Example

We can obtain the formula

$$
((((a \Rightarrow b) \cap \neg c) \Rightarrow((((a \Rightarrow b) \cap \neg c) \cup \neg d)
$$

from a formula $(a \Rightarrow(a \cup b))$ by a proper substitutions (replacements) of more complicated formulas for the variables a and b in a formula $(a \Rightarrow(a \cup b))$

Substitution Method

We write

$$
A(a, b)=(a \Rightarrow(a \cup b))
$$

to denote that $(a \Rightarrow(a \cup b))$ is a formula A with two variables a and b

We denote by

$$
A\left(a / A_{1}, b / A_{2}\right)
$$

a result of a substitution of formulas A_{1}, A_{2} on a place of the variables a and b, everywhere where they appear in the formula $A(a, b)$

Substitution Example

Example

Given a formula $A(a, b)=(a \Rightarrow(a \cup b))$
Making a substitution s1

$$
A(a /((a \Rightarrow b) \cap \neg c), \quad b / \neg d)
$$

we get a formula

$$
((((a \Rightarrow b) \cap \neg c) \Rightarrow((((a \Rightarrow b) \cap \neg c) \cup \neg d))
$$

Substitution Example

Making a substitution s2

$$
A(a /((a \Rightarrow b) \cap \neg c), \quad b /((a \Rightarrow \neg e))
$$

we get a formula
$(((a \Rightarrow b) \cap \neg c) \cup d) \cap \neg e) \Rightarrow(((a \Rightarrow b) \cap \neg c) \cup d) \cap \neg e) \cup((a \Rightarrow \neg e)))$

We know $\models(a \Rightarrow(a \cup b))$
By correctness (to be proved) of the Substitution Method we know that also both formulas obtained by substitutions s1 and $\mathbf{s} \mathbf{2}$ are also tautologies

Substitution Correctness

Given a formula $A\left(a_{1}, a_{2}, \ldots a_{n}\right)$, and $A_{1}, \ldots A_{n}$ be any formulas We denote by

$$
A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)
$$

the result of simultaneous substitution (replacement) in $A\left(a_{1}, a_{2}, \ldots a_{n}\right)$ the variables $a_{1}, a_{2}, \ldots a_{n}$ by formulas $A_{1}, \ldots A_{n}$, respectively
Substitution Method correctness is established by the following Theorem
Correctness Theorem
For any formulas $A\left(a_{1}, a_{2}, \ldots a_{n}\right), A_{1}, \ldots, A_{n} \in \mathcal{F}$,
If $\models A\left(a_{1}, a_{2}, \ldots a_{n}\right)$ and $B=A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)$, then $\models B$

Proof of Substitution Correctness

Correctness Theorem

For any formulas $A, A_{1}, \ldots A_{n} \in \mathcal{F}$,
If $\models A\left(a_{1}, a_{2}, \ldots a_{n}\right)$ and $B=A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)$,
then $\models B$

Proof: Let $B=A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)$ and let $b_{1}, b_{2}, \ldots b_{m}$ be all propositional variables which occur in $A_{1}, \ldots A_{n}$
Given a truth assignment $v: V A R \longrightarrow\{T, F\}$, the values $v\left(b_{1}\right), v\left(b_{2}\right), \ldots v\left(b_{m}\right)$ define $v^{*}\left(A_{1}\right), \ldots v^{*}\left(A_{n}\right)$ and, in turn define $v^{*}\left(A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)\right)$

Proof of Substitution Method Correctness

Let now $w: V A R \longrightarrow\{T, F\}$ be a truth assignment such that $w\left(a_{1}\right)=v^{*}\left(A_{1}\right), w\left(a_{2}\right)=v^{*}\left(A_{2}\right), \ldots w\left(a_{n}\right)=v^{*}\left(A_{n}\right)$
Obviously, $v^{*}(B)=w^{*}(A)$

Since $\models A$ and $w^{*}(A)=T$, for all possible w, hence $v^{*}(B)=w^{*}(A)=T$ for all truth assignments w and we have $\vDash B$

Constructing New Tautologies

Observation

The Correctness Theorem establishes validity of use of the Substitution Method as a method of constructing new tautologies from given tautologies

Example

We know that $\models(a \cup \neg a)$ and $A(a)$ is $(a \cup \neg a)$

Making a substitution

$$
A(a /((a \Rightarrow b) \cap \neg c)
$$

we get a new tautology

$$
(((a \Rightarrow b) \cap \neg c) \cup((a \Rightarrow b) \cap \neg c))
$$

Generalization Method

Generalization Method consists of representing, if it is possible, a given formula A as a particular case of some much simpler and more general formula B

We then can use any other verification method to examine whether the representation B of the given formula A
is or is not a tautology

Generalization Method

Example

Given a formula

$$
((((a \Rightarrow b) \cap \neg c) \Rightarrow((((a \Rightarrow b) \cap \neg c) \cup \neg d))
$$

We represent it as a simple and more general formula

$$
(A \Rightarrow(A \cup B))
$$

for $A=((a \Rightarrow b) \cap \neg c)$ and $B=\neg d$
We then prove using, for example, Proof by Contradiction Method that

$$
\models(A \Rightarrow(A \cup B))
$$

Tautologies, Contradictions

Set of all Tautologies

$$
\mathbf{T}=\{A \in \mathcal{F}: \models A\}
$$

Definition

A formula $A \in \mathcal{F}$ is called a contradiction if it does not have a model. We denote it as

$$
=\mid A
$$

Directly from the definition we have that
$=\mid A \quad$ if and only if $\quad v \notin A$ for all $v: V A R \longrightarrow\{T, F\}$
Set of all Contradictions

$$
\mathbf{C}=\{A \in \mathcal{F}:=\mid A\}
$$

Examples

Tautology $\quad(A \Rightarrow(B \Rightarrow A))$
Contradiction $\quad(A \cap \neg A)$
Neither $\quad(a \cup \neg b)$

Consider the formula $(a \cup \neg b)$
Any v such that $v(a)=T$ is a model for $(a \cup \neg b)$, so it is not a contradiction

Any v such that $v(a)=F, v(b)=T$ is a counter-model for $(a \cup \neg b)$ so $\forall(a \cup \neg b)$

Simple Properties

Theorem 1 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.
(1) $A \in T$
(2) $\neg A \in \mathbf{C}$
(3) For all $v, \quad v \models A$

Theorem 2 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.
(1) $A \in C$
(2) $\neg A \in T$
(6) For all $v, \quad v \not \models A$

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 4

PART 6 Sets of Formulas: Consistency and Independence

Models for Sets of Formulas

Consider $\mathcal{L}=\mathcal{L}_{\text {CON }}$ and let $\mathcal{S} \neq \emptyset$ be any non empty set of formulas of \mathcal{L}, i.e.

$$
\mathcal{S} \subseteq \mathcal{F}
$$

We adopt the following definition.

Definition

A truth truth assignment $v: V A R \longrightarrow\{T, F\}$
is a model for the set \mathcal{S} of formulas if and only if
$v \models A$ for all formulas $A \in \mathcal{S}$
We write

$$
v \models \mathcal{S}
$$

to denote that v is a model for the set \mathcal{S} of formulas

Counter- Models for Sets of Formulas

Similarly, we define a notion of a counter-model

Definition

A truth assignment $v: V A R \longrightarrow\{T, F\}$
is a counter-model for the set $\mathcal{S} \neq \emptyset$ of formulas
if and only if
$v \not \models A \quad$ for some formula $A \in \mathcal{S}$
We write

$$
v \not \models \mathcal{S}
$$

to denote that v is a counter- model for the set \mathcal{S} of formulas

Restricted Model for Sets of Formulas

Remark that the set \mathcal{S} can be finite, or infinite
In a case when \mathcal{S} is a finite subset of formulas we define, as before, a notion of restricted model and restricted counter-model

Definition

Let \mathcal{S} be a finite subset of formulas and $v \models \mathcal{S}$
Any restriction of the model v to the domain

$$
V A R_{\mathcal{S}}=\bigcup_{A \in \mathcal{S}} V A R_{A}
$$

is called a restricted model for \mathcal{S}

Restricted Counter - Model for Sets of Formulas

Definition

Any restriction of a counter-model v of a set $\mathcal{S} \neq \emptyset$ of formulas to the domain

$$
V A R_{\mathcal{S}}=\bigcup_{A \in \mathcal{S}} V A R_{A}
$$

is called a restricted counter-model for \mathcal{S}

Example

Example

Let $\mathcal{L}=\mathcal{L}_{\{\neg, \cap\}}$ and let

$$
\mathcal{S}=\{a,(a \cap \neg b), c, \neg b\}
$$

We have $V A R_{\mathcal{S}}=\{a, b, c\}$ and atruth assignment $v: V A R_{S} \rightarrow\{T, F\} \quad$ such that
$v(a)=T, \quad v(c)=T, \quad v(b)=F$
is a restricted model for \mathcal{S}

A truth assignment $v: V A R_{\mathcal{S}} \rightarrow\{T, F\}$ such that $v(a)=F$ is a restricted counter-model for \mathcal{S}

Models for Infinite Sets

The set \mathcal{S} from the previous example was a finite set Some natural questions arise:
Q1 Give an example of an infinite set \mathcal{S} that has a model
Q2 Give an example of an infinite set \mathcal{S} that does not have model

Here are simple, natural examples

Q1 Example

Consider set \mathbf{T} of all tautologies
It is a countably infinite set and by definition of a tautology any v is a model for \mathbf{T}, i.e. $\quad v \models \mathbf{T}$

Models for Infinite Sets

Q2 Give an example of an infinite set \mathcal{S} that does not have model

Q2 Example

Consider set \mathbf{C} of all contradictions
It is a countably infinite set and
for any $\mathrm{v}, \quad v \nLeftarrow \mathrm{C}$ by definition of a contradiction, i.e. any any v is a counter-model for C

Models for Infinite Sets

Here are some more a bit more difficult natural questions

Q3 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathrm{T}$ and \mathcal{S} has a model

Q4 Give an example of an infinite set \mathcal{S}, such that
$\mathcal{S} \cap \mathbf{T}=\emptyset$ and \mathcal{S} has a model
Q5 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathrm{C}$ and \mathcal{S} does not have a model
Q6 Give an example of an infinite set \mathcal{S}, such that
$\mathcal{S} \neq \mathrm{C}$ and \mathcal{S} has a counter model
Q7 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \cap \mathbf{C}=\emptyset$ and \mathcal{S} has a counter model

Consistent Sets of Formulas

Definition

A set $\mathcal{G} \subseteq \mathcal{F}$ of formulas is called consistent
if and only if \mathcal{G} has a model, i.e. we say hat
$\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if
there is v such that $v \models \mathcal{G}$

Otherwise \mathcal{G} is called inconsistent

More Questions

Here are some more of natural questions

Q8 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathrm{T}$ and \mathcal{S} is consistent
Q9 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \cap \mathrm{T}=\emptyset$ and \mathcal{S} is consistent
Q10 Give an example of an infinite set \mathcal{S}, such that $\mathcal{S} \neq \mathrm{C}$ and \mathcal{S} is inconsistent

Q11 Give an example of an infinite set \mathcal{S}, such that
$\mathcal{S} \cap \mathbf{C}=\emptyset$ and \mathcal{S} is inconsistent

Independent Statements

Definition

A formula A is called independent from a set $\mathcal{G} \subseteq \mathcal{F}$
if and only if there are truth assignments v_{1}, v_{2} such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

i.e. we say that a formula A is independent if and only if
$\mathcal{G} \cup\{A\}$ and $\mathcal{G} \cup\{\neg A\}$ are consistent

Example

Example

Given a set

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Show that \mathcal{G} is consistent

Solution

We have to find $v: V A R \longrightarrow\{T, F\}$ such that

$$
v \models \mathcal{G}
$$

It means that we need to find v such that

$$
v^{*}((a \cap b) \Rightarrow b)=T, \quad v^{*}(a \cup b)=T, \quad v^{*}(\neg a)=T
$$

Consistent: Example

To prove hat \mathcal{G} is consistent we have to consider the following case

1. Formula $((a \cap b) \Rightarrow b)$ is a tautology, i.e.
$v^{*}((a \cap b) \Rightarrow b)=T \quad$ for any v and we do not need to consider it anymore.
2. Formula $\neg a=T$ (we use shorthand notation) if and only if $a=F$ so we get that v must be such that $v(a)=F$
3. We want $(a \cup b)=T$ but v is such that $v(a)=F$ so $(a \cup b)=F \cup b=T)$ if and only if $b=T$
This means that for any $v: V A R \longrightarrow\{T, F\}$ such that $v(a)=F, \quad v(b)=T$

$$
v \models \mathcal{G}
$$

and we proved that \mathcal{G} is consistent

Independent: Example

Example

Show that a formula $A=((a \Rightarrow b) \cap c)$ is independent of

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Solution

We construct $v_{1}, v_{2}: V A R \longrightarrow\{T, F\}$ such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

We have just proved that any $v: V A R \longrightarrow\{T, F\}$ such that $v(a)=F, \quad v(b)=T$ is a model for \mathcal{G}

Independent: Example

Take as v_{1} any truth assignment such that
$v_{1}(a)=v(a)=F, \quad v_{1}(b)=v(b)=T, \quad v_{1}(c)=T$
We evaluate $v_{1}{ }^{*}(A)=v_{1}{ }^{*}((a \Rightarrow b) \cap c)=(F \Rightarrow T) \cap T=T$
This proves that $v_{1} \models \mathcal{G} \cup\{A\}$

Take as v_{2} any truth assignment such that
$v_{2}(a)=v(a)=F, \quad v_{2}(b)=v(b)=T, \quad v_{2}(c)=F$
We evaluate $\left.v_{2}{ }^{*}(\neg A)=v_{2}{ }^{*}(\neg(a \Rightarrow b) \cap c)\right)=T \cap T=T$
This proves that $v_{2} \models \mathcal{G} \cup\{\neg A\}$

It ends the proof that A is independent of \mathcal{G}

Not Independent: Example

Example

Show that a formula $A=(\neg a \cap b)$ is not independent of

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Solution

We have to show that it is impossible to construct v_{1}, v_{2} such that

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

Observe that we have just proved that any v such that $v(a)=F$, and $v(b)=T$ is the only model restricted to the set of variables $\{a, b\}$ for \mathcal{G} and $\{a, b\}=V A R_{A}$ So we have to check now if it is possible $\quad v \models A$ and $v \models \neg A$

Not Independent: Example

We have to evaluate $v^{*}(A)$ and $v^{*}(\neg A)$ for
$v(a)=F$, and $v(b)=T$
$v^{*}(A)=v^{*}((\neg a \cap b)=\neg v(a) \cap v(b)=\neg F \cap T=T \cap T=T$
and so $v \models A$
$v^{*}(\neg A)=\neg v^{*}(A)=\neg T=F$
and so $v \not \vDash \neg A$
This end the proof that A is not independent of \mathcal{G}

Independent: Another Example

Example

Given a set $\mathcal{G}=\{a,(a \Rightarrow b)\}$, find a formula A that is independent from \mathcal{G}
Observe that v such that $v(a)=T, v(b)=T$ is the only restricted model for \mathcal{G}
So we have to come up with a formula A such that there are two different truth assignments, v_{1} and v_{2}, and

$$
v_{1} \models \mathcal{G} \cup\{A\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg A\}
$$

Let's consider $A=c$, then $\mathcal{G} \cup\{A\}=\{a,(a \Rightarrow b), c\}$
A truth assignment v_{1}, such that $v_{1}(a)=T, v_{1}(b)=T$ and $v_{1}(c)=T$ is a model for $\mathcal{G} \cup\{A\}$
Likewise for $\mathcal{G} \cup\{\neg A\}=\{a,(a \Rightarrow b), \neg c\}$
Any v_{2}, such that $v_{2}(a)=T, v_{2}(b)=T$ and $v_{2}(c)=F$ is a model for $\mathcal{G} \cup\{\neg A\}$ and so the formula A is independent

Challenge Problem

Challenge Problem

Find an infinite number of formulas that are independent of a set

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

Challenge Problem Solution

This my solution - there are many others- this one seemed to me the most simple

Solution

We just proved that any v such that $v(a)=F, v(b)=T$ is the only model restricted to the set of variables $\{a, b\}$ and so all other possible models for \mathcal{G} must be extensions of v

Challenge Problem Solution

We define a countably infinite set of formulas (and their negations) and corresponding extensions of v (restricted to to the set of variables $\{a, b\}$) such that $v \models \mathcal{G}$ as follows Observe that all extensions of v restricted to to the set of variables $\{a, b\}$ have as domain the infinitely countable set

$$
V A R=\left\{a_{1}, a_{2}, \ldots, a_{n} \ldots\right\}
$$

We take as an infinite set of formulas in which every formula independent of \mathcal{G} the set of atomic formulas

$$
\mathcal{F}_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n} \ldots\right\}-\{a, b\}
$$

Challenge Problem Solution

Let $c \in \mathcal{F}_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n} \ldots\right\}-\{a, b\}$
We define truth assignments $v_{1}, v_{2}: V A R \longrightarrow\{T, F\}$ such that

$$
v_{1} \models \mathcal{G} \cup\{c\} \text { and } \quad v_{2} \models \mathcal{G} \cup\{\neg c\}
$$

as follows
$v_{1}(a)=v(a)=F, \quad v_{1}(b)=v(b)=T$ and $v_{1}(c)=T$ for any $c \in \mathcal{F}_{0}$
$v_{2}(a)=v(a)=F, \quad v_{2}(b)=v(b)=T$ and $v_{2}(c)=F$ for any $c \in \mathcal{F}_{0}$

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 5

PART 7 Classical Tautologies and Logical Equivalences PART 8 Definability of Connectives and Equivalence of Languages

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 5

PART 7 Classical Tautologies and Logical Equivalences

Classical Tautologies and Equivalence of Languages

We present here as a first step a set of most widely used classical tautologies. We will use them, in one form or other, in our investigations in future chapters
An extended list of tautologies is presented in Chapter 2

As the second step we define notions of a logical equivalence and an equivalence of languages
We prove that all of the languages

$$
\mathcal{L}_{\{\neg \Rightarrow\}}, \mathcal{L}_{\{\neg \cap\}}, \mathcal{L}_{\{\neg \mathrm{u}\}}, \mathcal{L}_{\{\neg, \cap, \mathrm{U}, \Rightarrow\}}, \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow, \Leftrightarrow\}}, \mathcal{L}_{\{\uparrow\}}, \mathcal{L}_{\{\downarrow\}}
$$

are equivalent under classical semantics and hence can be used (and are) as different languages for classical propositional logic

Classical Tautologies

Some Tautologies

For any $A, B \in \mathcal{F}$, the following formulas are tautologies

Implication and Negation

$$
\begin{aligned}
& (A \Rightarrow(B \Rightarrow A)), \quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C))), \\
& ((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B)), \quad(A \Rightarrow A), \quad(B \Rightarrow \neg \neg B), \\
& (\neg \neg B \Rightarrow B), \quad(\neg A \Rightarrow(A \Rightarrow B)), \quad(A \Rightarrow(\neg B \Rightarrow \neg(A \Rightarrow B))), \\
& ((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B)), \quad((\neg A \Rightarrow A) \Rightarrow A)
\end{aligned}
$$

Classical Tautologies

Disjunction, Conjunction

$$
\begin{gathered}
(A \Rightarrow(A \cup B)), \quad(B \Rightarrow(A \cup B)), \quad((A \cap B) \Rightarrow A), \\
((A \cap B) \Rightarrow A), \quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C))), \\
(((A \cap B) \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C)), \\
(\neg(A \cap B) \Rightarrow(\neg A \cup \neg B)), \quad((\neg A \cup \neg B) \Rightarrow \neg(A \cap B)), \\
((\neg A \cup B) \Rightarrow(A \Rightarrow B)), \quad((A \Rightarrow B) \Rightarrow(\neg A \cup B)), \\
(A \cup \neg A)
\end{gathered}
$$

Classical Tautologies

Contraposition (1)

$$
((A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow \neg A)), \quad((B \Rightarrow A) \Leftrightarrow(\neg A \Rightarrow \neg B))
$$

Contraposition (2)

$$
((\neg A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow A)), \quad((A \Rightarrow \neg B) \Leftrightarrow(B \Rightarrow \neg A))
$$

Double Negation

$$
(\neg \neg A \Leftrightarrow A)
$$

Logical Equivalences

Logical equivalence is a very useful notion to use when we want to obtain new formulas or new tautologies, if needed, on a base of some already known in a way that guarantee preservation of the logical value of the initial formula

We say that two formulas formulas A, B are logically equivalent if they always have the same logical value. We write it symbolically as

$$
A \equiv B
$$

We have to remember that the symbol \equiv is not a logical connective. It is a metalanguage symbol for saying " A, B are logically equivalent"

Logical Equivalences

\equiv is a very useful symbol. It says that two formulas always have the same logical value, hence can be used in the same way we use the equality symbol $=$. Formally we define it as follows.

Definition

For any formulas $A, B \in \mathcal{F}$,
$A \equiv B$ if and only if $v^{*}(A)=v^{*}(B)$ for all $v: V A R \rightarrow\{T, F\}$
The following property follows directly from the definition

Property

For any formulas $A, B \in \mathcal{F}$,

$$
A \equiv B \quad \text { if and only if } \models(A \Leftrightarrow B)
$$

Logical Equivalences

We, for example write the laws of contraposition, and the laws of double negation as logical equivalences as follows E - Contraposition (1)

$$
(A \Rightarrow B) \equiv(\neg B \Rightarrow \neg A), \quad(B \Rightarrow A) \equiv(\neg A \Rightarrow \neg B)
$$

E - Contraposition (2)

$$
(\neg A \Rightarrow B) \equiv(\neg B \Rightarrow A), \quad(A \Rightarrow \neg B) \equiv(B \Rightarrow \neg A)
$$

E-Double Negation

$$
\neg \neg A \equiv A
$$

Use of Logical Equivalence

We use logical equivalences to obtain new Laws from some already known (proved). For example, we obtain new Law of Contraposition from the E-Contraposition (1) Law and the E - Double Negation Law as follows

$$
(\neg A \Rightarrow B) \equiv(\neg B \Rightarrow \neg \neg A) \equiv(\neg B \Rightarrow A)
$$

We proved a new Law of Contraposition (1):

$$
\begin{gathered}
(\neg A \Rightarrow B) \equiv(\neg B \Rightarrow A) \\
(A \Rightarrow \neg B) \equiv(\neg \neg B \Rightarrow \neg A) \equiv(B \Rightarrow \neg A)
\end{gathered}
$$

We proved another new Law of Contraposition (2):

$$
(A \Rightarrow \neg B) \equiv(B \Rightarrow \neg A)
$$

Substitution Theorem

The correctness of the above procedure of proving new Laws of equivalences from the known ones is established by the following theorem

Substitution Theorem

Let a formula B_{1} be obtained from a formula A_{1} by a substitution of a formula B for one or more occurrences of a sub-formula A of A_{1}, what we denote as

$$
B_{1}=A_{1}(A / B)
$$

Then the following holds

$$
\text { If } A \equiv B, \text { then } A_{1} \equiv B_{1}
$$

Use of Substitution Theorem

Example

Let A_{1} be a formula $(C \cup D)$, i.e.

$$
A_{1}=(C \cup D)
$$

and let $B=\neg \neg C, \quad A=C$
We get

$$
B_{1}=A_{1}(C / B)=A_{1}(C / \neg \neg C)=(\neg \neg C \cup D)
$$

By Double Negation Law

$$
\neg \neg C \equiv C \quad \text { i.e. } A \equiv B
$$

So we get by Substitution Theorem that

$$
(C \cup D) \equiv(\neg \neg C \cup D)
$$

Use of Substitution Theorem

Exercise

Transform formula a

$$
((C \Rightarrow \neg B) \Rightarrow(B \cup C))
$$

into its logically equivalent formula without implication

Hint: use the the Substitution Theorem and the already known Definability of Connectives equivalence

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

Remark that it is not the only one equivalence we can use.

Use of Substitution Theorem

We transform via the Substitution Theorem a formula

$$
((C \Rightarrow \neg B) \Rightarrow(B \cup C))
$$

into its logically equivalent formula as follows

$$
\begin{aligned}
&((C\Rightarrow \neg B) \Rightarrow(B \cup C)) \equiv(\neg(C \Rightarrow \neg B) \cup(B \cup C))) \\
&\equiv \neg(\neg C \cup \neg B) \cup(B \cup C)) \text { and we get that } \\
&((C \Rightarrow \neg B) \Rightarrow(B \cup C)) \equiv(\neg(\neg C \cup \neg B) \cup(B \cup C))
\end{aligned}
$$

Observe that if the formulas B, C contain \Rightarrow as logical connective we can continue this process until we obtain a logically equivalent formula not containing \Rightarrow at all

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 5

PART 8 Definability of Connectives and Equivalence of Languages

Definability of Connectives Equivalences

The next set of equivalences correspond the notion of definability of connectives discussed earlier in the chapter For example, a tautology

$$
\models((A \Rightarrow B) \Leftrightarrow(\neg A \cup B))
$$

makes it possible to define implication in terms of disjunction and negation. We state it in a form of a logical equivalence and call it as follows
Definability of Implication in terms of negation and disjunction

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

Definability of Connectives Equivalences

Observation

The direct proof of Definability of Connectives equivalences presented here follow directly from the definability formulas developed earlier in the chapter in the the proof of the Definability of Connectives Theorem, hence the names

We use the notion of logical equivalence instead of the tautology notion because it makes the manipulation of formulas much easier

Definability of Connectives Equivalences

Example

Let $A=((C \Rightarrow \neg B) \Rightarrow(B \cup C))$
We use the Definability of Implication equivalence to transform A into a logically equivalent formula not containing \Rightarrow as follows

$$
\begin{aligned}
((C \Rightarrow \neg B) & \Rightarrow(B \cup C)) \equiv(\neg(C \Rightarrow \neg B) \cup(B \cup C))) \\
& \equiv(\neg(\neg C \cup \neg B) \cup(B \cup C)))
\end{aligned}
$$

and hence

$$
((C \Rightarrow \neg B) \Rightarrow(B \cup C)) \equiv(\neg(\neg C \cup \neg B) \cup(B \cup C)))
$$

Definability of Connectives Equivalences

Definability of Implication equivalence

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

allows us, via the Substitution Theorem, replace any sub-formula of the form $(A \Rightarrow B)$ of any formula by a formula

$$
(\neg A \cup B)
$$

Hence it allows us to recursively transform a given formula containing implication into an logically equivalent formula that does not contain implication but contains negation and disjunction instead

Equivalence of Languages

The Substitution Theorem and the equivalence

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

let us transform a language that contains implication into a language that does not contain the implication, but contains negation and disjunction instead
Observe that we use this equivalence recursively, i.e. if the formulas A, B contain \Rightarrow as logical connective we continue this process until we obtain a logically equivalent formula not containing \Rightarrow at all

Equivalence of Languages

Example

The language $\mathcal{L}_{1}=\mathcal{L}_{\{\neg, \cap, \Rightarrow\}}$ becomes a language $\mathcal{L}_{2}=\mathcal{L}_{\{\neg, \cap, \cup\}}$ such that all its formulas are logically equivalent to the formulas of the language \mathcal{L}_{1}
We write it as the following condition

C1: For any formula A of a language \mathcal{L}_{1}, there is a formula B of the language \mathcal{L}_{2}, such that $A \equiv B$.

Connectives Elimination

In order to be able to transform any formula of a language containing disjunction (and some other connectives) into a language with negation and implication (and some other connectives), but without disjunction we use the following logical equivalence

Definability of Disjunction in terms of negation and implication

$$
(A \cup B) \equiv(\neg A \Rightarrow B)
$$

Connectives Elimination

Example

Consider a formula $\quad C=((A \cup B) \cap \neg A)$
We transform C into its logically equivalent form not containing \cup but containing \Rightarrow as follows

$$
((A \cup B) \cap \neg A) \equiv((\neg A \Rightarrow B) \cap \neg A)
$$

The Definability of Disjunction equivalence allows us transform for example a language

$$
\mathcal{L}_{2}=\mathcal{L}_{\{\neg, \cap, \cup\}}
$$

into a language

$$
\mathcal{L}_{1}=\mathcal{L}_{\{\neg, \cap, \Rightarrow\}}
$$

with all its formulas being logically equivalent

Equivalence of Languages

We write it as the following condition $\mathbf{C 2}$ similar to the condition C1

C2: for any formula C of \mathcal{L}_{2}, there is a formula D of \mathcal{L}_{1}, such that $C \equiv D$

The languages \mathcal{L}_{1} and \mathcal{L}_{2} for which the conditions $\mathbf{C 1}$, C2 hold are called logically equivalent.
We denote it by

$$
\mathcal{L}_{1} \equiv \mathcal{L}_{2}
$$

A general, formal definition goes as follows.

Equivalence of Languages Definition

Given two languages: $\mathcal{L}_{1}=\mathcal{L}_{\mathrm{CON}_{1}}$ and $\mathcal{L}_{2}=\mathcal{L}_{\mathrm{CON}_{2}}$, for $\mathrm{CON}_{1} \neq \mathrm{CON}_{2}$
We say that they are logically equivalent, i.e.

$$
\mathcal{L}_{1} \equiv \mathcal{L}_{2}
$$

if and only if the following conditions $\mathbf{C 1}, \mathbf{C} 2$ hold.
C1: for any formula A of \mathcal{L}_{1}, there is a formula B of \mathcal{L}_{2}, such that $A \equiv B$
C2: for any formula C of \mathcal{L}_{2}, there is a formula D of \mathcal{L}_{1}, such that $C \equiv D$

Equivalence of Languages

Example

To prove the logical equivalence

$$
\mathcal{L}_{\{\neg, U\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}}
$$

we need the following logical equivalences
Definability of Implication in terms of disjunction and negation

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

Definability of Disjunction in terms of implication and negation

$$
(A \cup B) \equiv(\neg A \Rightarrow B)
$$

and the Substitution Theorem

Equivalence of Languages

Example

To prove the logical equivalence of the languages

$$
\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \cap, \cup\}}
$$

we need only the definability of implication equivalence It proves, by Substitution Theorem that
for any formula A of $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ there is a formula B of $\mathcal{L}_{\{\neg, \cap, \cup\}}$ such that $A \equiv B$ and the condition $\mathbf{C} 1$ holds

Observe that any formula A of language $\mathcal{L}_{\{\neg, \cap, \cup\}}$ is also a formula of the language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ and of course $A \equiv A$ so the condition C2 also holds

Equivalence of Languages

Example

The logical equivalences:
Definability of Conjunction in terms of implication and negation

$$
(A \cap B) \equiv \neg(A \Rightarrow \neg B)
$$

and Definability of Implication in terms of conjunction and negation

$$
(A \Rightarrow B) \equiv \neg(A \cap \neg B)
$$

and the Substitution Theorem prove that

$$
\mathcal{L}_{\{\neg, \cap\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}} .
$$

Equivalence of Languages

Exercise

Prove that

$$
\mathcal{L}_{\{\mathrm{n}, \neg\}} \equiv \mathcal{L}_{\{\mathrm{U}, \neg\}}
$$

Solution

The equivalence holds due to the Substitution Theorem and two following Definability of Connectives equivalences:

$$
(A \cap B) \equiv \neg(\neg A \cup \neg B), \quad(A \cup B) \equiv \neg(\neg A \cap \neg B)
$$

They transform recursively any formula from $\mathcal{L}_{\{\cap, \neg\}}$ into a formula of $\mathcal{L}_{\{\cup, 7\}}$ and vice-versa, respectively

Logical Equivalences

Here are some more frequently used logical equivalences Idempotent

$$
(A \cap A) \equiv A \quad(A \cup A) \equiv A
$$

Associativity

$$
\begin{aligned}
& ((A \cap B) \cap C) \equiv(A \cap(B \cap C)) \\
& ((A \cup B) \cup C) \equiv(A \cup(B \cup C))
\end{aligned}
$$

Commutativity

$$
(A \cap B) \equiv(B \cap A) \quad(A \cup B) \equiv(B \cup A)
$$

Logical Equivalences

Here are some more frequently used logical equivalences Distributivity

$$
\begin{aligned}
& (A \cap(B \cup C)) \equiv((A \cap B) \cup(A \cap C)) \\
& (A \cup(B \cap C)) \equiv((A \cup B) \cap(A \cup C))
\end{aligned}
$$

De Morgan Laws

$$
\begin{aligned}
& \neg(A \cup B) \equiv(\neg A \cap \neg B) \\
& \neg(A \cap B) \equiv(\neg A \cup \neg B)
\end{aligned}
$$

Negation of Implication

$$
\neg(A \Rightarrow B) \equiv(A \cap \neg B)
$$

Equivalence of Languages

Exercise

Transform a formula $A=\neg(\neg(\neg a \cap \neg b) \cap a)$ of $\mathcal{L}\{\cap, \neg\}$ into a logically equivalent formula B of $\mathcal{L}_{\{\cup, \neg\}}$ Solution

$$
\begin{aligned}
& \neg(\neg(\neg a \cap \neg b) \cap a) \\
\equiv & \neg(\neg \neg(\neg \neg a \cup \neg \neg b) \cap a) \\
& \equiv \neg((a \cup b) \cap a) \\
\equiv & \neg(\neg(a \cup b) \cup \neg a)
\end{aligned}
$$

The formula B of $\mathcal{L}_{\{U, \neg\}}$ equivalent to A is

$$
B=\neg(\neg(a \cup b) \cup \neg a)
$$

Equivalence of Languages

Exercise

Prove by transformation, using proper logical equivalences that

$$
\neg(A \Leftrightarrow B) \equiv((A \cap \neg B) \cup(\neg A \cap B))
$$

Solution

$$
\begin{gathered}
\neg(A \Leftrightarrow B) \\
\equiv^{\text {def }} \neg((A \Rightarrow B) \cap(B \Rightarrow A)) \\
\equiv^{\text {de Morgan }}(\neg(A \Rightarrow B) \cup \neg(B \Rightarrow A)) \\
\equiv^{\text {neg impl }}((A \cap \neg B) \cup(B \cap \neg A)) \\
\equiv^{\text {commut }}((A \cap \neg B) \cup(\neg A \cap B))
\end{gathered}
$$

Equivalence of Languages

Exercise

Prove by transformation, using proper logical equivalences that

$$
\begin{aligned}
& ((B \cap \neg C) \Rightarrow(\neg A \cup B)) \\
& \equiv((B \Rightarrow C) \cup(A \Rightarrow B))
\end{aligned}
$$

Solution

$$
\begin{gathered}
((B \cap \neg C) \Rightarrow(\neg A \cup B)) \\
\equiv^{\text {impl }}(\neg(B \cap \neg C) \cup(\neg A \cup B)) \\
\equiv^{\text {de Morgan }}((\neg B \cup \neg \neg C) \cup(\neg A \cup B)) \\
\equiv^{\text {neg }}((\neg B \cup C) \cup(\neg A \cup B)) \\
\equiv^{\text {impl }}((B \Rightarrow C) \cup(A \Rightarrow B))
\end{gathered}
$$

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 6

PART 9 Many Valued Semantics: Łukasiewicz, Heyting, Kleene, and Bohvar

First Many Valued Logics

The study of many valued logics in general and 3-valued logics in particular has its beginning in the work of a Polish mathematician Jan Leopold Łukasiewicz in 1920

Łukasiewicz was the first to define a 3 -valued semantics for the language

$$
\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}
$$

of classical logic, and called it a logic for short

He left the problem of finding a proper axiomatic proof system for it open

First Many Valued Logics

The other 3 - valued semantics presented here were also first called logics and this terminology is still widely used

Nevertheless, as these logics were defined only semantically, i.e. defined only by providing a semantics for their languages we call them semantics (for logics to be developed), not logics

Creating a Logic

Existence of a proper axiomatic proof system for a given semantics and proving its completeness is always a next open question to be answered (when it is possible)

A process of creating a logic (based on a given language) is three fold: we have to define semantics,
create axiomatic proof system and
prove completeness theorem that establishes a relationship between semantics and proof system

First Many Valued Logics

We present here some of the first 3-valued extensional semantics, historically called 3 -valued logics

They are named after their authors: Łukasiewicz, Kleene, Heyting, and Bochvar

We assume that the language of all semantics (logics) considered here except of Bochvar semantics is

$$
\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}
$$

3-Valued Semantics

All three valued semantics considered here enlist a third logical value which we denote by \perp, or m in case of Bochvar semantics

The third logical value denotes a notion of unknown, uncertain, undefined, or even the notion of we don't have a complete information about depending on the context and motivation for the semantics (logic)

The symbol \perp is the most frequently used for different concepts of unknown

Many Valued Semantics

The third value \perp corresponds also to some notion of incomplete information, inconsistent information, or to a notion of being undefined, or unknown

Historically all these semantics, and many others were and still are called logics

We will also use the name logic for them, instead saying each time " logic defined semantically", or "semantics for a given logic"

3 Valued Semantics Assumptions

We assume that the third logical value is intermediate between truth and falsity, i.e. the set of logical values is ordered and we have the following

Assumption 1

$$
F<\perp<T, \quad \text { and } \quad F<m<T
$$

Assumption 2

We take T as designated value, i.e. T is the value that defines the notions of satisfiability and tautology

Many Valued Extensional Semantics

Formal definition of all many valued semantics presented here follows the definition of the extensional semantics M in general, and the pattern presented in detail for the classical semantics in particular
It consists of giving definitions of the following main components:
Step 1: given the language \mathcal{L} we define a set of logical values and its distinguish value T and define all extensional logical connectives of \mathcal{L}
Step 2: we define notions of a truth assignment and its extension

Step 3: we define notions of satisfaction, model, counter model

Step 4: we define notions tautology under the semantics M

Łukasiewicz Semantics L

Motivation

Łukasiewicz developed his semantics (called logic) to deal with future contingent statements

Contingent statements are not just neither true nor false but are indeterminate in some metaphysical sense

It is not only that we do not know their truth value but rather that they do not possess one

L Semantics: Language

We define all the steps in case of Łukasiewicz semantics (logic) to establish a pattern and proper notation and leave adopting all steps to the case of other semantics as an exercise

Step 1 The language is $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$
Observe that the language is the same as in the classical semantics case

The set \mathcal{F} of formulas is defined in a standard way

L Semantics: Connectives

Step 1 Connectives

We assumed: $F<\perp<T$ and we define the connectoves as follows
Negation \neg is a function

$$
\neg:\{T, \perp, F\} \longrightarrow\{T, \perp, F\}
$$

such that

$$
\neg \perp=\perp, \quad \neg T=F, \neg F=T
$$

Conjunction \cap is a function

$$
\cap:\{T, \perp, F\} \times\{T, \perp, F\} \longrightarrow\{T, \perp, F\}
$$

such that for any $(x, y) \in\{T, \perp, F\} \times\{T, \perp, F\}$, we put

$$
x \cap y=\min \{x, y\}
$$

L Semantics: Connectives

Disjunction \cup is a function

$$
\cup:\{T, \perp, F\} \times\{T, \perp, F\} \longrightarrow\{T, \perp, F\}
$$

such that for any $(a, b) \in\{T, \perp, F\} \times\{T, \perp, F\}$, we put

$$
x \cup y=\max \{x, y\}
$$

Implication \Rightarrow is a function

$$
\Rightarrow:\{T, \perp, F\} \times\{T, \perp, F\} \longrightarrow\{T, \perp, F\}
$$

such that for any $(x, y) \in\{T, \perp, F\} \times\{T, \perp, F\}$, we put

$$
x \Rightarrow y= \begin{cases}\neg x \cup y & \text { if } x>y \\ T & \text { otherwise }\end{cases}
$$

L Connectives Truth Tables

Negation

Conjunction

\cap	F	\perp	T
F	F	F	F
\perp	F	\perp	\perp
T	F	\perp	T

L Connectives Truth Tables

Disjunction

\cup	F	\perp	T
F	F	\perp	T
\perp	\perp	\perp	T
T	T	T	T

Implication

\Rightarrow	F	\perp	T
F	T	T	T
\perp	\perp	T	T
T	F	\perp	T

L Semantics: Truth Assignment

Step 2 Truth assignment and its extension

Definition
A truth assignment is any function

$$
v: \operatorname{VAR} \longrightarrow\{F, \perp, T\}
$$

Observe that the domain of truth assignment is the set of propositional variables, i.e. the truth assignment is defined only for atomic formulas

Truth Assignment Extension v^{*}

Definition

Given a truth assignment $v: V A R \longrightarrow\{T, \perp, F\}$
We define its extension $\quad v^{*}: \mathcal{F} \longrightarrow\{T, \perp, F\}$ by the induction on the degree of formulas as follows
(i) for any $a \in V A R, \quad v^{*}(a)=v(a)$;
(ii) and for any $A, B \in \mathcal{F}$ we put

$$
\begin{gathered}
v^{*}(\neg A)=\neg v^{*}(A) \\
v^{*}((A \cap B))=v^{*}(A) \cap v^{*}(B) \\
v^{*}((A \cup B))=v^{*}(A) \cup v^{*}(B) \\
v^{*}((A \Rightarrow B))=v^{*}(A) \Rightarrow v^{*}(B)
\end{gathered}
$$

L Semantics: Satisfaction Relation

Step 3 Satisfaction, Model, Counter Model Definition
Let $v: V A R \longrightarrow\{T, \perp F\}$
We say that a truth assignment $v \mathbf{L}$ satisfies a formula
$A \in \mathcal{F} \quad$ if and only if $\quad v^{*}(A)=T$
Notation: $\quad v \models_{L} A$

Definition

We say that a truth assignment v does not L satisfy a formula $A \in \mathcal{F} \quad$ if and only if $\quad v^{*}(A) \neq T$
Notation: $\quad v \not \models_{L} A$

L Semantics: Model, Counter Model

Model
Any truth assignment $v: V A R \longrightarrow\{F, \perp, T\}$ such that

$$
v \models_{L} A
$$

is called a L model for A

Counter Model
Any v such that

$$
v \not \vDash_{L} A
$$

is called a \mathbf{L} counter model for the formula A

L Semantics: Tautology

Step 4 Tautology

For any $A \in \mathcal{F}$,
A is a \mathbf{L} tautology if and only if $v^{*}(A)=T \quad$ for all $v: V A R \longrightarrow\{F, \perp, T\}$

We also say that
A is a \mathbf{L} tautology if and only if all truth assignments
$v: V A R \longrightarrow\{F, \perp, T\}$ are \mathbf{L} models for A

Notation

$$
\models_{L} A
$$

L Tautologies

We denote the set of all L tautologies by

$$
\mathbf{L T}=\left\{A \in \mathcal{F}: \models_{L} A\right\}
$$

Let LT, \mathbf{T} be the sets of all L tautologies and the classical tautologies, respectively.

Q1 Is the L L logic (defined semantically!) really different from the classical logic?
It means are theirs sets of tautologies different?

Answer: YES, they are different sets
We know that

$$
\models(\neg a \cup a)
$$

We will show that

$$
\forall_{L} \quad(\neg a \cup a)
$$

Classical and L Tautologies

Consider the formula $(\neg a \cup a)$
Take a truth assignment v such that

$$
v(a)=\perp
$$

Evaluate
$v^{*}(\neg a \cup a)=v^{*}(\neg a) \cup v^{*}(a)=\neg v(a) \cup v(a)$
$=\neg \perp \cup \perp=\perp \cup \perp=\perp$
This proves that v is a counter-model for $(\neg a \cup a)$, i.e.

$$
\forall_{L} \quad(\neg a \cup a)
$$

and we proved

$$
L T \neq T
$$

Classical and L Tautologies

Q2 Do the L and classical logics have something more in common besides the same language?
YES, they also share some tautologies

Q3 Is there relationship (if any) between their sets of tautologies LT and T?
YES, their sets of tautologies LT and T do have an interesting relationship

Classical and L Tautologies

Let's restrict the functions defining L connectives (Truth Tables for L connectives) to the values T and F

Observe that by doing so we get the Truth Tables for classical connectives, i.e. the following holds for any $A \in \mathcal{F}$

If $v^{*}(A)=T$ for all $v: \operatorname{VAR} \longrightarrow\{F, \perp, T\}$,
then $v^{*}(A)=T$ for all $v: V A R \longrightarrow\{F, T\}$

We have hence proved that

$$
\mathbf{L T} \subset \mathbf{T}
$$

Exercise

Exercise

Use the fact that $v: \operatorname{VAR} \longrightarrow\{F, \perp, T\}$ is such that

$$
v^{*}((a \cap b) \Rightarrow \neg b)=\perp
$$

under L semantics to evaluate

$$
v^{*}(((b \Rightarrow \neg a) \Rightarrow(a \Rightarrow \neg b)) \cup(a \Rightarrow b))
$$

Use shorthand notation.

Exercise

Solution

Observe that $\quad((a \cap b) \Rightarrow \neg b)=\perp \quad$ in two cases
c1: $(a \cap b)=\perp$ and $\neg b=F$
c12: $(a \cap b)=T$ and $\neg b=\perp$

Consider c1
We have $\neg b=F$, i.e. $b=T$
Hence $(a \cap T)=\perp$ if and only if $a=\perp$

We get that v is such that $v(a)=\perp$ and $v(b)=T$

Exercise

We got from analyzing case c1 that v is such that $v(a)=\perp$ and $v(b)=T$
We evaluate $v^{*}(((b \Rightarrow \neg a) \Rightarrow(a \Rightarrow \neg b)) \cup(a \Rightarrow b))=$ $(((T \Rightarrow \neg \perp) \Rightarrow(\perp \Rightarrow \neg T)) \cup(\perp \Rightarrow T))=((\perp \Rightarrow \perp) \cup T)=T$

Consider c2
We have $\neg b=\perp$, i.e. $b=\perp$ and $(a \cap \perp)=T$, what is impossible

Hence v from case c1 is the only one and

$$
v^{*}(((b \Rightarrow \neg a) \Rightarrow(a \Rightarrow \neg b)) \cup(a \Rightarrow b))=T
$$

Łukasiewicz Life, Works and Logics

Jan Leopold Łukasiewicz was born on 21 December 1878 in Lwow, historically a Polish city, at that time the capital of Austrian Galicia

He died on 13 February 1956 in Ireland and is buried in Glasnevin Cemetery in Dublin, " far from dear Lwow and Poland ", as his gravestone reads

Here is a very good, interesting and extended entry in Stanford Encyclopedia of Philosophy about his life, influences, achievements, and logics
http://plato.stanford.edu/entries/lukasiewicz/index.html

Heyting Semantics H

Motivation and History

We discuss here the Heyting semantics H because of its connection with intuitionistic logic

The \mathbf{H} connectives are defined as operations on the set $\{F, \perp, T\}$ in such a way that they form a 3-element pseudo-Boolean algebra

Pseudo-Boolean algebras were created by McKinsey and Tarski in 1948 to provide semantics for the intuitionistic logic

Pseudo-Boolean algebras are often called Heyting algebras

Motivation and History

The intuitionistic logic, was defined by its inventor Brouwer and his school in 1900s as a proof system only

Heyting provided provided its first axiomatization which everybody accepted

McKinsey and Tarski proved in 1942 the completeness of the Heyting axiomatization with respect to their pseudo Boolean algebras semantics

The pseudo boolean algebras are also called Heyting algebras in his honor and so is our semantics H

Motivation and History

A formula A is an intuitionistic tautology if and only if it is true in all pseudo boolean algebras

We prove that the operations defined by H connectives form a 3-element pseudo boolean algebra
Hence, if A is an intuitionistic tautology, it is also a tautology under the 3 - valued Heyting semantics
If A is not a 3 - valued Heyting tautology, then it is not an intuitionistic tautology

It means that the 3-valued Heyting semantics is a good candidate for a counter model for the formulas that might not be intuitionistic tautologies

H Logic and Intuitionistic Logic

Denote by IT, HT the sets of all tautologies of the intuitionistic logic and Heyting 3-valued logic (semantics), respectively .

We have that

$$
\mathrm{IT} \subset \mathrm{HT}
$$

We conclude that for any formula A,

$$
\text { If } \forall_{\mathrm{H}} A \text { then } \forall_{\mathrm{I}} A
$$

It means that if we show that a formula A has an H counter model, then we have proved that A it is not an intuitionistic tautology

Kripke Models

The other type of semantics for the intuitionistic logic were defined by Kripke in 1964
They are called Kripke models

The Kripke models were later proved to be equivalent to the pseudo boolean algebras models in case of the intuitionistic logic

Kripke models also provide a general method of defining semantics for many classes of logics

That includes semantics for various modal logics and new logics developed and being developed by computer scientists

H Semantics

Language

$$
\mathcal{L}_{\{\neg,=, \cup, \cap\}}
$$

Connectives

\cup and \cap are the same as in the case of $Ł$ semantics, i.e. for any $(x, y) \in\{T, \perp, F\} \times\{T, \perp, F\}$ we put

$$
x \cup y=\max \{x, y\}, \quad x \cap y=\min \{x, y\}
$$

where $F<\perp<T$

H Semantics

Implication

$$
\Rightarrow: \quad\{T, \perp, F\} \times\{T, \perp, F\} \longrightarrow\{T, \perp, F\}
$$

such that for any $(x, y) \in\{T, \perp, F\} \times\{T, \perp, F\}$ we put

$$
x \Rightarrow y= \begin{cases}T & \text { if } x \leq y \\ y & \text { otherwise }\end{cases}
$$

Negation

$$
\neg x=x \Rightarrow F
$$

H Truth Tables

Implication

$$
\begin{array}{c|ccc}
\Rightarrow & \mathrm{F} & \perp & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\perp & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \perp & \mathrm{~T}
\end{array}
$$

Negation

$$
\begin{array}{c|ccc}
\neg & \mathrm{F} & \perp & \mathrm{~T} \\
\hline & \mathrm{~T} & \mathrm{~F} & \mathrm{~F}
\end{array}
$$

Sets of Tautologies Relationships

HT, T, LT denote the set of all tautologies of the H, classical, and L semantics, respectively

Relationships

$$
\begin{gathered}
\mathbf{H T} \neq \mathbf{T} \neq \mathbf{L T} \\
\mathbf{H T} \subset \mathbf{T}
\end{gathered}
$$

Proof of HT $\neq \mathrm{T}$

For the formula $(\neg a \cup a)$ we have:

$$
\models(\neg a \cup a) \text { and } \quad \not \models_{\mathrm{H}}(\neg a \cup a)
$$

Sets of Tautologies Relationships

Proof of HT $=$ LT

Take a truth assignment v such that

$$
v(a)=v(b)=\perp
$$

We verify that

$$
\not \forall_{\mathbf{H}}(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b))
$$

and

$$
\models_{\mathrm{L}}(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b))
$$

Sets of Tautologies Relationships

Proof of HT \subset T

Observe that if we restrict the truth tables for H connectives to logical values T and F only we get the truth tables for the classical connectives and the following holds for any formula A

If $v^{*}(A)=T$ for all $v: \operatorname{VAR} \longrightarrow\{F, \perp, T\}$,
then $v^{*}(A)=T$ for all $v: \operatorname{VAR} \longrightarrow\{F, T\}$
All together we have proved that the classical semantics extends both L and H semantics, i.e.

$$
\mathrm{LT} \subset \mathrm{~T} \text { and } \mathrm{HT} \subset \mathbf{T}
$$

Kleene Semantics K

Motivation

Kleene's semantics was originally conceived to accommodate undecided mathematical statements

It models a situation where the third logical value \perp intuitively represents the notion of "undecided", or "state of partial ignorance"

A sentence is assigned a value \perp just in case it is not known to be either true or false

Kleene Semantics K

For example imagine a detective trying to solve a murder

He may conjecture that Jones killed the victim

He cannot, at present, assign a truth value T or F to his conjecture, so we assign the value \perp

But it is certainly either true or false and hence \perp represents our ignorance rather then total unknown

Kleene Semantics K

Language

We adopt the same language as in a case of classical, Łukasiewicz's L, and Heyting H semantics, i.e.

$$
\mathcal{L}_{\{\neg,=, \mathrm{U}, \cap\}}
$$

Connectives

We assume, as before, that $F<\perp<T$
The connectives \neg, \cup, \cap of K are defined as in L, H semantics, i.e.

$$
\neg \perp=\perp, \quad \neg F=T, \neg T=F
$$

and for any $(x, y) \in\{T, \perp, F\} \times\{T, \perp, F\}$ we put

$$
\begin{aligned}
& x \cup y=\max \{x, y\} \\
& x \cap y=\min \{x, y\}
\end{aligned}
$$

K Semantics: Connectives

K Implication

Kleene's implication differ from L and H semantics
The K implication is defined by the same formula as the classical, i.e. for any $(x, y) \in\{T, \perp, F\} \times\{T, \perp, F\}$

$$
x \Rightarrow y=\neg x \cup y
$$

The connectives truth tables for the \mathbf{K} negation, disjunction and conjunction are the same as the tables for L, H
K implication table is

$$
\begin{array}{c|ccc}
\Rightarrow & \mathrm{F} & \perp & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\perp & \perp & \perp & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \perp & \mathrm{~T}
\end{array}
$$

K Semantics: Tautologies

Set of all K tautologies is

$$
\mathbf{K T}=\left\{A \in \mathcal{F}: \quad \models_{\mathbf{K}} A\right\}
$$

Relationship between $Ł, \mathbf{H}, \mathrm{~K}$, and classical semantics is

$$
\mathrm{LT} \neq \mathrm{KT}, \quad \mathrm{HT} \neq \mathrm{KT}, \quad \text { and } \mathrm{KT} \subset \mathrm{~T}
$$

Proof Obviously $\models_{L}(a \Rightarrow a)$ and $\models(a \Rightarrow a)$ We take v such that $v(a)=\perp$ and evaluate in K semantics
$v^{*}(a \Rightarrow a)=(v(a) \Rightarrow v(a))=(\perp \Rightarrow \perp)=\perp$
This proves that $\forall_{\boldsymbol{K}}(a \Rightarrow a)$ and hence

$$
\mathrm{LT} \neq \mathrm{KT} \quad \text { and } \quad \mathrm{LT} \neq \mathrm{KT}
$$

K Tautologies

The third property

$$
\mathbf{K T} \subset \mathbf{T}
$$

follows directly from the the fact that, as in the L, H case, if we restrict the K connectives definitions functions to the values T and F only we get the functions defining the classical connectives

All together we have proved that the classical semantics extends all three L, H and K semantics, i.e.

$$
\mathrm{LT} \subset \mathrm{~T}, \mathrm{HT} \subset \mathrm{~T}, \text { and } \mathrm{K} \subset \mathrm{~T}
$$

L, H, K Decidability

Verification and Decidability

The following theorem justifies the correctness of the truth table method of tautology verification for for L, H, K semantics

Theorem 1

For any formula A of $\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$, for any $\mathbf{M} \in\{\mathbf{L}, \mathbf{H}, \mathbf{K}\}$

$$
\begin{gathered}
\models_{\mathbf{M}} A \text { if and only if } v_{A} \models_{\mathbf{M}} A \\
\text { for all } v_{A}: V A R_{A} \longrightarrow\{T, \perp, F\}
\end{gathered}
$$

We also say that
$\models_{M} A$ if and only if all v_{A} are restricted M models for A, and $\mathbf{M} \in\{\mathbf{L}, \mathbf{H}, \mathbf{K}\}$

L, H, K Decidability

The following theorem proves the decidability of the tautology verification procedure for $\mathrm{L}, \mathrm{H}, \mathrm{K}$ semantics

Theorem 2

For any formula A of $\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$, one has to examine at most $3^{V A R_{A}}$ truth assignments $v_{A}: V A R_{A} \longrightarrow\{F, \perp, T\}$ in order to decide whether

$$
\models_{\mathrm{M}} A \text { or } \models_{\mathrm{M}} A
$$

i.e. the notion of \mathbf{M} tautology is decidable for any semantics $\mathbf{M} \in\{\mathbf{L}, \mathbf{H}, \mathbf{K}\}$

Proofs of Theorems 1, 2 are carried in the same way as in case of classical semantics and are left as an exercise

K Tautologies Revisited

Exercise

We know that formulas

$$
((a \cap b) \Rightarrow a), \quad(a \Rightarrow(a \cup b)), \quad(a \Rightarrow(b \Rightarrow a))
$$

are classical tautologies
Show that none of them is K tautology

Solution

Consider any v such that $v(a)=v(b)=\perp$
We evaluate (in short hand notation)
$v^{*}(((a \cap b) \Rightarrow a)=(\perp \cap \perp) \Rightarrow \perp=\perp \Rightarrow \perp=\perp$

K Tautologies Revisited

$$
\begin{aligned}
& v^{*}((a \Rightarrow(a \cup b)))=\perp \Rightarrow(\perp \cup \perp)=\perp \Rightarrow \perp=\perp \text { and } \\
& v^{*}((a \Rightarrow(b \Rightarrow a)))=(\perp \Rightarrow(\perp \Rightarrow \perp)=\perp \Rightarrow \perp=\perp
\end{aligned}
$$

This proves that any v such that

$$
v(a)=v(b)=\perp
$$

is a counter model for all of them

We generalize this example and prove (by induction over the degree of a formula) that a truth assignment v such that

$$
v(a)=\perp \quad \text { for all } \quad a \in V A R
$$

is a counter model for any formula A of $\mathcal{L}_{\{\neg, \Rightarrow, U, \cap\}}$

K Tautologies Revisited

We proved the following
Theorem
For any formula A of $\mathcal{L}_{\{\neg,=, \cup, \cap\}}, \quad \forall_{\mathrm{K}} A$
In particular, the set of all K tautologies is empty, i.e.

$$
\mathbf{K T}=\emptyset
$$

Observe that the Theorem does not invalidate relationships

$$
\mathrm{LT} \neq \mathrm{KT}, \quad \mathrm{HT} \neq \mathrm{KT}, \quad \text { and } \mathrm{KT} \subset \mathrm{~T}
$$

between $Ł, \mathrm{H}, \mathrm{K}$, and classical semantics
They become now perfectly true statements

$$
\mathbf{L T} \neq \emptyset, \quad \mathbf{T} \neq \emptyset, \text { and } \emptyset \subset \mathbf{T}
$$

K Tautologies Revisited

When we develop a new logic by defining its semantics we must make sure for the semantics to be such that it has a non empty set of its tautologies

This is why we adopted (Set 2) the following definition

Definition

Given a language $\mathcal{L}_{\text {CON }}$ and its semantics M
We say that the semantics \mathbf{M} is well defined if and only if its set MT of all tautologies is non empty, i.e. when

$$
\text { MT } \neq \emptyset
$$

K Tautologies Revisited

The semantics K is an example of a correctly and carefully defined semantics that is not well defined in terms of the above definition

Obviously the semantics L and H are well defined

We write is as a following separate fact

K Tautologies Revisited

Fact

The semantics L and H are well defined, but the Kleene semantics K is not

K semantics also provides a justification for a need of introducing a distinction between correctly and well defined semantics
This is the main reason, beside its historical value, why it is included here

Bochvar Semantics B

Motivation

Consider a semantic paradox given by a sentence:
this sentence is false.
If it is true it must be false, if it is false it must be true.

According to Bochvar, such sentences are neither true of false but rather paradoxical or meaningless

B Semantics

Bochvar's semantics follows the principle that the third logical value, denoted now by m (for miningless) is in some sense "infectious";
if one component of the formula is assigned the value m then the formula is also assigned the value m

Bochvar also adds an one assertion operator S that asserts the logical value of T and F, i.e.

$$
S F=F, \quad S T=T
$$

S also asserts that meaningfulness m is false, i.e

$$
S m=F
$$

B Semantics: Language

Language: we add a new one argument connective S and get

$$
\mathcal{L}_{B}=\mathcal{L}_{\{\neg, \mathrm{S}, \Rightarrow, \mathrm{U}, \cap\}}
$$

We denote by \mathcal{F}_{B} the set of all formulas of the language \mathcal{L}_{B} and by \mathcal{F} the set of formulas of the language $\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}} \quad$ common to the classical and all 3 valued logics considered till now.

Observe that directly from the definition we have that

$$
\mathcal{F} \subset \mathcal{F}_{\mathcal{B}}
$$

The formula SA reads "assert A"

B Semantics: Connectives

Negation

$\neg |$| \neg | F | m |
| :---: | :---: | :---: |
| T | | |
| | T | m |
| F | | |

Conjunction

\cap	F	m	T
F	F	m	F
m	m	m	m
T	F	m	T

B Semantics: Connectives

Disjunction

\cup	F	m	T
F	F	m	T
m	m	m	m
T	T	m	T

Implication

\Rightarrow	F	m	T
F	T	m	T
m	m	m	m
T	F	m	T

B Semantics: Connectives, Tautology

Assertion

For all other steps of definition of B semantics we follow the standard established for the M semantics, as we did in all previous cases

In particular the set of all B tautologies is

$$
\mathbf{B T}=\left\{A \in \mathcal{F}: \models_{\mathbf{B}} A\right\}
$$

B Semantics: Tautology

We get by easy evaluation that

$$
\models_{\mathrm{B}}(S a \cup \neg S a)
$$

This proves that $\mathbf{B T} \neq \emptyset$, what means that
B semantics is well defined

B Semantics: Tautology

Observe that not all formulas containing the connective S are B tautologies, for example we have that

$$
\not \vDash_{\mathbf{B}}(a \cup \neg S a), \quad \not \models_{\mathrm{B}}(S a \cup \neg a), \not \vDash_{\mathbf{B}}(S a \cup S \neg a)
$$

as any truth assignment v such that

$$
v(a)=m
$$

is a counter model for all of them, because
$m \cup x=m$ for all $x \in\{F, m, T\}$ and
$S m \cup S \neg m=F \cup S m=F \cup F=F$

B Semantics: Tautology

Let A be a formula that do not contain the assertion operator S, i.e. the formula $A \in \mathcal{F}$ of the language $\mathcal{L}_{\{\neg, \Rightarrow, u, \cap\}}$
Any v, such that $v(a)=m \quad$ for at least one variable in the formula $A \in \mathcal{F}$ is a counter-model for that formula, i.e.

$$
\mathbf{T} \cap \mathbf{B T}=\emptyset
$$

Observation
A formula $A \in \mathcal{F}_{B}$ to be considered to be a B tautology must contain the connective S in front of each variable appearing in A

Chapter 3
 Propositional Semantics: Classical and Many Valued

Slides Set 7

PART 10 M Tautologies, M Consistency, and M Equivalence of Languages

M Tautologies Verification Methods

The classical truth tables verification method and classical decidability theorem hold in a proper form in all of L. H, K and B semantics

We didn't discuss other classical tautologies verification methods of substitution and generalization
We do it now in a general and unifying way for a special case of an extensional semantics M

Namely, we assume now that the set LV of logical values of the semantics M is finite

M Tautologies Verification Methods

We introduce, as we did in classical and other cases, a notion of a restricted model v_{A} and prove the following theorems Truth TablesTheorem
For any formula $A \in \mathcal{F}$,
$\models_{M} A$ if and only if all v_{A} are restricted models for A M Decidability Theorem
For any formula $A \in \mathcal{F}$, one has examine at most

$$
|L V|^{V A R_{A}}
$$

truth assignments $v_{A}: V A R_{A} \longrightarrow L V$ in order to decide whether

$$
\models_{\mathrm{M}} A \text { or } \forall_{\mathrm{M}} A
$$

i.e. the notion of \mathbf{M} tautology is decidable

M Truth Table Method

M Truth Table Method
A tautology verification method, called a M truth table method consists of examination, for any formula A, all possible M truth assignments restricted to A

By M Decidability Theorem we have to perform at most $|L V|^{\left|V A R_{A}\right|}$ steps
If we find a restricted truth assignment which evaluates A to a value different then T, we stop the process and give answer
$\not \models_{\mathrm{M}} A$
Otherwise we continue
If all \mathbf{M} truth assignments restricted to A evaluate A to T, we give answer

Example

Example

Consider a formula ($\neg \neg a \Rightarrow a)$ and H semantics
We evaluate

v	a	$v^{*}(A)$ computation	$v^{*}(A)$
v_{1}	T	$\neg \neg T \Rightarrow T=\neg F \Rightarrow T=F \Rightarrow T=T$	T
v_{2}	\perp	$\neg \neg \perp \Rightarrow \perp=\neg F \Rightarrow \perp=T \Rightarrow \perp=\perp$	\perp

It proves that

$$
\not \forall_{\mathbf{H}}(\neg \neg a \Rightarrow a)
$$

Example

Example

Consider a formula ($\neg \neg a \Rightarrow a)$ and L semantics
We evaluate

v	a	$v^{*}(A)$ computation	$v^{*}(A)$
v_{1}	T	$\neg \neg T \Rightarrow T=\neg F \Rightarrow T=F \Rightarrow T=T$	T
v_{2}	\perp	$\neg \neg \perp \Rightarrow \perp=\neg \perp \Rightarrow \perp=\perp \Rightarrow \perp=T$	T
v_{3}	F	$\neg \neg F \Rightarrow F=\neg T \Rightarrow F=F \Rightarrow F=T$	T

It proves that

$$
\models_{\mathrm{L}}(\neg \neg a \Rightarrow a)
$$

M Proof by Contradiction Method

M Proof by Contradiction Method
In this method, in order to prove that $\models_{\mathrm{M}} A$ we assume that $\forall_{\mathbf{M}} A$
We work with this assumption
If we get a contradiction, we have proved that $\forall_{\mathrm{M}} A$ is impossible
We hence proved $\models_{\mathrm{M}} A$
If we do not get a contradiction, it means that the assumption $\forall_{\mathbf{M}} A$ is true, i.e. we have proved that A is not M tautology

M Proof by Contradiction Method

Observe that correctness of the M Proof by Contradiction method is based on the classical reasoning Its correctness, in turn, is based on the Reductio ad Absurdum classical tautology

$$
((\neg A \Rightarrow(B \cap \neg B)) \Rightarrow A)
$$

The contradiction to be obtained depends on the properties of the M semantics under consideration

M Substitution Method

Substitution Method

The Substitution Method allows us to obtain, as in a case of classical semantics new M tautologies from formulas already proven to be M tautologies
The following theorem establishes its correctness and its proof is a straightforward modification of the classical one Theorem

For any formulas $A\left(a_{1}, a_{2}, \ldots a_{n}\right), A_{1}, \ldots, A_{n} \in \mathcal{F}$, If $\models_{\mathbf{m}} A\left(a_{1}, a_{2}, \ldots a_{n}\right)$ and $B=A\left(a_{1} / A_{1}, \ldots, a_{n} / A_{n}\right)$, then $\models_{\mathrm{m}} B$

M Generalization Method

M Generalization Method

In this method we represent, if it is possible, a given formula
A as a particular instance of some simpler and more general formula B

We then use other verification methods to examine the simpler formula B thus obtained

Remark

Observe that Proof by Contradiction, Substitution and Generalization Methods are valid for any extensional semantics M while the M Truth Table Method is valid only for semantics M with finite the set LV of logical values

M Substitution Method

Example

In order to prove
$\models_{\mathrm{L}}(\neg \neg(\neg((a \cap \neg b) \Rightarrow((c \Rightarrow(\neg f \cup d)) \cup e)) \Rightarrow$
$((a \cap \neg b) \cap(\neg(c \Rightarrow(\neg f \cup d)) \cap \neg e))) \Rightarrow(\neg((a \cap \neg b) \Rightarrow((c \Rightarrow$ $(\neg f \cup d)) \cup e)) \Rightarrow((a \cap \neg b) \cap(\neg(c \Rightarrow(\neg f \cup d)) \cap \neg e))))$
we observe that that our formula is a particular case of a more general formula

$$
(\neg \neg A \Rightarrow A)
$$

for $A=(\neg((a \cap \neg b) \Rightarrow((c \Rightarrow(\neg f \cup d)) \cup e)) \Rightarrow$
$((a \cap \neg b) \cap(\neg(c \Rightarrow(\neg f \cup d)) \cap \neg e)))$
As the next step we observe (or easily prove) that

$$
\models \mathrm{L} \quad(\neg \neg A \Rightarrow A)
$$

M Consistency

One of the most important notion in mathematics and hence even in propositional logic is the notion of consistency and inconsistency
We formulate them now for the general case of extensional semantics \mathbf{M} and examine them particular cases of L and H semantics
Definition
A truth truth assignment $v: V A R \longrightarrow L V$ is a \mathbf{M} model for the set \mathcal{G} of formulas if and only if $v \models_{\mathrm{M}} A$ for all formulas $A \in \mathcal{G}$. We denote it by $v \models_{\mathrm{M}} \mathcal{G}$

M Consistency

Definition

A set $\mathcal{G} \subseteq \mathcal{F}$ is called \mathbf{M} consistent if and only if there is
$v: V A R \longrightarrow L V$, such that $v \models_{\mathrm{M}} \mathcal{G}$
Otherwise the set \mathcal{G} is called \mathbf{M} inconsistent
Observe that the definition of inconsistency can be stated as follows

Definition

A set $\mathcal{G} \subseteq \mathcal{F}$ is called \mathbf{M} inconsistent if and only if for all $v: V A R \longrightarrow L V$ there is a formula $A \in \mathcal{G}$, such that $v^{*}(A) \neq T$

M Consistency Exercise

Example

The set

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg a\}
$$

is L, H, and K consistent

Proof

Consider a truth assignment $v: V A R \longrightarrow\{T, \perp, F\}$. By the definition of \mathbf{M} consistency v must be such that
$v^{*}(((a \cap b) \Rightarrow b))=T, v^{*}((a \cup b)=T)$, and $v^{*}(\neg a)=T$
We want to prove that such v exists
Observe that $((a \cap b) \Rightarrow b)$ is classical tautology, so let's try to find $v: V A R \longrightarrow\{T, F\}$ such that
$v^{*}((a \cup b))=T, v^{*}(\neg a)=T$
This holds when $v(a)=F$ and hence $F \cup v(b)=T$
This gives us $v(a)=F$ and $v(b)=T$

M Consistency Exercise

We proved that the connectives of \mathbf{L}, \mathbf{H}, and K semantics when restricted to the values T and F become classical connectives

Hence any v such that $v(a)=F$ and $v(b)=T$ is $a \mathbf{L}, \mathbf{H}$, and K model for \mathcal{G}
The same argument prove the following general fact.

Fact

For any non empty set \mathcal{G} of formulas of a language $\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$,
if \mathcal{G} is consistent under classical semantics, then it is L, H, and K consistent

M Consistency Exercise

Exercise

Give an example of an infinite set \mathcal{G} of formulas of a language

$$
\mathcal{L}_{\mathbf{B}}=\mathcal{L}_{\{\neg, S, \Rightarrow, \cup, \cap\}}
$$

that is $\mathrm{L}, \mathrm{H}, \mathrm{K}$ and B consistent

Solution

Observe that for the set \mathcal{G} to be considered to be L, H, K consistent its formulas must belong to the sub language $\mathcal{L}_{\{\neg,=, \mathrm{U}, \cap\}}$ of the language \mathcal{L}_{B}

M Consistency Exercise

Let's take, for example a set

$$
\mathcal{G}=\{(a \cup \neg b): \quad a, b \in V A R\}
$$

\mathcal{G} is infinite since the set VAR of propositional variables is infinite

Consider any of the truth assignments

$$
v: V A R \longrightarrow\{F, m, T\} \quad \text { or } \quad v: V A R \longrightarrow\{F, \perp, T\}
$$

such that $\quad v(a)=T, \quad v(b)=F$
We have that

$$
v^{*}(a \cup b)=v(a) \cup v(b)=T \cup T=T
$$

in all semantics L, H, K, B
This proves that \mathcal{G} is $\mathrm{L}, \mathrm{H}, \mathrm{K}$ and B consistent

M Consistency Exercise

Exercise

Give an example of sets $\mathcal{G}_{1}, \mathcal{G}_{2}$ containing some formulas that include the S connective of the language

$$
\mathcal{L}_{\mathbf{B}}=\mathcal{L}_{\{\neg, S, \Rightarrow, \cup, \cap\}}
$$

such that \mathcal{G}_{1} is B consistent and \mathcal{G}_{2} is B inconsistent Solution
There are many such sets \mathcal{G}, here are just two simple examples

$$
\begin{gathered}
\mathcal{G}_{1}=\{(S a \cup S \neg a), \quad(a \Rightarrow \neg b), \quad S \neg(a \Rightarrow b), \quad(b \Rightarrow S a)\} \\
\mathcal{G}_{2}=\{S a, \quad(a \Rightarrow b), \quad(\neg b \cup, S \neg a\}
\end{gathered}
$$

M Consistency Exercise

Consider

$$
\mathcal{G}_{1}=\left\{\left(S a \cup S_{\neg a}\right), \quad(a \Rightarrow \neg b), \quad S_{\neg}(a \Rightarrow b), \quad(b \Rightarrow S a)\right\}
$$

and any truth assignment

$$
v: V A R \longrightarrow\{F, m, T\}
$$

such that $v(a)=T, v(b)=F$ (short hand notation)
We evaluate
$(S T \cup S \neg T)=T \cup T=T, \quad(T \Rightarrow \neg F)=T, \quad S \neg(T \Rightarrow F)=$
$S \neg F=T, \quad(F \Rightarrow S T)=F \Rightarrow T=T$
This proves that v is a \mathbf{B} model for \mathcal{G}_{1}, and \mathcal{G}_{1} is consistent

M Consistency Exercise

Consider now

$$
\mathcal{G}_{2}=\{S a, \quad(a \Rightarrow b), \quad(\neg b \cup, \quad S \neg a\}
$$

Assume that there is

$$
v: V A R \longrightarrow\{F, m, T\}
$$

such that $\quad v \models_{\mathrm{B}} \mathcal{G}_{2}$
In particular $v^{*}(S a)=T$
By definition of B connectives this is possible if and only if $v(a)=T$
Then $v^{*}(S \neg a)=S F=F$
This contradicts the assumption $v \models_{\mathrm{B}} \mathcal{G}_{2}$
Hence G_{2} is \mathbf{B} inconsistent

M Independence

Definition

Given a language $\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}$
A formula $A \in \mathcal{F}$ is called \mathbf{M} independent from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if the sets

$$
\mathcal{G} \cup\{A\} \quad \text { and } \quad \mathcal{G} \cup\{\neg A\}
$$

are both M consistent
l.e. when there are truth assignments v_{1}, v_{2} such that

$$
v_{1} \models_{\mathrm{M}} \mathcal{G} \cup\{A\} \quad \text { and } \quad v_{2} \models_{\mathrm{M}} \mathcal{G} \cup\{\neg A\} .
$$

M Independence Exercises

Given a set

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), a\}
$$

1. Find a formula A that is L independent from a set \mathcal{G}
2. Find a formula A that is \mathbf{H} independent from a set \mathcal{G}
3. Find an infinite number of that are \mathbf{L} independent from a set \mathcal{G}
4. Find an infinite number of that are \mathbf{H} independent from a set \mathcal{G}

M Logical Equivalence and \mathbf{M} Equivalence of Languages

Given an extensional semantics M defined for a propositional language

$$
\mathcal{L}_{\mathrm{CON}}
$$

with the set \mathcal{F} of formulas and a set $L V \neq \emptyset$ of logical values

We extend now the classical notions of logical equivalence and equivalence of languages to the semantics M

M Logical Equivalence

Definition

For any formulas $A, B \in \mathcal{F}$, we say that
A, B are M logically equivalent if and only if they always have the same logical value assigned by the semantics M, i.e. when

$$
v^{*}(A)=v^{*}(B) \text { for all } v: V A R \rightarrow L V
$$

We write

$$
A \equiv_{\mathbf{M}} B
$$

to denote that A, B are \mathbf{M} logically equivalent.

M Logical Equivalence

Remember that \equiv_{M} is not a logical connective

It is just a metalanguage symbol for saying " formulas A, B are logically equivalent under the semantics M"
We use symbol \equiv for classical logical equivalence only

M Logical Equivalence

Exercise

The classical logical equivalence

$$
(A \cup B) \equiv(\neg A \Rightarrow B)
$$

holds for all formulas A, B and is defining \cup in terms of negation and implication

Show that it does not hold under L semantics, i.e. that there are formulas A, B, such that

$$
(A \cup B) \not \equiv \mathrm{L}(\neg A \Rightarrow B)
$$

M Logical Equivalence

Solution

Consider a case when $A=a$ and $B=b$
We have to show $v^{*}((a \cup b)) \neq v^{*}((\neg a \Rightarrow b))$
for some $v: V A R \rightarrow\{F, \perp, T\}$
Observe that $v^{*}((a \cup b))=v^{*}((\neg a \Rightarrow b))$ for all
$v: V A R \rightarrow\{F, T\}$
So we have to check only truth assignments that involve \perp
Let v be such that $v(a)=v(b)=\perp$
We evaluate $v^{*}((a \cup b)=\perp \cup \perp=\perp$ and
$v^{*}((\neg a \Rightarrow b))=\neg \perp \Rightarrow \perp=F \Rightarrow \perp=T$.
This proves that

$$
(a \cup b) \not \equiv \mathbf{L}(\neg a \Rightarrow b)
$$

and hence we have proved

$$
(A \cup B) \not \equiv \mathbf{L}(\neg A \Rightarrow B)
$$

M Equivalence of Languages

We extend now, in a natural way, the classical notion equivalence of languages

Definition

Given two languages

$$
\mathcal{L}_{1}=\mathcal{L}_{\mathrm{CON}_{1}} \text { and } \mathcal{L}_{2}=\mathcal{L}_{\mathrm{CON}_{2}} \text { for } \mathrm{CON}_{1} \neq \mathrm{CON}_{2}
$$

We say that \mathcal{L}_{1} and \mathcal{L}_{2} are M logically equivalent and denote it by

$$
\mathcal{L}_{1} \equiv_{\mathrm{m}} \mathcal{L}_{2}
$$

if and only if the following conditions $\mathbf{C 1}, \mathbf{C} 2$ hold
C1 For any formula A of \mathcal{L}_{1}, there is a formula B of \mathcal{L}_{2}, such that $A \equiv_{\mathrm{m}} B$
C2 For any formula C of \mathcal{L}_{2}, there is a formula D of \mathcal{L}_{1}, such that $C \equiv_{\mathrm{m}} D$

Exercise

Exercise

Prove that

$$
\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathrm{L} \mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}\}}
$$

Solution

Condition $\mathbf{C 1}$ holds because any formula of language $\mathcal{L}_{\{\neg, \Rightarrow\}}$ is also a formula of $\mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$
Condition C2 holds because the equivalence

$$
(A \cup B) \equiv \mathrm{E}((A \Rightarrow B) \Rightarrow B)
$$

