LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

Chapter 5
 Hilbert Proof Systems
 Completeness of Classical Propositional Logic

CHAPTER 5 SLIDES

```
Chapter 5
Hilbert Proof Systems
Completeness of Classical Propositional Logic
```


Slides Set 1

PART 1: Hilbert Proof Systems: Proof System H_{1}
PART 2: Proof Deduction Theorem for H_{1}

Slides Set 2

PART 3: Proof System H_{2} : Deduction Theorem, Exercises and Examples

Slides Set 3

PART 4: Completeness Theorem Proof One : Constructive Proof

Chapter 5
 Hilbert Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 4

PART 5: Completeness Theorem Proof Two: A CounterModel Existence Method

Slides Set 5

PART 6: Some Other Axiomatizations: Examples and
Exercises

Chapter 5
 Hilbert Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 1

PART 1: Hilbert Proof Systems: Proof System H_{1}

Hilbert Proof Systems

Hilbert proof systems are based on a language with implication and contain Modus Ponens as a rule of inference

Modus Ponens is probably the oldest of all known rules of inference as it was already known to the Stoics (3 B.C.) It is also considered as the most natural to our intuitive thinking and the proof systems containing i Modus Ponens as the inference rule play a special role in logic.

Hilbert systems put major emphasis on logical axioms, keeping the rules of inference to minimum often admitting Modus Ponens as the sole rule of inference

Hilbert Proof Systems

There are many proof systems that describe classical propositional logic, i.e. that are complete with respect to the classical semantics

We present a Hilbert proof system for the classical propositional logic and discuss two ways of proving the Completeness Theorem for it

The first proof is based on the one included in Elliott Mendelson's book Introduction to Mathematical Logic It is is a constructive proof that shows how one can use the assumption that a formula A is a tautology in order to construct its formal proof

Hilbert Proof Systems

The second proof is non-constructive

Its importance lies in a fact that the methods it uses can be applied to the proof of completeness theorem for classical predicate logic as we present it in (chapter 9)

It also generalizes to some non-classical logics

Hilbert Proof Systems

We prove completeness part of the Completeness Theorem by proving the converse implication to it

We show how one can deduce that a formula A is not a tautology from the fact that it does not have a proof

It is hence called a counter-model construction proof

Both proofs relay on the Deduction Theorem and so this is the theorem we are now going to prove

Hilbert Proof System H_{1}

We consider now a Hilbert proof system H_{1} based on a language with implication as the only connective

The proof system H_{1} has only two logical axioms and has the Modus Ponens as a sole rule of inference

Hilbert Proof System H_{1}

Definition

Hilbert system H_{1} is defined as follows

$$
H_{1}=\left(\mathcal{L}_{\{\Leftrightarrow\}}, \mathcal{F},\{A 1, A 2\}, M P\right)
$$

A1 (Law of simplification)

$$
(A \Rightarrow(B \Rightarrow A))
$$

A2 (Frege's Law)

$$
((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))
$$

MP is the Modus Ponens rule

$$
M P \frac{A ;(A \Rightarrow B)}{B}
$$

where A, B, C are any formulas from \mathcal{F}

Formal Proofs in H_{1}

The formal proof of

$$
(A \Rightarrow A)
$$

in H_{1} is a sequence

$$
B_{1}, B_{2}, B_{3}, B_{4}, B_{5}
$$

as defined below
$B_{1} \quad((A \Rightarrow((A \Rightarrow A) \Rightarrow A)) \Rightarrow((A \Rightarrow(A \Rightarrow A)) \Rightarrow(A \Rightarrow A)))$
axiom A 2 for $A=A, B=(A \Rightarrow A)$, and $C=A$
$B_{2} \quad(A \Rightarrow((A \Rightarrow A) \Rightarrow A))$
axiom A 1 for $A=A, B=(A \Rightarrow A)$
$\left.\left.\left.B_{3} A \Rightarrow(A \Rightarrow A)\right) \Rightarrow(A \Rightarrow A)\right)\right)$
MP application to B_{1} and B_{2}
$B_{4}(A \Rightarrow(A \Rightarrow A))$,
axiom A1 for $A=A, B=A$
$B_{5}(A \Rightarrow A)$
MP application to B_{3} and B_{4}

Formal Proofs in H_{1}

We have hence proved the following
Fact
For any $A \in \mathcal{F}, \quad \vdash_{H_{1}}(A \Rightarrow A)$

It is easy to see that the proof of $(A \Rightarrow A)$ wasn't constructed automatically
The main step in its construction was the choice of a proper form (substitution) of logical axioms to start with, and to continue the proof with

This choice is far from obvious for un-experienced human and impossible for a machine, as the number of possible substitutions is infinite

Formal Proofs in H_{1}

In Chapter 4 we gave some examples of simple proof systems with inference rules such that it was possible to
"reverse" the usual way they were used
We could use them in a reverse manner in order to search for proofs.

Moreover and we were able to do so in an effective and fully automatic way

We called such proof systems syntactically decidable and we defined them formally as follows

Syntactically Decidable Proof Systems

Definition

A proof system $S=(\mathcal{L}, \mathcal{E}, L A, \mathcal{R})$ for which there is an effective mechanical procedure that finds (generates) a formal proof of any expression $E \in \mathcal{E}$, if it exists, is called a syntactically semi- decidable system

If additionally there is an effective method of deciding that if a proof of E is not found that it does not exist, the system S is called syntactically decidable

Otherwise S is syntactically undecidable

Searching for Proofs in a Proof Systems

We will argue now, that the presence of Modus Ponens inference rule in Hilbert systems makes them syntactically undecidable
A general procedure for automated search for proofs in a proof system S can be stated is as follows.
Let B be an expression of the system S that is not an axiom If B has a proof in S, B must be the conclusion of one of the inference rules
Let's say it is a rule r
We find all its premisses, i.e. we evaluate $r^{-1}(B)$
If all premisses are axioms, the proof is found
Otherwise we repeat the procedure for any non-axiom premiss

Search for Proof by the Means of MP

Search for proofs in any Hilbert System S must involve, between other rules, if any, the Modus Ponens inference rule Lets analyze a search for proofs by the means of Modus Ponens rule MP

The MP rule says: given two formulas A and $(A \Rightarrow B)$ we conclude a formula B

Assume now that we have a certain formula, we name it for convenience B

We want to find a proof of B
If B is an axiom, we have the proof; the formula itself

Search for Proof by the Means of MP

If B is not an axiom, it was obtained by the application of the Modus Ponens rule, to certain two formulas A and $(A \Rightarrow B)$ But there is infinitely many of formulas $A,(A \Rightarrow B)$, as A is any formula. It means that in for any $B, M P^{-1}(B)$ is countably infinite
Obviously, we have the following

Fact

Every Hilbert System S is not syntactically decidable In particular, the system H_{1} is not syntactically decidable

Semantic Links

Semantic Link 1

System H_{1} is sound under classical, $\mathfrak{\ell}$, \mathbf{H} semantics and not sound under K semantics

We leave the proof of the following theorem (by induction with respect of the length of the formal proof) as an easy exercise

Soundness Theorem for H_{1}
For any $A \in \mathcal{F}$, if $\vdash_{H_{1}} A$, then $\models A$

Semantic Links

Semantic Link 2

The system H_{1} is not complete under classical semantics
It means that we have to show that not all classical
tautologies have a proof in H_{1}
We have proved in Chapter 3 that one needs \neg and one of the other connectives \cup, \cap, \Rightarrow to express all classical connectives, and hence all classical tautologies

For example we can't express negation in term of implication alone and so a tautology $(\neg \neg A \Rightarrow A)$
is not definable in the language of H_{1}, hence

$$
\Vdash_{H_{1}}(\neg \neg A \Rightarrow A)
$$

Proof from Hypothesis

We have constructed a formal proof of

$$
(A \Rightarrow A)
$$

in H_{1} on a base of logical axioms, as an example of complexity of finding proofs in Hilbert systems
In order to make the construction of formal proofs easier by the use of previously proved formulas we use the notion of a formal proof from some hypotheses (and logical axioms) in any proof system

$$
S=(\mathcal{L}, \mathcal{E}, L A, \mathcal{R})
$$

as defined as follows in chapter 4

Proof from Hypothesis

Given a proof system $S=(\mathcal{L}, \mathcal{E}, L A, \mathcal{R})$
While proving expressions we often use some extra
information available, besides the axioms of the proof system
This extra information is called hypothesis in the proof
Let $\Gamma \subseteq \mathcal{E}$ be a set expressions called hypothesis

Definition

A proof of $E \in \mathcal{E}$ from the set of hypothesis Γ in S is a formal proof in S, where the expressions from Γ are treated as additional hypothesis added to the set LA of the logical axioms of the system S

Notation: Γ トs E
We read it : E has a proof in S from the set Γ (and the logical axioms LA)

Formal Definition

Definition

We say that $E \in \mathcal{E}$ has a formal proof in S
from the set Γ and the logical axioms LA and denote it as
「トs E
if and only if there is a sequence

$$
A_{1}, \ldots, A_{n}
$$

of expressions from \mathcal{E}, such that

$$
A_{1} \in L A \cup \Gamma, \quad A_{n}=E
$$

and for each $1<i \leq n$, either $A_{i} \in L A \cup \Gamma$ or A_{i} is a direct consequence of some of the preceding expressions by virtue of one of the rules of inference of S

Special Cases

Case 1: $\quad \Gamma \subseteq \mathcal{E}$ is a finite set and $\Gamma=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$
We write

$$
B_{1}, B_{2}, \ldots, B_{n} \not{ }_{s} E
$$

instead of $\quad\left\{B_{1}, B_{2}, \ldots, B_{n}\right\} \vdash_{\mathcal{S}} E$

Case 2: 「= \emptyset

By the definition of a proof of E from $\Gamma, ~ \emptyset \vdash s E$ means that in the proof of E we use only the logical axioms LA of S We hence write

$$
\vdash s E
$$

to denote that E has a proof from $\Gamma=\emptyset$

Proof from Hypothesis in H_{1}

Show that

$$
(A \Rightarrow B),(B \Rightarrow C) \vdash H_{1}(A \Rightarrow C)
$$

We construct a formal proof

$$
B_{1}, B_{2}, \ldots . . B_{7}
$$

$B_{1}:(B \Rightarrow C), \quad B_{2}:(A \Rightarrow B)$, hypothesis hypothesis
$B_{3}:((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$, axiom A2

Proof from Hypothesis in H_{1}

$$
\begin{aligned}
& B_{4}:((B \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C))), \\
& \text { axiom A1 for } A=(B \Rightarrow C), B=A
\end{aligned}
$$

$$
B_{5}:(A \Rightarrow(B \Rightarrow C))
$$

$$
B_{1} \text { and } B_{4} \text { and MP }
$$

$$
\underset{\mathrm{MP}}{\left.B_{6}:((A \Rightarrow B) \underset{M}{(})(A \Rightarrow C)\right), \quad B_{7}:(A \Rightarrow C)}
$$

Deduction Theorem

In mathematical arguments, one often proves a statement B on the assumption of some other statement A and then concludes that we have proved the implication "if A, then B" This reasoning is justified a theorem, called a Deduction Theorem

Reminder

We write $\Gamma, A \vdash B$ for $\Gamma \cup\{A\} \vdash B$
In general, we write $\Gamma, A_{1}, A_{2}, \ldots, A_{n} \vdash B$
for $\Gamma \cup\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \vdash B$

Deduction Theorem for H_{1}

Deduction Theorem for H_{1}
For any $A, B \in \mathcal{F}$ and $\Gamma \subseteq \mathcal{F}$

$$
\Gamma, A \vdash H_{1} B \quad \text { if and only if } \quad \Gamma \vdash H_{1}(A \Rightarrow B)
$$

In particular

$$
A \vdash_{H_{1}} B \quad \text { if and only if } \quad \vdash_{H_{1}}(A \Rightarrow B)
$$

H_{1} Formal Proofs

The proof of the following Lemma provides a good example of multiple applications of the Deduction Theorem

Lemma

For any $A, B, C \in \mathcal{F}$,
(a) $(A \Rightarrow B),(B \Rightarrow C) \vdash_{H_{1}}(A \Rightarrow C)$,
(b) $(A \Rightarrow(B \Rightarrow C)) \stackrel{H_{1}}{ }(B \Rightarrow(A \Rightarrow C))$

Observe that by Deduction Theorem we can re-write (a) as (a') $(A \Rightarrow B),(B \Rightarrow C), A \vdash H_{1} C$

H_{1} Formal Proofs

Poof of (a')

We construct a formal proof

$$
B_{1}, B_{2}, B_{3}, B_{4}, B_{5}
$$

of $\quad(A \Rightarrow B),(B \Rightarrow C), A \vdash_{H_{1}} C$ as follows.
$B_{1}: \quad(A \Rightarrow B)$
hypothesis
B_{2} : $\quad(B \Rightarrow C)$
hypothesis
B_{3} : A
hypothesis
B_{4} : B
B_{1}, B_{3} and MP
B_{5} : $\quad C$
B_{2}, B_{4} and MP

H_{1} Formal Proofs

Thus we proved by Deduction Theorem that (a) holds, i.e.

$$
(A \Rightarrow B),(B \Rightarrow C) \vdash \vdash_{H_{1}}(A \Rightarrow C)
$$

Proof of Lemma part (b)
By Deduction Theorem we have that

$$
\begin{aligned}
& (A \Rightarrow(B \Rightarrow C)) \vdash_{H_{1}}(B \Rightarrow(A \Rightarrow C)) \\
& \text { if and only if } \\
& \quad(A \Rightarrow(B \Rightarrow C)), B \vdash H_{1}(A \Rightarrow C)
\end{aligned}
$$

Formal Proofs

We construct a formal proof

$$
B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}, B_{7}
$$

of $\quad(A \Rightarrow(B \Rightarrow C)), B \vdash H_{1}(A \Rightarrow C)$ as follows.
$B_{1}: \quad(A \Rightarrow(B \Rightarrow C))$
hypothesis
B_{2} : B
hypothesis
$B_{3}: \quad((B \Rightarrow(A \Rightarrow B))$
$A 1$ for $A=B, B=A$
$B_{4}: \quad(A \Rightarrow B)$
B_{2}, B_{3} and MP

H_{1} Formal Proofs

$B_{5}: \quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$ axiom A2
$B_{6}: \quad((A \Rightarrow B) \Rightarrow(A \Rightarrow C))$
B_{1}, B_{5} and MP
$B_{7}: \quad(A \Rightarrow C)$
Thus we proved by Deduction Theorem that

$$
(A \Rightarrow(B \Rightarrow C)) \vdash_{H_{1}}(B \Rightarrow(A \Rightarrow C))
$$

Simpler Proof

Here i a simpler proof of Lemma part (b)
We apply the Deduction Theorem twice, i.e. we get

$$
(A \Rightarrow(B \Rightarrow C)) \vdash_{H_{1}}(B \Rightarrow(A \Rightarrow C))
$$

if and only if

$$
(A \Rightarrow(B \Rightarrow C)), B \vdash \vdash_{H_{1}}(A \Rightarrow C)
$$

if and only if

$$
(A \Rightarrow(B \Rightarrow C)), B, A \vdash_{H_{1}} C
$$

Simpler Proof

We now construct a proof of $(A \Rightarrow(B \Rightarrow C)), B, A \vdash_{H_{1}} C$ as follows
$B_{1} \quad(A \Rightarrow(B \Rightarrow C))$
hypothesis
$B_{2} \quad B$
hypothesis
$B_{3} \quad A$
hypothesis
$B_{4} \quad(B \Rightarrow C)$
B_{1}, B_{3} and MP
$B_{5} \quad C$
B_{2}, B_{4} and MP

Chapter 5
 Hilbert Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 1

PART 2: Proof of Deduction Theorem for H_{1}

The Deduction Theorem for H_{1}

As we now fix the proof system to be H_{1}, we write $A \vdash B$ instead of $A \vdash_{H_{1}} B$

Deduction Theorem (Herbrand, 1930) for H_{1}
For any formulas $A, B \in \mathcal{F}$,

$$
\text { If } A \vdash B \text {, then } \vdash(A \Rightarrow B)
$$

Deduction Theorem (General case) for H_{1}
For any formulas $A, B \in \mathcal{F}, \Gamma \subseteq \mathcal{F}$

$$
\Gamma, A \vdash B \quad \text { if and only if } \quad \Gamma \vdash(A \Rightarrow B)
$$

Proof of The Deduction Theorem

Proof:

Part 1 We first prove the "if" part:

$$
\text { If } \Gamma, A \vdash B \text { then } \Gamma \vdash(A \Rightarrow B)
$$

Assume that

$$
\Gamma, A \vdash B
$$

i.e. that we have a formal proof

$$
B_{1}, B_{2}, \ldots, B_{n}
$$

of B from the set of formulas $\Gamma \cup\{A\}$
We have to show that

$$
\Gamma \vdash(A \Rightarrow B)
$$

Proof of The Deduction Theorem

In order to prove that
$\Gamma \vdash(A \Rightarrow B)$ follows from $\Gamma, A \vdash B$
we prove a stronger statement, namely that

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right)
$$

for any $B_{i}, 1 \leq i \leq n$ in the formal proof $B_{1}, B_{2}, \ldots, B_{n}$ of B also follows from「, $A \vdash B$

Hence in particular case, when $i=n$ we will obtain that $\Gamma \vdash(A \Rightarrow B)$ follows from 「, $A \vdash B$ and that will end the proof of Part 1

Base Step

The proof of Part 1 is conducted by mathematical induction on i, for $1 \leq i \leq n$
Step $1 \quad i=1$ (base step)
Observe that when $i=1$, it means that the formal proof $B_{1}, B_{2}, \ldots, B_{n}$ contains only one element B_{1}
By the definition of the formal proof from $\Gamma \cup\{A\}$, we have that
(1) B_{1} is a logical axiom, or $B_{1} \in \Gamma$, or
(2) $B_{1}=A$

This means that $B_{1} \in\{A 1, A 2\} \cup \Gamma \cup\{A\}$

Base Step

Now we have two cases to consider.
Case1: $\quad B_{1} \in\{A 1, A 2\} \cup \Gamma$
Observe that $\left(B_{1} \Rightarrow\left(A \Rightarrow B_{1}\right)\right)$ is the axiom $A 1$
By assumption $B_{1} \in\{A 1, A 2\} \cup \Gamma$
We get the required proof of $\left(A \Rightarrow B_{1}\right)$ from Γ
by the following application of the Modus Ponens rule

$$
(M P) \frac{B_{1} ;\left(B_{1} \Rightarrow\left(A \Rightarrow B_{1}\right)\right)}{\left(A \Rightarrow B_{1}\right)}
$$

Base Step

Case 2: $\quad B_{1}=A$
When $B_{1}=A$ then to prove $\Gamma \vdash\left(A \Rightarrow B_{1}\right)$
This means we have to prove

$$
\Gamma \vdash(A \Rightarrow A)
$$

This holds by monotonicity of the consequence and the fact that we have shown that

$$
\vdash(A \Rightarrow A)
$$

The above cases conclude the proof for $i=1$ of

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right)
$$

Inductive Step

Inductive Step

Assume that

$$
\Gamma \vdash\left(A \Rightarrow B_{k}\right)
$$

for all $k<i$ (strong induction)
We will show that using this fact we can conclude that also

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right)
$$

Inductive Step

Consider a formula B_{i} in the formal proof

$$
B_{1}, B_{2}, \ldots, B_{n}
$$

By definition of the formal proof we have to show the following tow cases
Case 1: $B_{i} \in\{A 1, A 2\} \cup \Gamma \cup\{A\}$ and
Case 2: B_{i} follows by MP from certain B_{j}, B_{m} such that $j<m<i$
Consider now the Case 1: $\quad B_{i} \in\{A 1, A 2\} \cup \Gamma \cup\{A\}$
The proof of ($A \Rightarrow B_{i}$)
from Γ in this case is obtained from the proof of the Step
$i=1$ by replacement B_{1} by B_{i}
and is omitted here as a straightforward repetition

Inductive Step

Case 2:

B_{i} is a conclusion of (MP)
If B_{i} is a conclusion of (MP), then we must have two formulas B_{j}, B_{m} in the formal proof
$B_{1}, B_{2}, \ldots, B_{n}$
such that $j<i, m<i, j \neq m$ and
$(M P) \frac{B_{j} ; B_{m}}{B_{i}}$

Inductive Step

By the inductive assumption the formulas B_{j}, B_{m} are such that $\Gamma \vdash\left(A \Rightarrow B_{j}\right)$ and $\Gamma \vdash\left(A \Rightarrow B_{m}\right)$

Moreover, by the definition of (MP) rule, the formula B_{m} has to have a form $\quad\left(B_{j} \Rightarrow B_{i}\right)$
This means that

$$
B_{m}=\left(B_{j} \Rightarrow B_{i}\right)
$$

The inductive assumption can be re-written as follows

$$
\Gamma \vdash\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right)
$$

for $j<i$

Inductive Step

Observe now that the formula

$$
\left(\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \Rightarrow\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)\right)
$$

is a substitution of the axiom A2 and hence has a proof in our system
By the monotonicity of the consequence, it also has a proof from the set 「, i.e.

$$
\Gamma \vdash\left(\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \Rightarrow\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)\right)
$$

Inductive Step

We know that

$$
\Gamma \vdash\left(\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \Rightarrow\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)\right)
$$

Applying the rule MP i.e. performing the following

$$
\frac{\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) ;\left(\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \Rightarrow\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)\right)}{\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)}
$$

we get that also

$$
\Gamma \vdash\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)
$$

Inductive Step

Applying again the rule MP i.e. performing the following

$$
\left.\frac{\left(A \Rightarrow B_{j}\right) ;\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)}{\left(A \Rightarrow B_{i}\right)}\right)
$$

we get that

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right)
$$

what ends the proof of the inductive step

Proof of the Deduction Theorem

By the mathematical induction principle, we have proved that

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right), \quad \text { for all } \quad 1 \leq i \leq n
$$

In particular it is true for $i=n$, i.e. for $B_{n}=B$ and we proved that

$$
\Gamma \vdash(A \Rightarrow B)
$$

This ends the proof of the first part of the Deduction Theorem:

If $\Gamma, A \vdash B$, then $\Gamma \vdash(A \Rightarrow B)$

Proof of the Deduction Theorem

The proof of the second part, i.e. of the inverse implication:

$$
\text { If } \Gamma \vdash(A \Rightarrow B) \text {, then } \Gamma, A \vdash B
$$

is straightforward and goes as follows.
Assume that $\Gamma \vdash(A \Rightarrow B)$
By the monotonicity of the consequence we have also that $\Gamma, A \vdash(A \Rightarrow B)$
Obviously 「, $A \vdash A$
Applying Modus Ponens to the above, we get the proof of
B from $\{\Gamma, A\}$
We have hence proved that $\Gamma, A \vdash B$
This ends the proof

Proof of the Deduction Theorem

Deduction Theorem (General case) for H_{1}

For any formulas $A, B \in \mathcal{F}$ and any $\Gamma \subseteq \mathcal{F}$

$$
\ulcorner, A \vdash B \quad \text { if and only if } \quad \Gamma \vdash(A \Rightarrow B)
$$

The particular case we get also the particular case

Deduction Theorem (Herbrand, 1930) for H_{1}
For any formulas $A, B \in \mathcal{F}$,

$$
\text { If } A \vdash B \text {, then } \vdash(A \Rightarrow B)
$$

is obtained from the above by assuming that the set Γ is empty

Chapter 5
 Hilbert Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 2

PART 3: Proof System H_{2} : Deduction Theorem, Exercises and Examples

Proof System H_{2}

The proof system H_{1} is sound and strong enough to prove the Deduction Theorem, but, as we proved, is not complete

We extend now the language and the set of logical axioms of H_{1} to form a new Hilbert system H_{2} that is complete with respect to classical semantics

The proof of Completeness Theorem for H_{2} is be presented in the next section (Slides Set 3)

Hilbert System H_{2} Definition

Definition

$$
H_{2}=\left(\mathcal{L}_{\{\Rightarrow, \neg\}}, \mathcal{F},\{A 1, A 2, A 3\}(M P)\right)
$$

A1 (Law of simplification)
$(A \Rightarrow(B \Rightarrow A))$
A2 (Frege's Law)
$((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$
A3 $\quad((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B)))$
MP (Rule of inference)

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

where A, B, C are any formulas of the propositional language $\mathcal{L}_{\{\Rightarrow, \neg\}}$

Deduction Theorem for System H_{2}

Observation 1

The proof system H_{2} is obtained by adding axiom A_{3} to the system H_{1}
Observation 2
The language of H_{2} is obtained by adding the connective \neg to the language of H_{1}
Observation 3
The use of axioms $A 1, A 2$ in the proof of Deduction
Theorem for the system H_{1} is independent of the connective
\neg added to the language of H_{1}
Observation 4
Hence the proof of the Deduction Theorem for the system H_{1} can be repeated as it is for the system H_{2}

Deduction Theorem for System H_{2}

Observations 1-4 prove that he Deduction Theorem holds for system H_{2}

Deduction Theorem for H_{2}
For any $\Gamma \subseteq \mathcal{F}$ and $A, B \in \mathcal{F}$

$$
\Gamma, A \vdash_{H_{2}} B \text { if and only if } \Gamma \vdash_{H_{2}}(A \Rightarrow B)
$$

In particular

$$
A \vdash_{H_{2}} B \text { if and only if } \vdash_{H_{2}}(A \Rightarrow B)
$$

Soundness and CompletenessTheorems

We get by easy verification that H_{2} is a sound under classical semantics and hence we have the following
Soundness Theorem H_{2}
For every formula $A \in \mathcal{F}$

$$
\text { if } \vdash_{H_{2}} A \text { then } \models A
$$

We prove in the next section (Slides Set 3), that H_{2} is also complete under classical semantics, i.e. we prove
Completeness Theorem for H_{2}
For every formula $A \in \mathcal{F}$,

$$
\vdash{ }_{H_{2}} A \text { if and only if } \models A
$$

CompletenessTheorems

The proof of completeness theorem (for a given semantics) is always a main point in creation of any new logic

There are many techniques to prove it, depending on the proof system, and on the semantics we define for it

We present in the next next section (Slides Set 2) two proofs of the Completeness Theorem for the system H_{2}
These proofs use very different techniques, hence the reason of presenting both of them

Proof System H_{2} : Exercises and Examples

Examples and Exercises

We present now some examples of formal proofs in H_{2}
There are two reasons for presenting them
First reason] is that all formulas we provide the formal proofs for play a crucial role in the proof of Completeness Theorem for H_{2}

The second reason is that they provide a "training ground" for a reader to learn how to develop formal proofs
For this reason we write some formal proofs in a full detail and we leave some for the reader to complete in a way explained in the following example

Important Lemma

We write \vdash instead of $\vdash_{H_{2}}$ for the sake of simplicity Reminder

In the construction of the formal proofs we often use the Deduction Theorem and the following Lemma 1 that was proved in the previous section

Lemma 1

$$
\text { (a) }(A \Rightarrow B),(B \Rightarrow C) \vdash_{H_{2}}(A \Rightarrow C)
$$

(b) $(A \Rightarrow(B \Rightarrow C)) \vdash_{H_{2}}((B \Rightarrow(A \Rightarrow C))$

Example 1

Example 1

Here are consecutive steps

$$
B_{1}, \ldots, B_{5}, B_{6}
$$

of the proof in H_{2} of $(\neg \neg B \Rightarrow B)$
$B_{1}: \quad((\neg B \Rightarrow \neg \neg B) \Rightarrow((\neg B \Rightarrow \neg B) \Rightarrow B))$
$B_{2}: \quad((\neg B \Rightarrow \neg B) \Rightarrow((\neg B \Rightarrow \neg \neg B) \Rightarrow B))$
$B_{3}: \quad(\neg B \Rightarrow \neg B)$
$B_{4}: \quad((\neg B \Rightarrow \neg \neg B) \Rightarrow B)$
$B_{5}: \quad(\neg \neg B \Rightarrow(\neg B \Rightarrow \neg \neg B))$
B_{6} : $(\neg \neg B \Rightarrow B)$

Exercise 1

Exercise 1

Complete the proof presented in Example 1 by providing comments how each step of the proof was obtained

Remark

The solution presented on the next slide shows how to write details of solutions

Solutions of other problems presented later are less detailed

Exercise 1 Solution

Solution

The comments that complete the proof are as follows.
$B_{1}: \quad((\neg B \Rightarrow \neg \neg B) \Rightarrow((\neg B \Rightarrow \neg B) \Rightarrow B))$
Axiom $A 3$ for $A=\neg B, B=B$
$B_{2}: \quad((\neg B \Rightarrow \neg B) \Rightarrow((\neg B \Rightarrow \neg \neg B) \Rightarrow B))$
B_{1} and Lemma 1 (b) for
$A=(\neg B \Rightarrow \neg \neg B), \quad B=(\neg B \Rightarrow \neg B), \quad C=B$,
i.e. we have
$((\neg B \Rightarrow \neg \neg B) \Rightarrow((\neg B \Rightarrow \neg B) \Rightarrow B)) \vdash((\neg B \Rightarrow \neg B) \Rightarrow$
$((\neg B \Rightarrow \neg \neg B) \Rightarrow B))$

Exercise 1 Solution

$B_{3}: \quad(\neg B \Rightarrow \neg B)$
We proved for H_{1} and hence for H_{2} that $\vdash(A \Rightarrow A)$ and we substitute $A=\neg B$
$B_{4}: \quad((\neg B \Rightarrow \neg \neg B) \Rightarrow B)$
B_{2}, B_{3} and MP
$B_{5}: \quad(\neg \neg B \Rightarrow(\neg B \Rightarrow \neg \neg B))$
Axiom $A 1$ for $A=\neg \neg B, B=\neg B$
$B_{6}: \quad(\neg \neg B \Rightarrow B)$
B_{4}, B_{5} and Lemma 1 (a) for
$A=\neg \neg B, B=(\neg B \Rightarrow \neg \neg B), C=B$
i.e. we have
$(\neg \neg B \Rightarrow(\neg B \Rightarrow \neg \neg B)),((\neg B \Rightarrow \neg \neg B) \Rightarrow B) \vdash(\neg \neg B \Rightarrow B)$

Proofs from Axioms Only

General remark

Observe that in steps

$$
B_{2}, B_{3}, B_{5}, B_{6}
$$

of the proof we called on previously proved facts and used them as a part of the proof

We can always obtain a formal proof that uses only axioms of the system by inserting previously constructed formal proofs of these facts into the places occupying by the respective steps $B_{2}, B_{3}, B_{5}, B_{6}$ where these facts were used

Proofs from Axioms

Example

Consider the step
B_{3} : $\quad(\neg B \Rightarrow \neg B)$
The formula ($\neg B \Rightarrow \neg B$) is a previously proved fact
We replace the formula ($\neg B \Rightarrow \neg B$) (in step step B_{3} by its formal proof that uses uses only axioms
We obtain this proof from the the previously constructed proof of $(A \Rightarrow A)$ by replacing A by $\neg B$
The last step of the inserted proof becomes now "old" step
B_{3} and we re-numerate all other steps accordingly

Proofs from Axioms Only

Here are consecutive first THREE steps of the proof of $(\neg \neg B \Rightarrow B)$
$B_{1}: \quad((\neg B \Rightarrow \neg \neg B) \Rightarrow((\neg B \Rightarrow \neg B) \Rightarrow B))$
$B_{2}: \quad((\neg B \Rightarrow \neg B) \Rightarrow((\neg B \Rightarrow \neg \neg B) \Rightarrow B))$
$B_{3}: \quad(\neg B \Rightarrow \neg B)$
We insert now the proof of $(\neg B \Rightarrow \neg B)$ after step B_{2} and erase the B_{3}
The last step of the inserted proof becomes the erased B_{3}

Proofs from Axioms Only

A part of new transformed proof is
$B_{1}: \quad((\neg B \Rightarrow \neg \neg B) \Rightarrow((\neg B \Rightarrow \neg B) \Rightarrow B)) \quad$ (Old $\left.B_{1}\right)$
$B_{2}: \quad((\neg B \Rightarrow \neg B) \Rightarrow((\neg B \Rightarrow \neg \neg B) \Rightarrow B)) \quad\left(\right.$ Old $\left.B_{2}\right)$
We insert here the proof from axioms only of Old B_{3}
$B_{3}: \quad((\neg B \Rightarrow((\neg B \Rightarrow \neg B) \Rightarrow \neg B)) \Rightarrow((\neg B \Rightarrow(\neg B \Rightarrow$
$\neg B)) \Rightarrow(\neg B \Rightarrow \neg B))$), (New $\left.B_{3}\right)$
$B_{4}: \quad(\neg B \Rightarrow((\neg B \Rightarrow \neg B) \Rightarrow \neg B))$
$\left.B_{5}: \quad((\neg B \Rightarrow(\neg B \Rightarrow \neg B)) \Rightarrow(\neg B \Rightarrow \neg B))\right)$
$B_{6}:(\neg B \Rightarrow(\neg B \Rightarrow \neg B))$
$B_{7}: \quad(\neg B \Rightarrow \neg B) \quad\left(\right.$ Old $\left.B_{3}\right)$

Proofs from Axioms Only

We repeat our procedure by replacing the step B_{2} by its formal proof as defined in the proof of the Lemma 1 (b)

We continue the process for all other steps which involved application of the Lemma 1 until we get a full formal proof from the axioms of H_{2} only

Usually we don't do it and we don't need to do it, but it is important to remember that it always can be done

Example 2

Example 2

Here are consecutive steps

$$
B_{1}, B_{2}, \ldots . ., B_{5}
$$

in a proof of $\quad(B \Rightarrow \neg \neg B)$
$B_{1} \quad((\neg \neg \neg B \Rightarrow \neg B) \Rightarrow((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B))$
$B_{2} \quad(\neg \neg \neg B \Rightarrow \neg B)$
$B_{3} \quad((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)$
$B_{4} \quad(B \Rightarrow(\neg \neg \neg B \Rightarrow B))$
$B_{5} \quad(B \Rightarrow \neg \neg B)$

Exercise 2

Exercise 2

Complete the proof presented in Example 2 by providing detailed comments how each step of the proof was obtained.

Solution

The comments that complete the proof are as follows.
$B_{1} \quad((\neg \neg \neg B \Rightarrow \neg B) \Rightarrow((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B))$
Axiom $A 3$ for $A=B, B=\neg \neg B$
$B_{2} \quad(\neg \neg \neg B \Rightarrow \neg B)$
Example 1 for $B=\neg B$

Exercise 2

$B_{3} \quad((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)$
B_{1}, B_{2} and MP
i.e. we have that

$$
\frac{(\neg \neg \neg B \Rightarrow \neg B) ;((\neg \neg \neg B \Rightarrow \neg B) \Rightarrow((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B))}{((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)}
$$

$B_{4} \quad(B \Rightarrow(\neg \neg \neg B \Rightarrow B))$
Axiom $A 1$ for $A=B, B=\neg \neg \neg B$
$B_{5} \quad(B \Rightarrow \neg \neg B)$
B_{3}, B_{4} and Lemma 1 (a) for
$A=B, B=(\neg \neg \neg B \Rightarrow B), C=\neg \neg B$,
i.e. we have that
$(B \Rightarrow(\neg \neg \neg B \Rightarrow B)),((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B) \vdash(B \Rightarrow \neg \neg B)$

Example 3

Example 3

Here are consecutive steps

$$
B_{1}, B_{2}, \ldots, B_{12} \text { in a proof of } \quad(\neg A \Rightarrow(A \Rightarrow B))
$$

$B_{1} \quad \neg A$
$B_{2} \quad A$
$B_{3} \quad(A \Rightarrow(\neg B \Rightarrow A))$
$B_{4} \quad(\neg A \Rightarrow(\neg B \Rightarrow \neg A))$
$B_{5} \quad(\neg B \Rightarrow A)$
$B_{6} \quad(\neg B \Rightarrow \neg A)$
$B_{7} \quad((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B))$

Example 3

$B_{8} \quad((\neg B \Rightarrow A) \Rightarrow B)$
$B_{9} B$
$B_{10} \neg A, A \vdash B$
$B_{11} \quad \neg A \vdash(A \Rightarrow B)$
$B_{12} \quad(\neg A \Rightarrow(A \Rightarrow B))$

Exercise 3

1. Complete the proof from the Example 3 by providing comments how each step of the proof was obtained.
2. Prove that

$$
\neg A, A \vdash B
$$

Exercise 4

Example 4

Here are consecutive steps $\quad B_{1}, \ldots, B_{7}$
in a proof of $\quad((\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B))$
$B_{1} \quad(\neg B \Rightarrow \neg A)$
$B_{2} \quad((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B))$
$B_{3} \quad(A \Rightarrow(\neg B \Rightarrow A))$
$B_{4} \quad((\neg B \Rightarrow A) \Rightarrow B)$
$B_{5} \quad(A \Rightarrow B)$
$B_{6} \quad(\neg B \Rightarrow \neg A) \vdash(A \Rightarrow B)$
$B_{7} \quad((\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B))$
Exercise 4
Complete the proof from Example 4 by providing comments how each step of the proof was obtained

Example 5

Example 5

Here are consecutive steps $\quad B_{1}, \ldots, B_{9}$
in a proof of $\quad((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$
$B_{1} \quad(A \Rightarrow B)$
$B_{2} \quad(\neg \neg A \Rightarrow A)$
$B_{3} \quad(\neg \neg A \Rightarrow B)$
$B_{4} \quad(B \Rightarrow \neg \neg B)$
$B_{5} \quad(\neg \neg A \Rightarrow \neg \neg B)$
$B_{6} \quad((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow(\neg B \Rightarrow \neg A))$
$B_{7} \quad(\neg B \Rightarrow \neg A)$
$B_{8} \quad(A \Rightarrow B) \vdash(\neg B \Rightarrow \neg A)$
$B_{9} \quad((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$

Exercise 5

Exercise 5

Complete the proof of Example 5 by providing comments how each step of the proof was obtained.

Solution

$B_{1} \quad(A \Rightarrow B)$
Hypothesis
$B_{2} \quad(\neg \neg A \Rightarrow A)$
Example 1 for $B=A$
$B_{3} \quad(\neg \neg A \Rightarrow B)$
Lemma 1 (a) for $A=\neg \neg A, B=A, C=B$
$B_{4} \quad(B \Rightarrow \neg \neg B)$
Example 2

Exercise 5

$B_{5} \quad(\neg \neg A \Rightarrow \neg \neg B)$
Lemma 1 (a) for $A=\neg \neg A, B=B, \quad C=\neg \neg B$
$B_{6} \quad((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow(\neg B \Rightarrow \neg A))$
Example 4 for $B=\neg A, \quad A=\neg B$
$B_{7} \quad(\neg B \Rightarrow \neg A)$
B_{5}, B_{6} and MP
$B_{8} \quad(A \Rightarrow B) \vdash(\neg B \Rightarrow \neg A)$
$B_{1}-B_{7}$
$B_{9} \quad((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$
Deduction Theorem

Example 6

Example 6

Prove that

$$
\vdash(A \Rightarrow(\neg B \Rightarrow(\neg(A \Rightarrow B))))
$$

Solution

Here are consecutive steps (with comments) of building the formal proof
$B_{1} \quad A,(A \Rightarrow B) \vdash B$
This is MP

Example 6

$B_{2} \quad A \vdash((A \Rightarrow B) \Rightarrow B)$

Deduction Theorem

$B_{3} \quad \vdash(A \Rightarrow((A \Rightarrow B) \Rightarrow B))$
Deduction Theorem
$B_{4} \quad \vdash(((A \Rightarrow B) \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg(A \Rightarrow B)))$
Example 5 for $A=(A \Rightarrow B), B=B$
$B_{5} \quad \vdash(A \Rightarrow(\neg B \Rightarrow(\neg(A \Rightarrow B)))$
B_{3}, B_{4} and Lemma $2(a)$ for
$A=A \quad B=((A \Rightarrow B) \Rightarrow B), \quad C=(\neg B \Rightarrow(\neg(A \Rightarrow B))$

Observe that the proof presented is not the only proof

Example 7

Example 7

Here are consecutive steps $\quad B_{1}, \ldots, B_{12}$
in a proof of $\quad((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$
$B_{1} \quad(A \Rightarrow B)$
$B_{2} \quad(\neg A \Rightarrow B)$
$B_{3} \quad((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$
$B_{4} \quad(\neg B \Rightarrow \neg A)$
$B_{5} \quad((\neg A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg \neg A))$
$B_{6} \quad(\neg B \Rightarrow \neg \neg A)$
$\left.B_{7} \quad((\neg B \Rightarrow \neg \neg A) \Rightarrow((\neg B \Rightarrow \neg A) \Rightarrow B))\right)$

Example 7

$B_{8} \quad((\neg B \Rightarrow \neg A) \Rightarrow B)$
$B_{9} \quad B$
$B_{10} \quad(A \Rightarrow B),(\neg A \Rightarrow B) \vdash B$
$B_{11} \quad(A \Rightarrow B) \vdash((\neg A \Rightarrow B) \Rightarrow B)$
$B_{12} \quad((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$

Exercise 7

Complete the proof in Example 7 by providing comments how each step of the proof was obtained

Exercise 7

Exercise 7

Solution

$B_{1} \quad(A \Rightarrow B)$
Hypothesis
$B_{2} \quad(\neg A \Rightarrow B)$
Hypothesis
$B_{3} \quad((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$
Example 5
$B_{4} \quad(\neg B \Rightarrow \neg A)$
B_{1}, B_{3} and MP
$B_{5} \quad((\neg A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg \neg A))$
Example 5 for $A=\neg A, B=B$
$B_{6} \quad(\neg B \Rightarrow \neg \neg A)$
$B 2, B_{5}$ and MP

Exercise 7

$\left.B_{7} \quad((\neg B \Rightarrow \neg \neg A) \Rightarrow((\neg B \Rightarrow \neg A) \Rightarrow B))\right)$
Axiom $A 3$ for $B=B, \quad A=\neg A$
$B_{8} \quad((\neg B \Rightarrow \neg A) \Rightarrow B)$
B_{6}, B_{7} and MP
$B_{9} \quad B$
B_{4}, B_{8} and MP
$B_{10} \quad(A \Rightarrow B),(\neg A \Rightarrow B) \vdash B$
$B 1$ - B9
$B_{11} \quad(A \Rightarrow B) \vdash((\neg A \Rightarrow B) \Rightarrow B)$
Deduction Theorem
$B_{12} \quad((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$
Deduction Theorem

Example 8

Example 8

Here are consecutive steps

$$
B_{1}, \ldots, B_{3}
$$

in a proof of

$$
((\neg A \Rightarrow A) \Rightarrow A)
$$

$\left.B_{1} \quad((\neg A \Rightarrow \neg A) \Rightarrow((\neg A \Rightarrow A) \Rightarrow A))\right)$
$B_{2} \quad(\neg A \Rightarrow \neg A)$
$\left.B_{3} \quad((\neg A \Rightarrow A) \Rightarrow A)\right)$

Exercise 8

Exercise 8

Complete the proof of Example 8 by providing comments how each step of the proof was obtained Solution
$\left.B_{1} \quad((\neg A \Rightarrow \neg A) \Rightarrow((\neg A \Rightarrow A) \Rightarrow A))\right)$
Axiom $A 3$ for $B=A$
$B_{1} \quad(\neg A \Rightarrow \neg A)$
Already proved $(A \Rightarrow A)$ for $A=\neg A$
$\left.B_{1} \quad((\neg A \Rightarrow A) \Rightarrow A)\right)$
B_{1}, B_{2} and MP

LEMMA

We summarize all the formal proofs in H_{2} provided in our Examples and Exercises in a form of a following lemma

Lemma

The following formulas are provable in H_{2}

1. $(A \Rightarrow A)$
2. $(\neg \neg B \Rightarrow B)$
3. $(B \Rightarrow \neg \neg B)$
4. $(\neg A \Rightarrow(A \Rightarrow B))$
5. $\quad((\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B))$
6. $((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$
7. $\quad(A \Rightarrow(\neg B \Rightarrow(\neg(A \Rightarrow B)))$
8. $((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$
9. $((\neg A \Rightarrow A) \Rightarrow A)$

Completeness Theorem for H_{2}

Formulas 1, 3, 4, and 7-9 from the set of provable formulas from the Lemma are all formulas needed together with the logical axioms of H_{2} to execute the two proofs of the Completeness Theorem for H_{2}

We present these proofs in the Slides Set 3

The two proofs represent two different methods of proving the Completeness Theorem

Chapter 5
 Hilbert Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 3

PART 4: Completeness Theorem Proof One : Constructive Proof

Completeness Theorem: Proof One

The Proof One of the Completeness Theorem for H_{2} presented here is similar in its structure to the proof of the Deduction Theorem

The Proof One is due to Kalmar, 1935 and is a detailed version of the one published in Elliott Mendelson's book Introduction to Mathematical Logic, 1987

The Proof One is, as Deduction Theorem was, constructive It means it defines a method how one can use the assumption that a formula A is a tautology in order to construct its formal proof

Completeness Theorem: Proof One

The Proof One relies heavily on the Deduction Theorem and is very elegant and simple but its methods are applicable only to the classical propositional logic

The Proof One is specific to a propositional language

$$
\mathcal{L}_{\{\neg, \Rightarrow\}}
$$

and to the proof system H_{2}

Nevertheless, the H_{2} based Proof One can be adopted and extended to other classical propositional languages containing implication and negation

Completeness Theorem: Proof One

For example we can adopt the Proof One to languages

$$
\left.\left.\mathcal{L}_{\{\neg, \cup,}, \quad \mathcal{L}_{\{\neg, \cap, \cup,}, \quad \mathcal{L}_{\{\neg, \cap, \cup,}, \Rightarrow, \Leftrightarrow\right\}\right\}
$$

and appropriate proof systems based for them

We do so by adding new special logical axioms to the logical axioms of the proof system H_{2}

Such obtained proof systems are called extensions of the system H_{2}

Completeness Theorem: Proof One

One can think about the system H_{2} with its axiomatization given by set

$$
\{A 1, A 2, A 3\}
$$

of logical axioms, and its language

$$
\mathcal{L}_{\{\neg, \Rightarrow\}}
$$

as in a sense, a "minimal" Hilbert System for classical propositional logic

The Proof One can not be extended to the classical predicate logic, neither to the variety of non-classical logics

Proof System H_{2}

Reminder: H_{2} is the following proof system:

$$
H_{2}=\left(\mathcal{L}_{\{\Rightarrow, \neg\}}, \mathcal{F}, \quad\{A 1, A 2, A 3\}, M P\right)
$$

The axioms $A 1-A 3$ are defined as follows.
A1 $(A \Rightarrow(B \Rightarrow A))$,
A2 $\quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$,
A3 $\quad((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B)))$

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

Proof System H_{2}

Obviously, the selected axioms $A 1, A 2, A 3$ are tautologies, and the MP rule leads from tautologies to tautologies.

Hence our proof system H_{2} is sound and the following theorem holds

Soundness Theorem

For every formula $A \in \mathcal{F}$,
If $\vdash_{\mathrm{H}_{2}} A$, then $\models A$

System H_{2} Lemma

We have proved and presented in Slides Set 2 the following Lemma
The following formulas a are provable in H_{2}

1. $(A \Rightarrow A)$
2. $(\neg \neg B \Rightarrow B)$
3. $(B \Rightarrow \neg \neg B)$
4. $(\neg A \Rightarrow(A \Rightarrow B))$
5. $((\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B))$
6. $((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$
7. $(A \Rightarrow(\neg B \Rightarrow(\neg(A \Rightarrow B)))$
8. $((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$
9. $((\neg A \Rightarrow A) \Rightarrow A)$

Proof One

The Proof One of Completeness Theorem presented here is very elegant and simple, but is applicable only to the classical propositional logic

This proof is, as was the proof of Deduction Theorem, a fully constructive

The technique it uses, because of its specifics can't be used even in a case of classical predicate logic, not to mention variaty of non-classical logics

Completeness Theorem

The Proof One is similar in its structure to the proof of the Deduction Theorem and is due to Kalmar, 1935

It is a constructive proof and relies heavily on the Deduction Theorem

It is possible to prove the Completeness Theorem independently of the Deduction Theorem and we will discus such a proofs in later chapters

Main Lemma

Some Notations

We write $\vdash A$ instead of $\vdash s A$ as the system S is fixed.
Let A be a formula and $b_{1}, b_{2}, \ldots, b_{n}$ be all propositional variables that occur in A, we write it as $A=A\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ Lemma Definition
Let v be a truth assignment $v: V A R \longrightarrow\{T, F\}$
We define, for $A, b_{1}, b_{2}, \ldots, b_{n}$ and truth assignment v corresponding formulas $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ as follows:

$$
\begin{aligned}
& A^{\prime}=\left\{\begin{array}{lll}
A & \text { if } & v^{*}(A)=T \\
\neg A & \text { if } & v^{*}(A)=F
\end{array}\right. \\
& B_{i}=\left\{\begin{array}{lll}
b_{i} & \text { if } & v\left(b_{i}\right)=T \\
\neg b_{i} & \text { if } & v\left(b_{i}\right)=F
\end{array}\right.
\end{aligned}
$$

for $i=1,2, \ldots, n$

Examples

Example

Let A be a formula $(a \Rightarrow \neg b)$
Let v be such that $\quad v(a)=T, \quad v(b)=F$
In this case we have that $b_{1}=a, b_{2}=b$, and
$v^{*}(A)=v^{*}(a \Rightarrow \neg b)=v(a) \Rightarrow \neg v(b)=T \Rightarrow \neg F=T$
The corresponding A^{\prime}, B_{1}, B_{2} are:
$A^{\prime}=A \quad$ as $\quad v^{*}(A)=T$
$B_{1}=a \quad$ as $\quad v(a)=T$
$B_{2}=\neg b \quad$ as $v(b)=F$

Examples

Example 2

Let A be a formula $((\neg a \Rightarrow \neg b) \Rightarrow c)$
and let v be such that $v(a)=T, \quad v(b)=F, v(c)=F$
Evaluate $A^{\prime}, B_{1}, \ldots B_{n}$ as defined by the definition 1
In this case $n=3$ and $b_{1}=a, b_{2}=b, b_{3}=c$
and we evaluate

$$
\begin{aligned}
& v^{*}(A)=v^{*}((\neg a \Rightarrow \neg b) \Rightarrow c)=((\neg v(a) \Rightarrow \neg v(b)) \Rightarrow \\
& v(c))=((\neg T \Rightarrow \neg F) \Rightarrow F)=(T \Rightarrow F)=F
\end{aligned}
$$

The corresponding $A^{\prime}, B_{1}, B_{2}, B_{2}$ are:

$$
A^{\prime}=\neg((\neg a \Rightarrow \neg b) \Rightarrow c) \text { as } v^{*}(A)=F
$$

$B_{1}=a \quad$ as $v(a)=T, \quad B_{2}=\neg b$ as $v(b)=F$, and
$B_{3}=\neg c$ as $v(c)=F$

Main Lemma

The Main Lemma stated below describes a method of transforming a semantic notion of a tautology into a syntactic notion of provability

It defines, for any formula A and a truth assignment $v a$ corresponding deducibility relation

Main Lemma

For any formula $A=A\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and any truth assignment v
If $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ are corresponding formulas defined by Lemma Definition, then

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

Examples

Example

Let A be a formula $(a \Rightarrow \neg b)$
Let v be such that $v(a)=T, \quad v(b)=F$
We have that $A^{\prime}=A, \quad B_{1}=a, \quad B_{2}=\neg b$
Main Lemma asserts that

$$
a, \neg b \vdash(a \Rightarrow \neg b)
$$

Example

Let A be a formula $((\neg a \Rightarrow \neg b) \Rightarrow c)$ and let v be such that $\quad v(a)=T, \quad v(b)=F, \quad v(c)=F$
Main Lemma asserts that

$$
a, \neg b, \neg c \vdash \neg((\neg a \Rightarrow \neg b) \Rightarrow c)
$$

Proof of the Main Lemma

The proof is by induction on the degree of the formula A Base Case $n=0$

In this case A is atomic and so consists of a single propositional variable, say a
If $v^{*}(A)=T$ then we have by Lemma Definition
$A^{\prime}=A=a, B_{1}=a$
We obtain, by definition of provability from a set Γ of hypothesis for $\Gamma=\{a\}$ that

$$
a \vdash a
$$

Proof of the Main Lemma

If $v^{*}(A)=F$ we have by Lemma Definition that

$$
A^{\prime}=\neg A=\neg a \quad \text { and } \quad B_{1}=\neg a
$$

We obtain, by definition of provability from a set Γ of hypothesis for $\Gamma=\{\neg a\}$ that

$$
\neg a \vdash \neg a
$$

This proves that Main Lemma holds for $\mathrm{n}=0$

Proof of the Main Lemma

Inductive Step

Assume that the Main Lemma holds for any formula with
$j<n$ connectives
Need to prove: the Main Lemma holds for A with n connectives

There are several sub-cases to deal with

Case: A is $\neg A_{1}$
By the inductive assumption we have the formulas

$$
A_{1}^{\prime}, \quad B_{1}, B_{2}, \ldots, B_{n}
$$

corresponding to the A_{1} and the propositional variables $b_{1}, b_{2}, \ldots, b_{n}$ in A_{1}, such that

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A_{1}^{\prime}
$$

Proof of the Main Lemma

Observe that the formulas A and $\neg A_{1}$ have the same propositional variables
So the corresponding formulas

$$
B_{1}, B_{2}, \ldots, B_{n}
$$

are the same for both of them
We are going to show that the inductive assumption allows us to prove that

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

There are two cases to consider.

Proof of the Main Lemma

Case: $\quad v^{*}\left(A_{1}\right)=T$
If $v^{*}\left(A_{1}\right)=T$ then by Lemma Definition $A_{1}^{\prime}=A_{1}$ and by the inductive assumption

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A_{1}
$$

In this case: $\quad v^{*}(A)=v^{*}\left(\neg A_{1}\right)=\neg V^{*}(T)=F$
So we have that

$$
A^{\prime}=\neg A=\neg \neg A_{1}
$$

Proof of the Main Lemma

By Lemma formula 3. we have that that

$$
\vdash\left(A_{1} \Rightarrow \neg \neg A_{1}\right)
$$

we obtain by the monotonicity that also

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash\left(A_{1} \Rightarrow \neg \neg A_{1}\right)
$$

By inductive assumption

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A_{1}
$$

and by MP we have

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash \neg \neg A_{1}
$$

and as $A^{\prime}=\neg A=\neg \neg A_{1}$ we get $B_{1}, B_{2}, \ldots, B_{n} \vdash \neg A$ and so we proved that

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

Proof of the Main Lemma

Case: $\quad v^{*}\left(A_{1}\right)=F$
If $v^{*}\left(A_{1}\right)=F$ then $A_{1}^{\prime}=\neg A_{1}$ and $v^{*}(A)=T$ so

$$
A^{\prime}=A
$$

Therefore by the inductive assumption we have that

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash \neg A_{1}
$$

as $A^{\prime}=\neg A_{1}$ we get

$$
B_{1}, B_{2}, \ldots, B_{n}+A^{\prime}
$$

Proof of the Main Lemma

Case: A is $\left(A_{1} \Rightarrow A_{2}\right)$
If A is $\left(A_{1} \Rightarrow A_{2}\right)$ then A_{1} and A_{2} have less than n connectives
$A=A\left(b_{1}, \ldots b_{n}\right) \quad$ so there are some subsequences c_{1}, \ldots, c_{k} and $d_{1}, \ldots d_{m}$ for $k, m \leq n$ of the sequence b_{1}, \ldots, b_{n} such that

$$
A_{1}=A_{1}\left(c_{1}, \ldots, c_{k}\right) \quad \text { and } \quad A_{2}=A\left(d_{1}, \ldots d_{m}\right)
$$

Proof of the Main Lemma

A_{1} and A_{2} have less than n connectives and so by the inductive assumption we have appropriate formulas C_{1}, \ldots, C_{k} and $D_{1}, \ldots D_{m}$ such that

$$
C_{1}, C_{2}, \ldots, C_{k} \vdash A_{1}^{\prime} \quad \text { and } \quad D_{1}, D_{2}, \ldots, D_{m} \vdash A_{2}^{\prime}
$$

and $C_{1}, C_{2}, \ldots, C_{k}, D_{1}, D_{2}, \ldots, D_{m}$ are subsequences of formulas $B_{1}, B_{2}, \ldots, B_{n}$ corresponding to the propositional variables in A

By monotonicity we have the also

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A_{1}^{\prime} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \vdash A_{2}^{\prime}
$$

Now we have the following sub-case to consider

Proof of the Main Lemma

Case: $\quad v^{*}\left(A_{1}\right)=v^{*}\left(A_{2}\right)=T$
If $v^{*}\left(A_{1}\right)=T$ then $A_{1}{ }^{\prime}=A_{1}$ and
if $\quad v^{*}\left(A_{2}\right)=T \quad$ then $A_{2}{ }^{\prime}=A_{2}$
We also have $v^{*}\left(A_{1} \Rightarrow A_{2}\right)=T$ and so $A^{\prime}=\left(A_{1} \Rightarrow A_{2}\right)$
By the above and the inductive assumption

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A_{2}
$$

and By Axiom 1 and by monotonicity we have

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash\left(A_{2} \Rightarrow\left(A_{1} \Rightarrow A_{2}\right)\right)
$$

By above and MP we have $B_{1}, B_{2}, \ldots, B_{n} \vdash\left(A_{1} \Rightarrow A_{2}\right)$ that is

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

Proof of the Main Lemma

Case: $\quad v^{*}\left(A_{1}\right)=T, v^{*}\left(A_{2}\right)=F$
If $v^{*}\left(A_{1}\right)=T$ then $A_{1}^{\prime}=A_{1}$ and
if $v^{*}\left(A_{2}\right)=F \quad$ then $\quad A_{2}{ }^{\prime}=\neg A_{2}$
Also we have in this case $v^{*}\left(A_{1} \Rightarrow A_{2}\right)=F \quad$ and so
$A^{\prime}=\neg\left(A_{1} \Rightarrow A_{2}\right)$
By the above, the inductive assumption and monotonicity
$B_{1}, B_{2}, \ldots, B_{n} \vdash \neg A_{2}$
By Lemma 7. and by monotonicity we have

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash\left(A_{1} \Rightarrow\left(\neg A_{2} \Rightarrow \neg\left(A_{1} \Rightarrow A_{2}\right)\right)\right)
$$

By above and MP twice we have
$B_{1}, B_{2}, \ldots, B_{n} \vdash \neg\left(A_{1} \Rightarrow A_{2}\right)$ that is

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

Proof of the Main Lemma

Case: $\quad v^{*}\left(A_{1}\right)=F$
Observe that if $v^{*}\left(A_{1}\right)=F$ then $A_{1}{ }^{\prime}$ is $\neg A_{1}$ and, whatever value v gives A_{2}, we have

$$
v^{*}\left(A_{1} \Rightarrow A_{2}\right)=T
$$

So A^{\prime} is $\left(A_{1} \Rightarrow A_{2}\right)$
Therefore

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash \neg A_{1}
$$

From Lemma formula 4. and by monotonicity we have

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash\left(\neg A_{1} \Rightarrow\left(A_{1} \Rightarrow A_{2}\right)\right)
$$

Proof of the Main Lemma

By Modus Ponens we get that

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash\left(A_{1} \Rightarrow A_{2}\right)
$$

that is

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

We have covered all cases and, by mathematical induction on the degree of the formula A we got

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

This ends the proof of the Main Lemma

Proof One of Completeness Theorem

Proof of Completeness Theorem

Now we use the Main Lemma to prove the following

Completeness Theorem (Completeness Part)
For any formula $A \in \mathcal{F}$

$$
\text { if } \models A \text { then } \vdash A
$$

Proof
Assume that $\models A$
Let $b_{1}, b_{2}, \ldots, b_{n}$ be all propositional variables that occur in the formula A, i.e.

$$
A=A\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

By the Main Lemma we know that, for any truth assignment v, the corresponding formulas $A^{\prime}, B_{1}, B_{2}, \ldots, B_{n}$ can be found such that

$$
B_{1}, B_{2}, \ldots, B_{n} \vdash A^{\prime}
$$

Proof Completeness Theorem

Note that in this case $A^{\prime}=A$ for any v since $\models A$
We have two cases.

1. If v is such that $v\left(b_{n}\right)=T$, then $B_{n}=b_{n}$ and

$$
B_{1}, B_{2}, \ldots, b_{n} \vdash A
$$

2. If v is such that $v\left(b_{n}\right)=F$, then $B_{n}=\neg b_{n}$ and by the Main Lemma

$$
B_{1}, B_{2}, \ldots, \neg b_{n} \vdash A
$$

So, by the Deduction Theorem we have

$$
B_{1}, B_{2}, \ldots, B_{n-1} \vdash\left(b_{n} \Rightarrow A\right)
$$

and

$$
B_{1}, B_{2}, \ldots, B_{n-1} \vdash\left(\neg b_{n} \Rightarrow A\right)
$$

Proof of Completeness Theorem

By Lemma formula 8.

$$
\vdash((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))
$$

for $A=b_{n}, B=A$
By monotonicity we have that

$$
B_{1}, B_{2}, \ldots, B_{n-1} \vdash\left(\left(b_{n} \Rightarrow A\right) \Rightarrow\left(\left(\neg b_{n} \Rightarrow A\right) \Rightarrow A\right)\right)
$$

Applying Modus Ponens twice we get that

$$
B_{1}, B_{2}, \ldots, B_{n-1} \vdash A
$$

Similarly, $v^{*}\left(B_{n-1}\right)$ may be T or F Applying the Main Lemma , the Deduction Theorem, monotonicity, Lemma formula 8. and Modus Ponens twice we can eliminate B_{n-1} just as we have eliminated B_{n} After n steps, we finally obtain proof of A in H_{2}, i.e. we proved that

Constructiveness of the Proof

Observe that the proof of the Completeness Theorem is constructive

Moreover, we have used in it only Main Lemma and Deduction Theorem which both have constructive proofs

We can hence reconstruct proofs in each case when we apply these theorems back to the original axioms of H_{2}

Constructiveness of the Proof

The same applies to the proofs in H_{2} of all formulas 1. - 9. of the Lemma

It means that for any A, such that
$\models A$
the set V_{A} of all v restricted to A provides a method of a construction of the formal proof of A in H_{2}

Example

Example

The proof of Completeness Theorem defines a method of efficiently combining truth assignments $v \in V_{A}$ restricted to A while constructing the proof of A
Let's consider a tautology A, where the formula A is

$$
A(a, b, c)=((\neg a \Rightarrow b) \Rightarrow(\neg(\neg a \Rightarrow b) \Rightarrow c)
$$

We present on the next slides all steps of the Proof One as applied to A

Example

Given

$$
A(a, b, c)=((\neg a \Rightarrow b) \Rightarrow(\neg(\neg a \Rightarrow b) \Rightarrow c)
$$

By the Main Lemma and the assumption that

$$
\models A(a, b, c)
$$

any $v \in V_{A}$ defines formulas B_{a}, B_{b}, B_{c} such that

$$
B_{a}, B_{b}, B_{c} \vdash A
$$

The proof is based on a method of using all $v \in V_{A}$ (there are 8 of them) to define a process of elimination of all hypothesis B_{a}, B_{b}, B_{c} to construct the proof of A, i.e. to prove that

Example

Step 1: elimination of B_{C}
Observe that by definition, B_{c} is c or $\neg C$ depending on the choice of $v \in V_{A}$
We choose two truth assignments $v_{1} \neq v_{2} \in V_{A}$ such that

$$
v_{1}\left|\{a, b\}=v_{2}\right|\{a, b\} \quad \text { and } \quad v_{1}(c)=T, \quad v_{2}(c)=F
$$

Case 1: $v_{1}(c)=T$
By by definition $\quad B_{c}=c$
By our choice, the assumption that $\models A$ and the Main
Lemma applied to v_{1}

$$
B_{a}, B_{b}, c \vdash A
$$

By Deduction Theorem we have that

$$
B_{a}, B_{b} \vdash(c \Rightarrow A)
$$

Example

Case 2: $\quad v_{2}(c)=F$
By definition $\quad B_{C}=\neg C$
By our choice, assumption that $\models A$, and the Main Lemma applied to v_{2}

$$
B_{a}, B_{b}, \neg C \vdash A
$$

By the Deduction Theorem we have that

$$
B_{a}, B_{b} \vdash(\neg c \Rightarrow A)
$$

Example

By Lemma formula 8. for $A=c, B=A$ we have that

$$
\vdash((c \Rightarrow A) \Rightarrow((\neg c \Rightarrow A) \Rightarrow A))
$$

By monotonicity we have that

$$
B_{a}, B_{b} \vdash((c \Rightarrow A) \Rightarrow((\neg c \Rightarrow A) \Rightarrow A))
$$

Applying Modus Ponens twice to the above property and properties on the previous slide we get that

$$
B_{a}, B_{b} \vdash A
$$

We have eliminated B_{C}

Example

Step 2: elimination of B_{b} from $B_{a}, B_{b} \vdash A$
We repeat the Step 1
As before we have 2 cases to consider: $B_{b}=b$ or $B_{b}=\neg b$
We choose two truth assignments $w_{1} \neq w_{2} \in V_{A}$ such that
$w_{1}\left|\{a\}=w_{2}\right|\{a\}=v_{1}\left|\{a\}=v_{2}\right|\{a\}$ and $w_{1}(b)=T, w_{2}(b)=F$
Case 1: $w_{1}(b)=T$ and by definition $B_{b}=b$
By our choice, assumption that $\models A$ and the Main Lemma applied to w_{1}

$$
B_{a}, b \vdash A
$$

By Deduction Theorem we have that

$$
B_{a} \vdash(b \Rightarrow A)
$$

Example

Case 2: $\quad w_{2}(b)=F$ and by definition $\quad B_{b}=\neg b$
By choice, assumption that $\models A$ and the Main Lemma applied to w_{2}

$$
B_{a}, \neg b \vdash A
$$

By the Deduction Theorem we have that

$$
B_{a} \vdash(\neg b \Rightarrow A)
$$

Example

By Lemma formula 8. for $A=b, B=A$ we have that

$$
\vdash((b \Rightarrow A) \Rightarrow((\neg b \Rightarrow A) \Rightarrow A))
$$

By monotonicity

$$
B_{a} \vdash((b \Rightarrow A) \Rightarrow((\neg b \Rightarrow A) \Rightarrow A))
$$

Applying Modus Ponens twice to the above property and properties from the previous slide we get that

$$
B_{a} \vdash A
$$

We have eliminated B_{b}

Example

Step 3: elimination] of B_{a} from $B_{a} \vdash A$
We repeat the Step 2
As before we have 2 cases to consider: $B_{a}=a$ or $B_{a}=\neg a$ We choose two truth assignments $g_{1} \neq g_{2} \in V_{A}$ such that

$$
g_{1}(a)=T \quad \text { and } \quad g_{2}(a)=F
$$

Case 1: $g_{1}(a)=T$, and by definition $\quad B_{a}=a$
By the choice, assumption that $\models A$, and the Main Lemma applied to g_{1}

$$
a \vdash A
$$

By Deduction Theorem we have that

$$
\vdash(a \Rightarrow A)
$$

Example

Case 2: $\quad g_{2}(a)=F$ and by definition $B_{a}=\neg a$
By the choice, assumption that $\models A$, and the Main Lemma applied to g_{2}

$$
\neg a \vdash A
$$

By the Deduction Theorem we have that

$$
\vdash(\neg a \Rightarrow A)
$$

Example

By Lemma formula 8. for $A=a, B=A$ we have that

$$
\vdash((a \Rightarrow A) \Rightarrow((\neg a \Rightarrow A) \Rightarrow A))
$$

Applying Modus Ponens twice to the above property and properties from previous slides we get that

$$
\vdash A
$$

We have eliminated B_{a}, B_{b}, B_{c} and constructed the proof of A in S

Exercises

Exercise 1

The Lemma listed formulas 1. - 9. that we said they were needed for both proofs of the Completeness Theorem. List all the formulas from tLemma that are are needed for the Proof One alone

Exercises

Exercise 2

The system H_{2} was defined and the Proof One was carried out for the language $\mathcal{L}_{\{\Rightarrow, \neg\}}$
Extend the system H_{2} and the Proof One to the language $\mathcal{L}_{\{\Rightarrow, \cup,\urcorner\}}$ by adding all new cases concerning the new connective \cup
List all new formulas needed to be added as new Axioms to H_{2} to be able to follow the methods of the original Proof One

Exercise 3

Repeat the Exercise 2 for he language

$$
\mathcal{L}_{\{\Rightarrow, \cup, \cap \neg\}}
$$

Chapter 5
 Hilbert Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 4

PART 6: Completeness Theorem Proof Two: A Counter- Model Existence Method

Completeness Theorem Proof Two

Our goal now is to prove the following
Completeness Theorem (Completeness Part)
For any formula $A \in \mathcal{F}$ of H_{2}

$$
\text { if } \models A \text { then } \vdash A
$$

We do so by proving its logically equivalent opposite implication:

If $\nvdash A$, then $\nLeftarrow A$

Hence the Proof Two consists of using the information that a formula A is not provable to show the existence of a counter-model for A

Completeness Theorem Proof Two

The Proof Two is much more complicated then the Proof One

The main point of the proof is a general, non- constructive method for proving existence of a counter-model for any non-provable formula A

The generality of the method makes it possible to adopt it for other cases of predicate and some non-classical logics

This is why we call the Proof Two a counter-model existence method

Proof Two Steps

The construction of a counter-model for any non-provable formula A presented in this proof is abstract, not constructive, as it was in the Proof One

It can be generalized to the case of predicate logic, and many of non-classical logics; propositional and predicate.

This is the reason we present it here

Proof Two Steps

We remind that $\forall \vDash A$ means that there is a truth assignment $v: V A R \longrightarrow\{T, F\}$, such that (as we are in classical semantics) $v^{*}(A)=F$

We assume that A does not have a proof i.e. $\nvdash A$ we use this information in order to define a general method of constructing v, such that $v^{*}(A)=F$

This is done in the following steps.

Proof Two Steps

Step 1

Definition of a special set of formulas Δ^{*}
We use the information $\nvdash A$ to define a set of formulas Δ^{*} such that $\neg A \in \Delta^{*}$

Step 2

Definition of the counter - model
We define the variable truth assignment $\quad v: V A R \longrightarrow\{T, F\}$ as follows:

$$
v(a)=\left\{\begin{array}{lll}
T & \text { if } & \Delta^{*}+a \\
F & \text { if } & \Delta^{*}+\neg a
\end{array}\right.
$$

Proof 2 Steps

Step 3

We prove that v is a counter-model for A
We first prove a following more general property of v

Property

The set Δ^{*} and v defined in the Steps 1 and 2 are such that for every formula $B \in \mathcal{F}$

$$
v^{*}(B)=\left\{\begin{array}{lll}
T & \text { if } & \Delta^{*} \vdash B \\
F & \text { if } & \Delta^{*} \vdash \neg B
\end{array}\right.
$$

We then use the Step 3 to prove that $v^{*}(A)=F$

Main Notions

The definition, construction and the properties of the set Δ^{*} and hence the Step 1, are the most essential for the Proof Two

The other steps have mainly technical character

The main notions involved in the proof are: consistent set, complete set and a consistent complete extension of a set of formulas

We are going prove some essential facts about them.

Consistent and Inconsistent Sets

There exist two definitions of consistency; semantical and syntactical

Semantical definition uses the notion of a model and says:

A set is consistent if it has a model

Syntactical definition uses the notion of provability and says:

A set is consistent if one can't prove a contradiction from it

Consistent and Inconsistent Sets

In our proof of the Completeness Theorem we use the following formal syntactical definition of consistency of a set of formulas

Definition of a consistent set

We say that a set $\Delta \subseteq \mathcal{F}$ of formulas is consistent if and only if
there is no a formula $A \in \mathcal{F}$ such that

$$
\Delta \vdash A \text { and } \Delta \vdash \neg A
$$

Consistent and Inconsistent Sets

Definition of an inconsistent set

A set $\Delta \subseteq \mathcal{F}$ is inconsistent if and only if there is a formula $A \in \mathcal{F}$ such that

$$
\Delta \vdash A \text { and } \Delta \vdash \neg A
$$

The notion of consistency, as defined above, is characterized by the following Consistency Lemma

Consistency Condition Lemma

Lemma Consistency Condition

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent
(i) Δ is consistent
(ii) there is a formula $A \in \mathcal{F}$ such that $\Delta \nvdash A$

Proof of Consistency Lemma

Proof

To establish the equivalence of (i) and (ii) we prove the corresponding opposite implications

We prove the following two cases

Case 1 not (ii) implies not (i)

Case 2 not (i) implies not (ii)

Proof of Consistency Lemma

Case 1

Assume that not (ii)
It means that for all formulas $A \in \mathcal{F}$ we have that

$$
\Delta \vdash A
$$

In particular it is true for a certain $A=B$ and for a certain $A=\neg B$ i.e.

$$
\Delta \vdash B \text { and } \Delta \vdash \neg B
$$

and hence it proves that Δ is inconsistent
i.e. not (i) holds

Proof of Consistency Lemma

Case 2

Assume that not (i), i.e that Δ is inconsistent
Then there is a formula A such that $\Delta \vdash A$ and $\Delta \vdash \neg A$
Let B be any formula
We proved (Lemma formula 6.) that $\vdash(\neg A \Rightarrow(A \Rightarrow B))$
By monotonicity

$$
\Delta \vdash(\neg A \Rightarrow(A \Rightarrow B))
$$

Applying Modus Ponens twice to $\neg A$ first, and to A next we get that $\Delta \vdash B$ for any formula B
Thus not (ii) and it ends the proof of the Consistency Condition Lemma

Inconsistency Condition Lemma

Inconsistent sets are hence characterized by the following fact

Lemma Inconsistency Condition
For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:
(i) Δ is inconsistent,
(i) for any formula $A \in \mathcal{F} \Delta \vdash A$

Finite Consequence Lemma

We remind here property of the finiteness of the consequence operation.

Lemma Finite Consequence

For every set Δ of formulas and for every formula $A \in \mathcal{F}$
$\Delta \vdash A$ if and only if there is a finite set $\Delta_{0} \subseteq \Delta$ such that $\Delta_{0} \vdash A$

Proof

If $\Delta_{0} \vdash A$ for a certain $\Delta_{0} \subseteq \Delta$, hence by the monotonicity of the consequence, also $\Delta \vdash A$

Finite Consequence Lemma

Assume now that $\Delta \vdash A$ and let

$$
A_{1}, A_{2}, \ldots, A_{n}
$$

be a formal proof of A from Δ
Let

$$
\Delta_{0}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \cap \Delta
$$

Obviously, Δ_{0} is finite and $A_{1}, A_{2}, \ldots, A_{n}$ is a formal proof of A from Δ_{0}

Finite Inconsistency Theorem

The following theorem is a simple corollary of just proved Finite Consequence Lemma

Theorem Finite Inconsistency
(1.) If a set Δ is inconsistent, then it has a finite inconsistent subset Δ_{0}
(2.) If every finite subset of a set Δ is consistent then the set Δ is also consistent

Finite Inconsistency Theorem

Proof

If Δ is inconsistent, then for some formula A,

$$
\Delta \vdash A \text { and } \Delta \vdash \neg A
$$

By the Finite Consequence Lemma, there are finite subsets Δ_{1} and Δ_{2} of Δ such that

$$
\Delta_{1} \vdash A \text { and } \Delta_{2} \vdash \neg A
$$

The union $\Delta_{1} \cup \Delta_{2}$ is a finite subset of Δ and by monotonicity

$$
\Delta_{1} \cup \Delta_{2} \vdash A \quad \text { and } \quad \Delta_{1} \cup \Delta_{2} \vdash \neg A
$$

Hence we proved that $\Delta_{1} \cup \Delta_{2}$ is a finite inconsistent subset of Δ

The second implication (2.) is the opposite to the one just proved and hence also holds

Consistency Lemma

The following Lemma links the notion of non-provability and consistency
It will be used as an important step in our Proof Two of the Completeness Theorem

Lemma

For any formula $A \in \mathcal{F}$,
if $\nvdash A$ then the set $\{\neg A\}$ is consistent

Consistency Lemma

Proof We prove the opposite implication
If $\{\neg A\}$ is inconsistent, then $\vdash A$
Assume that $\{\neg A\}$ is inconsistent
By the Inconsistency Condition Lemma we have that $\{\neg A\} \vdash B$ for any formula B, and hence in particular

$$
\{\neg A\} \vdash A
$$

By Deduction Theorem we get

$$
\vdash(\neg A \Rightarrow A)
$$

We proved (Lemma formula 9.) that

$$
\vdash((\neg A \Rightarrow A) \Rightarrow A)
$$

By Modus Ponens we get

$$
\vdash A
$$

This ends the proof

Complete and Incomplete Sets

Another important notion, is that of a complete set of formulas.

Complete sets, as defined here are sometimes called maximal, but we use the first name for them.
They are defined as follows.
Definition Complete set
A set Δ of formulas is called complete if for every formula $A \in \mathcal{F}$

$$
\Delta \vdash A \text { or } \Delta \vdash \neg A
$$

Godel used this notion of complete sets in his Incompleteness of Arithmetic Theorem
The complete sets are characterized by the following fact.

Complete and Incomplete Sets

Complete Set Condition Lemma

For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent
(i) The set Δ is complete
(ii) For every formula $A \in \mathcal{F}$,
if $\Delta \nvdash A$ then then the set $\Delta \cup\{A\}$ is inconsistent
Proof
We consider two cases
Case 1 We show that (i) implies (ii) and
Case 2 we show that (ii) implies (i)

Complete Set Condition Lemma

Proof of Case 1
Assume (i) and not(ii) i.e.
assume that Δ is complete and there is a formula $A \in \mathcal{F}$ such that $\Delta \nvdash A$ and the set $\Delta \cup\{A\}$ is consistent
We have to show that we get a contradiction
But if $\Delta \nvdash A$, then from the assumption that Δ is complete we get that

$$
\Delta \vdash \neg A
$$

By the monotonicity of the consequence we have that

$$
\Delta \cup\{A\} \vdash \neg A
$$

Complete Set Condition Lemma

We proved (Lemma formula 4.) $\vdash(A \Rightarrow A)$
By monotonicity $\quad \Delta \vdash(A \Rightarrow A)$ and by Deduction Theorem

$$
\Delta \cup\{A\} \vdash A
$$

We hence proved that that there is a formula $A \in \mathcal{F}$ such that

$$
\Delta \cup\{A\} \quad \text { and } \Delta \cup\{A\} \vdash \neg A
$$

i.e. that the set $\Delta \cup\{A\}$ is inconsistent

Contradiction

Complete Set Condition Lemma

Proof of Case 2

Assume (ii), i.e. that for every formula $A \in \mathcal{F}$
if $\Delta \nvdash A$ then the set $\Delta \cup\{A\}$ is inconsistent
Let A be any formula.
We want to show (i), i.e. to show that the following condition

$$
\text { C: } \Delta \vdash A \text { or } \quad \Delta \vdash \neg A
$$

is satisfied.
Observe that if

$$
\Delta \vdash \neg A
$$

then the condition \mathbf{C} is obviously satisfied

Complete Set Condition Lemma

If, on the other hand,

$$
\Delta \nvdash \neg A
$$

then we are going to show now that it must be, under the assumption of (ii), that $\Delta \vdash A$ i.e. that (i) holds
Assume that

$$
\Delta \nvdash \neg A
$$

then by (ii) the set $\Delta \cup\{\neg A\}$ is inconsistent

Complete Set Condition Lemma

The Inconsistency Condition Lemma says
For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:
(i) Δ is inconsistent,
(i) for any formula $A \in \mathcal{F}, \Delta \vdash A$

We just proved that the set $\Delta \cup\{\neg A\}$ is inconsistent So by the the above Lemma we get

$$
\Delta \cup\{\neg A\} \vdash A
$$

Complete Set Condition Lemma

By the Deduction Theorem $\Delta \cup\{\neg A\} \vdash A$ implies that

$$
\Delta \vdash(\neg A \Rightarrow A)
$$

Observe that by Lemma formula 4.

$$
\vdash((\neg A \Rightarrow A) \Rightarrow A)
$$

By monotonicity

$$
\Delta \vdash((\neg A \Rightarrow A) \Rightarrow A)
$$

Detaching, by MP the formula $(\neg A \Rightarrow A)$ we obtain that

$$
\Delta \vdash A
$$

This ends the proof that (i) holds.

Incomplete Sets

Definition Incomplete Set
A set Δ of formulas is called incomplete if it is not complete i.e. when the following condition holds
There exists a formula $A \in \mathcal{F}$ such that

$$
\Delta \nvdash A \text { and } \quad \Delta \nvdash \neg A
$$

Incomplete Set Condition Lemma

We get as a direct consequence of the Complete Set Condition Lemma the following characterization of incomplete sets
Lemma Incomplete Set Condition
For every set $\Delta \subseteq \mathcal{F}$ of formulas, the following conditions are equivalent:
(i) Δ is incomplete,
(ii) there is formula $A \in \mathcal{F}$ such that $\Delta \nvdash A$ and the set $\Delta \cup\{A\}$ is consistent.

Main Lemma: Complete Consistent Extension

Now we are going to prove a Main Lemma that is essential to the construction of the special set Δ^{*} mentioned in the Step 1 of the proof of the Completeness Theorem and hence to the proof of the theorem itself
Let's first introduce one more notion

Complete Consistent Extension

Definition Extension Δ^{*} of the set Δ

A set Δ^{*} of formulas is called an extension of a set Δ of formulas if the following condition holds

$$
\{A \in \mathcal{F}: \Delta \vdash A\} \subseteq\left\{A \in \mathcal{F}: \Delta^{*} \vdash A\right\}
$$

i.e.

$$
\operatorname{Cn}(\Delta) \subseteq \operatorname{Cn}\left(\Delta^{*}\right)
$$

In this case we say also that Δ extends to the set of formulas Δ^{*}

Main Lemma

Main Lemma

Main Lemma Complete Consistent Extension

Every consistent set Δ of formulas can be extended to a complete consistent set Δ^{*} of formulas
i. e

For every consistent set Δ there is a set Δ^{*} that is complete and consistent and is an extension of Δ i.e.

$$
\operatorname{Cn}(\Delta) \subseteq \operatorname{Cn}\left(\Delta^{*}\right)
$$

Proof of the Main Lemma

Proof

Assume that the lemma does not hold, i.e. that there is a consistent set Δ, such that all its consistent extensions are not complete

In particular, as Δ is an consistent extension of itself, we have that Δ is not complete
The proof consists of a construction of a particular set Δ^{*} and proving that it forms a complete consistent extension of Δ

This is contrary to the assumption that all its consistent extensions are not complete

Construction of Δ^{*}

Construction of Δ^{*}
As we know, the set \mathcal{F} of all formulas is enumerable; they can hence be put in an infinite sequence

$$
\mathbf{F} \quad A_{1}, A_{2}, \ldots, A_{n}, \ldots
$$

such that every formula of \mathcal{F} occurs in that sequence exactly once
We define, by mathematical induction, an infinite sequence

$$
\text { D } \quad\left\{\Delta_{n}\right\}_{n \in N}
$$

of consistent subsets of formulas together with a sequence

$$
\text { B } \quad\left\{B_{n}\right\}_{n \in N}
$$

of formulas as follows

Construction of Δ^{*}

Initial Step

In this step we define the sets
Δ_{1}, Δ_{2} and the formula B_{1}
and prove that

$$
\Delta_{1} \quad \text { and } \quad \Delta_{2}
$$

are consistent, incomplete extensions of Δ
We take as the first set in \mathbf{D} the set Δ, i.e. we define

$$
\Delta_{1}=\Delta
$$

Construction of Δ^{*}

By assumption the set Δ, and hence also Δ_{1} is not complete.
From the Incomplete Set Condition Lemma we get that there is a formula $B \in \mathcal{F}$ such that

$$
\Delta_{1} \nvdash B \text { and } \Delta_{1} \cup\{B\} \quad \text { is consistent }
$$

Let B_{1} be the first formula with this property in the sequence F of all formulas

We define

$$
\Delta_{2}=\Delta_{1} \cup\left\{B_{1}\right\}
$$

Construction of Δ^{*}

Observe that the set Δ_{2} is consistent and

$$
\Delta_{1}=\Delta \subseteq \Delta_{2}
$$

By monotonicity Δ_{2} is a consistent extension of Δ Hence, as we assumed that all consistent extensions of Δ are not complete, we get that Δ_{2} cannot be complete, i.e.
Δ_{2} is incomplete

Construction of Δ^{*}

Inductive Step

Suppose that we have defined a sequence

$$
\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}
$$

of incomplete, consistent extensions of Δ and a sequence

$$
B_{1}, B_{2}, \ldots, B_{n-1}
$$

of formulas, for $n \geq 2$

Construction of Δ^{*}

Since Δ_{n} is incomplete, it follows from the Incomplete Set Condition Lemma that
there is a formula $B \in \mathcal{F}$ such that
$\Delta_{n} \nvdash B$ and $\Delta_{n} \cup\{B\}$ is consistent

Construction of Δ^{*}

Let B_{n} be the first formula with this property in the sequence F of all formulas.
We define

$$
\Delta_{n+1}=\Delta_{n} \cup\left\{B_{n}\right\}
$$

By the definition

$$
\Delta \subseteq \Delta_{n} \subseteq \Delta_{n+1}
$$

and the set Δ_{n+1} is a consistent extension of Δ
Hence by our assumption that all all consistent extensions o f Δ are incomplete we get that

$$
\Delta_{n+1}
$$

is an incomplete consistent extension of Δ

Construction of Δ^{*}

By the principle of mathematical induction we have defined an infinite sequence

$$
\text { D } \quad \Delta=\Delta_{1} \subseteq \Delta_{2} \subseteq \ldots, \subseteq \Delta_{n} \subseteq \Delta_{n+1} \subseteq \ldots
$$

such that for all $n \in N, \Delta_{n}$ is consistent, and each Δ_{n} an incomplete consistent extension of Δ
Moreover, we have also defined a sequence

$$
\text { B } \quad B_{1}, B_{2}, \ldots, B_{n}, \ldots
$$

of formulas, such that for all $n \in N$,
$\Delta_{n} \nvdash B_{n}$ and $\Delta_{n} \cup\left\{B_{n}\right\}$ is consistent
Observe that $B_{n} \in \Delta_{n+1}$ for all $n \geq 1$

Definition of Δ^{*}

Now we are ready to define Δ^{*}

Definition of Δ^{*}

$$
\Delta^{*}=\bigcup_{n \in N} \Delta_{n}
$$

To complete the proof our theorem we have now to prove that Δ^{*} is a complete consistent extension of Δ

$\Delta *$ Consistent

Obviously directly from the definition $\Delta \subseteq \Delta^{*}$ and hence we have the following

Fact $1 \Delta^{*}$ is an extension of Δ
By Monotonicity of Consequence $\operatorname{Cn}(\Delta) \subseteq \operatorname{Cn}\left(\Delta^{*}\right)$, hence extension
As the next step we prove

Fact 2 The set Δ^{*} is consistent

Δ^{*} Consistent

Proof that Δ^{*} is consistent
Assume that Δ^{*} is inconsistent

By the Finite Inconsistency Theorem there is a finite subset Δ_{0} of Δ^{*} that is inconsistent, i.e.

$$
\Delta_{0} \subseteq \bigcup_{n \in N} \Delta_{n}, \quad \Delta_{0}=\left\{C_{1}, \ldots, C_{n}\right\}, \quad \Delta_{0} \quad \text { is inconsistent }
$$

Proof of Δ^{*} Consistent

We have $\Delta_{0}=\left\{C_{1}, \ldots, C_{n}\right\}$
By the definition of Δ^{*} for each formula $C_{i} \in \Delta_{0}$

$$
C_{i} \in \Delta_{k_{i}}
$$

for certain $\Delta_{k_{i}}$ in the sequence

$$
\text { D } \quad \Delta=\Delta_{1} \subseteq \Delta_{2} \subseteq \ldots, \subseteq \Delta_{n} \subseteq \Delta_{n+1} \subseteq \ldots
$$

Hence $\Delta_{0} \subseteq \Delta_{m}$ for $m=\max \left\{k_{1}, k_{2}, . . k_{n}\right\}$

Proof of Δ^{*} Consistent

But we proved that all sets of the sequence \mathbf{D} are consistent

This contradicts the fact that Δ_{m} is consistent as it contains an inconsistent subset Δ_{0}

This contradiction ends the proof that Δ^{*} is consistent

Proof of Δ^{*} Complete

Fact 3 The set Δ^{*} is complete

Proof Assume that Δ^{*} is not complete.
By the Incomplete Set Condition, there is a formula $B \in \mathcal{F}$ such that
$\Delta^{*} \nvdash B$, and the set $\Delta^{*} \cup\{B\}$ is consistent
By definition of the sequence \mathbf{D} and the sequence \mathbf{B} of formulas we have that for every $n \in N$
$\Delta_{n} \nvdash B_{n}$ and the set $\Delta_{n} \cup\left\{B_{n}\right\}$ is consistent
Moreover $B_{n} \in \Delta_{n+1}$ for all $n \geq 1$

Proof of Δ^{*} Complete

Since the formula B is one of the formulas of the sequence B so we get that $B=B_{j}$ for certain j

By definition, $B_{j} \in \Delta_{j+1}$ and it proves that

$$
B \in \Delta^{*}=\bigcup_{n \in N} \Delta_{n}
$$

But this means that $\Delta^{*} \vdash B$
This is a contradiction with the assumption $\Delta^{*} \nvdash B$ and it ends the proof of the Fact 3

Main Lemma

Facts 1-3 prove that that Δ^{*} is a complete consistent extension of Δ

We hence completed the proof of the Main Lemma

Main Lemma

Every consistent set Δ of formulas can be extended to a complete consistent set Δ^{*} of formulas

Proof Two of Completeness Theorem

Proof Two of Completeness Theorem

We proved already that H_{2} is sound, so we have to prove only the Completeness part of the Completeness Theorem:
For any formula $A \in \mathcal{F}$,

$$
\text { If } \models A \text {, then } \vdash A
$$

We prove it by proving its logically equivalent opposite implication form, i.e we prove now the following

Completeness Theorem

For any formula $A \in \mathcal{F}$,

$$
\text { If } \nvdash A \text {, then } \not \models A
$$

Proof Two of Completeness Theorem

Proof

Assume that A does not have a proof, we want to define a counter-model for A

But if $\nvdash A$, then by the Inconsistency Lemma the set $\{\neg A\}$ is consistent

By the Main Lemma there is a complete, consistent extension of the set $\{\neg A\}$
This means that there is a set Δ^{*} such that $\{\neg A\} \subseteq \Delta^{*}$, i.e.
E $\quad \neg A \in \Delta^{*}$ and Δ^{*} is complete and consistent

Proof Two of Completeness Theorem

Since Δ^{*} is a consistent, complete set, it satisfies the following form of

Consistency Condition

For any $A \in \mathcal{F}$,

$$
\Delta^{*} \nvdash A \text { or } \Delta^{*} \nvdash \neg A
$$

Δ^{*} i s also complete i.e. satisfies
Completeness Condition
For any $A \in \mathcal{F}$,

$$
\Delta^{*} \vdash A \text { or } \Delta^{*} \vdash \neg A
$$

Proof Two of Completeness Theorem

Directly from the Completeness and Consistency
Conditions we get the following
Separation Condition
For any $A \in \mathcal{F}$, exactly one of the following conditions is satisfied:
(1) $\Delta^{*}+A$, or (2) $\Delta^{*} \vdash \neg A$

In particular case we have that for every propositional variable $a \in V A R$ exactly one of the following conditions is satisfied:
(1) $\Delta^{*} \vdash a$, or (2) $\Delta^{*} \vdash \neg a$

This justifies the correctness of the following definition

Proof Two of Completeness Theorem

Definition

We define the variable truth assignment

$$
v: V A R \longrightarrow\{T, F\}
$$

as follows:

$$
v(a)= \begin{cases}T & \text { if } \Delta^{*}+a \\ F & \text { if } \Delta^{*}+\neg a .\end{cases}
$$

We show, as a separate Lemma below, that such defined variable assignment v has the following property

Property of v Lemma

Lemma Property of v
Let v be the variable assignment defined above and v^{*} its extension to the set \mathcal{F} of all formulas $B \in \mathcal{F}$, the following is true

$$
v^{*}(B)= \begin{cases}T & \text { if } \Delta^{*} \vdash B \\ F & \text { if } \Delta^{*} \vdash \neg B\end{cases}
$$

Proof 2 of Completeness Theorem

Given the Property of v Lemma (still to be proved)
we now prove that the v is in fact, a counter model for any formula A, such that $\nvdash A$
Let A be such that $\nvdash A$
By the Property \mathbf{E} we have that $\neg A \in \Delta^{*}$
So obviously

$$
\Delta^{*} \vdash \neg A
$$

Hence by the Property of v Lemma

$$
v^{*}(A)=F
$$

what proves that v is a counter-model for A and it ends the proof of the Completeness Theorem

Proof of Property of v Lemma

Proof of the Property of v Lemma

The proof is conducted by the induction on the degree of the formula A

Initial step $\quad A$ is a propositional variable so the Lemma holds by definition of v

Inductive Step

If A is not a propositional variable, then A is of the form
$\neg C$ or $(C \Rightarrow D)$, for certain formulas C, D
By the inductive assumption the Lemma holds for the formulas C and D

Proof of Property of v Lemma

Case $A=\neg C$
By the Separation Condition for Δ^{*} we consider two possibilities

1. $\Delta^{*} \vdash A$
2. $\Delta^{*} \vdash \neg A$

Consider case 1. i.e. we assume that $\Delta^{*} \vdash A$
It means that

$$
\Delta^{*}+\neg C
$$

Then from the fact that Δ^{*} is consistent it must be that

$$
\Delta^{*} \nvdash C
$$

Proof of Property of v Lemma

By the inductive assumption we have that $v^{*}(C)=F$ and accordingly $v^{*}(A)=v^{*}(\neg C)=\neg v^{*}(C)=\neg F=T$
Consider case 2. i.e. we assume that $\Delta^{*} \vdash \neg A$
Then from the fact that Δ^{*} is consistent it must be that $\Delta^{*} \nvdash A$ and

$$
\Delta^{*} \nvdash \neg C
$$

If so, then $\Delta^{*} \vdash C$, as the set Δ^{*} is complete By the inductive assumption, $v^{*}(C)=T$, and accordingly

$$
v^{*}(A)=v^{*}(\neg C)=\neg v^{*}(C)=\neg T=F
$$

Thus A satisfies the Property of v Lemma

Proof of Property of v Lemma

Case $A=(C \Rightarrow D)$
As in the previous case, we assume that the Lemma holds for the formulas C, D and we consider by the Separation Condition for Δ^{*} two possibilities:

1. $\Delta^{*} \vdash A$ and 2. $\Delta^{*} \vdash \neg A$

Case 1. Assume $\Delta^{*}+A$
It means that $\Delta^{*} \vdash(C \Rightarrow D)$
If at the same time $\Delta^{*} \nvdash C$, then $v^{*}(C)=F$, and accordingly

$$
\begin{gathered}
v^{*}(A)=v^{*}(C \Rightarrow D)= \\
v^{*}(C) \Rightarrow v^{*}(D)=F \Rightarrow v^{*}(D)=T
\end{gathered}
$$

Proof of Property of v Lemma

If at the same time $\Delta^{*} \vdash C$, then since $\Delta^{*} \vdash(C \Rightarrow D)$, we infer, by Modus Ponens, that

$$
\Delta^{*} \vdash D
$$

If so, then $v^{*}(C)=v^{*}(D)=T$
and accordingly

$$
\begin{gathered}
v^{*}(A)=v^{*}(C \Rightarrow D)= \\
v^{*}(C) \Rightarrow v^{*}(D)=T \Rightarrow T=T
\end{gathered}
$$

Thus if $\Delta^{*} \vdash A$, then $v^{*}(A)=T$

Proof of Property of v Lemma

Case 2. Assume now, as before, that $\Delta^{*} \vdash \neg A$, Then from the fact that Δ^{*} is consistent it must be that $\Delta^{*} \nvdash$ A, i.e.,

$$
\Delta^{*} \nvdash(C \Rightarrow D)
$$

It follows from this that $\Delta^{*} \nvdash D$
For if $\Delta^{*} \vdash D$, then, as $(D \Rightarrow(C \Rightarrow D))$ is provable formula 1. in S, by monotonicity also

$$
\Delta^{*} \vdash(D \Rightarrow(C \Rightarrow D))
$$

Applying Modus Ponens we obtain

$$
\Delta^{*} \vdash(C \Rightarrow D)
$$

which is contrary to the assumption, so it must be $\Delta^{*} \nvdash D$

Proof of Property of v Lemma

Also we must have

$$
\Delta^{*}+C
$$

for otherwise, as Δ^{*} is complete we would have $\Delta^{*} \vdash \neg C$ This this is impossible since by Lemma formula 9.

$$
\vdash(\neg C \Rightarrow(C \Rightarrow D))
$$

By monotonicity

$$
\Delta^{*} \vdash(\neg C \Rightarrow(C \Rightarrow D))
$$

Applying Modus Ponens we would get

$$
\Delta^{*} \vdash(C \Rightarrow D)
$$

which is contrary to the assumption $\Delta^{*} \nvdash(C \Rightarrow D)$

Proof Two of Completeness Theorem

This ends the proof of the Property of v Lemma and the Proof Two of the Completeness Theorem is also completed

Chapter 5
 Hilbert Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 5

PART 6: Some Other Axiomatizations and
Examples and Exercises

Some Other Axiomatizations

We present here some of the most known, and historically important axiomatizations of classical propositional logic

It means the Hilbert proof systems that are proven to be complete under classical semantics

Lukasiewicz

Lukasiewicz (1929)

The Lukasiewicz proof system (axiomatization) is

$$
L=\left(\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, A 1, A 2, A 3, M P\right)
$$

where
A1 $\quad((\neg A \Rightarrow A) \Rightarrow A)$
A2 $(A \Rightarrow(\neg A \Rightarrow B))$
A3 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))))$
for any formulas $A, B, C \in \mathcal{F}$

Hilbert and Ackermann

Hilbert and Ackermann (1928)

$$
H A=\left(\mathcal{L}_{\{\uparrow, U\}}, \mathcal{F}, A 1-A 4, \quad M P\right)
$$

where for any $A, B, C \in \mathcal{F}$
A1 $(\neg(A \cup A) \cup A)$
A2 $(\neg A \cup(A \cup B))$
A3 $(\neg(A \cup B) \cup(B \cup A))$
A4 $\quad(\neg(\neg B \cup C) \cup(\neg(A \cup B) \cup(A \cup C)))$
The Modus Ponens rule in the language $\mathcal{L}_{\{\neg, \mathrm{U}\}}$ has a form

$$
M P \frac{A ;(\neg A \cup B)}{B}
$$

Hilbert and Ackermann

Observe that also the Deduction Theorem is now formulated as follow.

Deduction Theorem for HA

For any subset Γ of the set of formulas \mathcal{F} of $H A$ and for any formulas $A, B \in \mathcal{F}$,

$$
\Gamma, A \vdash \text { HA } B \quad \text { if and only if } \quad \Gamma \vdash н A(\neg A \cup B)
$$

In particular,

$$
A \text { เнА } B \quad \text { if and only if } \quad \vdash \text { нн }(\neg A \cup B)
$$

Hilbert

Hilbert (1928)

$$
H=\left(\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}, \mathcal{F}, A 1-A 15, M P\right)
$$

where for any $A, B, C \in \mathcal{F}$
A1 $(A \Rightarrow A)$
A2 $(A \Rightarrow(B \Rightarrow A))$
A3 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A4 $\quad((A \Rightarrow(A \Rightarrow B)) \Rightarrow(A \Rightarrow B))$
A5 $((A \Rightarrow(B \Rightarrow C)) \Rightarrow(B \Rightarrow(A \Rightarrow C)))$
A6 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A7 $\quad((A \cap B) \Rightarrow A)$
A8 $\quad((A \cap B) \Rightarrow B)$

Hilbert

$$
\begin{aligned}
& \text { A9 } \quad((A \Rightarrow B) \Rightarrow((A \Rightarrow C) \Rightarrow(A \Rightarrow(B \cap C))) \\
& \text { A10 } \quad(A \Rightarrow(A \cup B)) \\
& \text { A11 } \quad(B \Rightarrow(A \cup B)) \\
& \text { A12 } \quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C))) \\
& \text { A13 } \quad((A \Rightarrow B) \Rightarrow((A \Rightarrow \neg B) \Rightarrow \neg A)) \\
& \text { A14 } \quad(\neg A \Rightarrow(A \Rightarrow B))
\end{aligned}
$$

A1-A14 are the axioms Hilbert proposed and were accepted as axioms defining Intuitionistic logic
They were later proved to be complete when the intuitionistic semantics was discovered

Hilbert obtained his classical axiomatization by adding as the last axiom the excluded middle law rejected by intuitionists A15 $(A \cup \neg A)$

Kleene

Kleene (1952)

$$
K=\left(\mathcal{L}_{\{\uparrow, \mathrm{U}, \mathrm{\cap}, \Rightarrow\}}, \mathcal{F}, A 1-A 10, M P\right)
$$

where for any $A, B, C \in \mathcal{F}$
A1 $\quad(A \Rightarrow(B \Rightarrow A))$
A2 $((A \Rightarrow(B \Rightarrow C)) \Rightarrow(B \Rightarrow(A \Rightarrow C)))$
A3 $\quad((A \cap B) \Rightarrow A)$
A4 $\quad((A \cap B) \Rightarrow B)$
A5 $(A \Rightarrow(B \Rightarrow(A \cap B)))$

Kleene

A6 $(A \Rightarrow(A \cup B))$
A7 $\quad(B \Rightarrow(A \cup B))$
A8 $\quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C)))$
A9 $\quad((A \Rightarrow B) \Rightarrow((A \Rightarrow \neg B) \Rightarrow \neg A))$
A10 $(\neg \neg A \Rightarrow A)$

Kleene proved that when A 10 is replaced by
A10' $\quad(\neg A \Rightarrow(A \Rightarrow B))$
the resulting system is a complete axiomatization of Intuitionistic Logic

Rasiowa-Sikorski

Rasiowa-Sikorski (1950)

$$
R S=\left(\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}, \mathcal{F}, A 1-A 12, M P\right)
$$

where for any $A, B, C \in \mathcal{F}$
A1 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A2 $(A \Rightarrow(A \cup B))$
A3 $(B \Rightarrow(A \cup B))$
A4 $((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C)))$

Rasiowa-Sikorski

A5 $\quad((A \cap B) \Rightarrow A)$
A6 $\quad((A \cap B) \Rightarrow B)$
A7 $\quad((C \Rightarrow A) \Rightarrow((C \Rightarrow B) \Rightarrow(C \Rightarrow(A \cap B)))$
A8 $\quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C))$
A9 $\quad(((A \cap B) \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C))$
A10 $(A \cap \neg A) \Rightarrow B)$
A11 $((A \Rightarrow(A \cap \neg A)) \Rightarrow \neg A)$
A12 $(A \cup \neg A)$

Rasiowa-Sikorski

Rasiowa - Sikorski proved A1-A11 to be a complete axiomatization for the Intuitionistic Logic

They obtained the classical axiomatization by adding A12, the excluded middle law rejected by intuitionists, as Hilbert did

Both classical and intuitionistic completeness proofs were carried under respective Boolean and Pseudo-Boolean algebras semantics what is reflected in the choice of axioms A1-A12

Shortest Axiomatizations

Here is the shortest axiomatization for the language

$$
\mathcal{L}_{\{\neg, \Rightarrow\}}
$$

It contains just one axiom
Meredith (1953)

$$
M=\left(\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, A 1 M P\right)
$$

where
A1 $\quad(((((A \Rightarrow B) \Rightarrow(\neg C \Rightarrow \neg D)) \Rightarrow C) \Rightarrow E)) \Rightarrow((E \Rightarrow$
$A) \Rightarrow(D \Rightarrow A)))$

Shortest Axiomatizations

Here is another axiomatization that uses only one axiom Nicod (1917)

$$
N=\left(\mathcal{L}_{\{\uparrow\}}, \mathcal{F}, A 1,(r)\right)
$$

where
A1 $\quad(((A \uparrow(B \uparrow C)) \uparrow((D \uparrow(D \uparrow D)) \uparrow((E \uparrow B) \uparrow((A \uparrow$
$E) \uparrow(A \uparrow E))))))$
and

$$
(r) \frac{A \uparrow(B \uparrow C)}{A}
$$

Reminder

We have proved in chapter 3 that

$$
\mathcal{L}_{\{\uparrow, \cup, \cap, \Rightarrow\}} \equiv \mathcal{L}_{\{\uparrow\}}
$$

Exercises

Here are few exercises designed to help with understanding the notions of completeness, monotonicity of the consequence operation, the role of the deduction theorem and the importance of somc basic tautologies

Complete Hilbert System S

Let S be any Hilbert proof system

$$
S=\left(\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}, \mathcal{F}, L A, M P \frac{A,(A \Rightarrow B)}{B}\right)
$$

with the set $L A$ of logical axioms such that S is complete under classical semantics

Let $X \subseteq \mathcal{F}$ be any subset of the set \mathcal{F} of formulas of the language

$$
\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}
$$

We define, as we did in chapter 4, a set $C n(X)$ of all consequences of the set X as

$$
C n(X)=\{A \in \mathcal{F}: X \vdash s A\}
$$

Exercises

Reminder

The proof system

$$
S=\left(\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}, \mathcal{F}, L A, M P \frac{A,(A \Rightarrow B)}{B}\right)
$$

in all exercises is complete

Exercises

Exercise 1

1. Prove that for any subsets X, Y of the set \mathcal{F} of formulas of
S the following monotonicity property holds

$$
\text { If } X \subseteq Y \text {, then } C n(X) \subseteq C n(Y)
$$

Solution

1. Let $A \in \mathcal{F}$ be any formula such that $A \in C n(X)$

By the consequence definition, we have that $X \vdash s A$ and A has a formal proof from the set $X \cup L A$
But $X \subseteq Y$, hence this proof is also a proof from the set
$Y \cup L A$, i.e. $Y \vdash s A$ and $A \in C n(Y)$
This proves that $C n(X) \subseteq C n(Y)$

Exercises

Exercise 1

2. Do we need the completeness of S to prove that the monotonicity property holds for S ?

Solution

2. No, we do not need the completeness of S for the monotonicity property to hold

We have used only the definition of a formal proof from the hypothesis X and the definition of the consequence operation

Exercises

Exercise 2

1. Prove that for any set $X \subseteq \mathcal{F}$, the set $T \subseteq \mathcal{F}$ of all classical tautologies of the language $\mathcal{L}_{\{\mathrm{n}, \mathrm{U}, \Rightarrow, \neg\}}$ of the system S is a subset of $C n(X)$; i.e. prove that

$$
\mathbf{T} \subseteq C n(X)
$$

2. Do we need the completeness of S to prove that the property $\mathbf{T} \subseteq C n(X)$ holds for S ?

Exercises

Solution

1. The proof system S is complete, so by the completeness theorem we have that

$$
\mathbf{T}=\left\{\in \mathcal{F}: \vdash_{S} A\right\}
$$

By definition of the consequence,

$$
\{A \in \mathcal{F}: \vdash s A\}=C n(\emptyset)
$$

and hence $C n(\emptyset)=\mathbf{T}$
But $\emptyset \subseteq X$ for any set X, so by monotonicity property

$$
\mathbf{T} \subseteq C n(X)
$$

2. Yes, the completeness of S in the main property used in the proof of 1.
The other property is the monotonicity

Exercises

Exercise 3

Prove that for any formulas $A, B \in \mathcal{F}$, and for any set $X \subseteq \mathcal{F}$,

$$
(A \cap B) \in C n(X) \text { if and only if } A \in C n(X) \text { and } B \in C n(X)
$$

List all properties essential to the proof

Exercises

Solution

(1) Proof of the implication:
if $(A \cap B) \in C n(X)$, then $A \in C n(X)$ and $B \in C n(X)$
Assume $(A \cap B) \in C n(X)$, i.e. $\quad X \vdash s(A \cap B)$
From monotonicity property proved in Exercise 1, completeness of S, and the fact that

$$
\models((A \cap B) \Rightarrow A) \quad \text { and } \quad \models((A \cap B) \Rightarrow B)
$$

we get that

$$
X \vdash s((A \cap B) \Rightarrow A) \text { and } X \vdash s((A \cap B) \Rightarrow B)
$$

From the assumption $X \vdash s(A \cap B)$ and the above

$$
X \vdash_{s}((A \cap B) \Rightarrow A)
$$

we get by Modus Ponens

$$
X \vdash s A
$$

Exercises

Similarly, from the assumption $X \vdash_{s}(A \cap B)$ and the above property

$$
X \vdash_{s}((A \cap B) \Rightarrow B)
$$

we get by Modus Ponens

$$
X \vdash s B
$$

This proves that $A \in C n(X)$ and $B \in C n(X)$ and ends the proof of the implication (1)

Exercises

(2) Proof of the implication:
if $A \in C n(X)$ and $B \in C n(X)$, then $(A \cap B) \in C n(X)$
Assume now $A \in \operatorname{Cn}(X)$ and $B \in \operatorname{Cn}(X)$, i.e.

$$
X \vdash_{s} A \text { and } X \vdash s B
$$

By the monotonicity property, completeness of S, and tautology

$$
(A \Rightarrow(B \Rightarrow(A \cap B)))
$$

we get that

$$
X \vdash s(A \Rightarrow(B \Rightarrow(A \cap B)))
$$

Exercises

By the assumption we have that

$$
X \vdash s A, \quad X \vdash s B
$$

and the above

$$
X \vdash s(A \Rightarrow(B \Rightarrow(A \cap B)))
$$

we get by Modus Ponens

$$
X \vdash s(B \Rightarrow(A \cap B))
$$

Applying Modus Ponens again we obtain

$$
X \vdash_{s}(A \cap B)
$$

This proves

$$
(A \cap B) \in C n(X)
$$

and ends the proof and the implication (2) and the proof of Exercise 3

Exercises

Exercise 4

Prove that classical completeness of a Hilbert proof system implies the Deduction Theorem, i.e prove that the following theorem holds for the system S

Deduction Theorem

For any subset Γ of the set of formulas \mathcal{F} of S and for any formulas $A, B \in \mathcal{F}$,
$\Gamma, A \vdash s B$ if and only if $\Gamma \vdash s(A \Rightarrow B)$

Exercises

Solution

The formulas

$$
\begin{gathered}
A 1=(A \Rightarrow(B \Rightarrow A)) \text { and } \\
A 2=((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))
\end{gathered}
$$

are basic classical autologies
By the completeness of S we have that

$$
\begin{gathered}
\vdash s(A \Rightarrow(B \Rightarrow A)) \text { and } \\
\vdash s((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))
\end{gathered}
$$

The formulas $A 1, A 2$ are the axioms of the Hilbert system H_{1}
By the completeness of S, we have that both axioms of H_{1} are provable in S
These axioms were sufficient for the proof of the Deduction Theorem for H_{1} and so the H_{1} proof can be repeated for the system S

Exercises

Exercise 5

Prove that for any $A, B \in \mathcal{F}$

$$
C n(\{A, B\})=C n(\{(A \cap B)\})
$$

Solution
(1) Proof of the inclusion

$$
C n(\{A, B\}) \subseteq C n(\{(A \cap B)\})
$$

Assume $C \in C n(\{A, B\})$, i.e. we assume $A, B \vdash s C$
By Exercise 4 the Deduction Theorem holds for S and we apply it twice to get an equivalent form

$$
\vdash_{s}(A \Rightarrow(B \Rightarrow C))
$$

of the assumption

Exercises

We use completeness of S, the fact that the formula

$$
(((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C)))
$$

is a tautology and get that

$$
\vdash s(((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C)))
$$

Applying Modus Ponens to the above and the assumption

$$
\vdash_{s}(A \Rightarrow(B \Rightarrow C))
$$

we get

$$
\vdash s((A \cap B) \Rightarrow C)
$$

This is equivalent by Deduction Theorem to

$$
(A \cap B) \vdash s C
$$

We have proved that

$$
C \in C n(\{(A \cap B)\})
$$

and this ends the proof of the inclusion (1)

Exercises

(2) Proof of the inclusion

$$
C n(\{(A \cap B)\}) \subseteq C n(\{A, B\})\})
$$

Assume that $C \in \operatorname{Cn}(\{(A \cap B)\})$, i.e.

$$
(A \cap B) \vdash s C
$$

By Deduction Theorem

$$
\vdash s((A \cap B) \Rightarrow C)
$$

We want to prove that $C \in C n(\{A, B\})$
This is equivalent, by Deduction Theorem applied twice to proving that

$$
\vdash_{s}(A \Rightarrow(B \Rightarrow C))
$$

Exercises

The proof is similar to the previous case
We use completeness of S, the fact that the formula

$$
(((A \cap B) \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C)))
$$

is a tautology to get

$$
\vdash s(((A \cap B) \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C)
$$

Applying Modus Ponens to above and the the assumption

$$
\vdash s((A \cap B) \Rightarrow C)
$$

we get

$$
\vdash_{s}(A \Rightarrow(B \Rightarrow C))
$$

what ends the proof

