LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

Chapter 6
 Automated Proof Systems
 Completeness of Classical Propositional Logic

CHAPTER 6 SLIDES

Chapter 6
 Automated Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 1

PART 1: Proof System RS
Automated Search for Proofs: Decomposition Trees

PART 2: Proof System RS
Strong Soundness and Constructive Completeness

PART 3: Proof Systems RS1, RS2

```
Chapter 6
Automated Proof Systems
Completeness of Classical Propositional Logic
```

Slides Set 2
PART 4: Gentzen Sequent Systems GL, G
Strong Soundness and Constructive Completeness

Slides Set 3

PART 5: Original Gentzen Systems LK, LI
Classical and Intiutionistic Completeness
Hauptzatz Theorem

Chapter 6
 Automated Proof Systems Completeness of Classical Propositional Logic

Slides Set 1

PART 1: Proof System RS
Automated Search for Proofs: Decomposition Trees

Gentzen Style Proof Systems

Hilbert style systems are easy to define and admit different proofs of Completeness Theorem
They are difficult to use by humans, not mentioning computer

Their emphasis is on logical axioms, keeping the rules of inference, with obligatory Modus Ponens, at a minimum

Gentzen style proof systems reverse this situation by emphasizing the importance of inference rules, reducing the role of logical axioms to an absolute minimum

Gentzen Style Proof Systems

The Gentzen type systems may be less intuitive then the Hilbert systems but they allow us to define effective automatic procedures for proof search, what was impossible in a case of the Hilbert systems

For this reason they are called automated proof systems

They serve as formal models of computing systems that automate the reasoning process

Gentzen Style Proof Systems

The Gentzen formalizations, as they are also called, were invented by Gerald Gentzen in 1934, hence the name

Gentzen proof systems for classical and intuitionistic predicate logics introduced special expressions built out of formulas and called sequents

This is why the Gentzen style systems using sequents as basic expressions are often called Gentzen sequent formalizations

Gentzen Style Proof Systems

We present in Slides Set 2 our own Gentzen sequent
systems GL and G and prove their completeness

We also present a propositional version of Gentzen original system LK and discuss the original proof of Hauptsatz Theorem

Hauptsatz Theorem is literally rendered as the Main
Theorem and is known as Cut-elimination Theorem

We prove the equivalency of the cut-free propositional
LK system and the complete proof system \mathbf{G}

Gentzen Style Proof Systems

A propositional version of the historical Gentzen original formalization $\mathbf{L I}$ for intuitionistic logic is presented and discussed in Chapter 7

The original classical and intuitionistic predicate systems $\mathbf{L K}$ and $\mathbf{L I}$ are discussed in Chapter 9

Gentzen Style Proof Systems

The other historically important automated proof systems RS and QRS are due to Rasiowa and Sikorski (1960)

Rasiowa and Sikorski proof systems for classical propositional and predicate logic use as basic expressions sequences of formulas that are less complicated then the original Gentzen sequents

Rasiowa and Sikorski proof systems are simpler and are easier to understand then the Gentzen sequent systems

This is why the Rasiowa and Sikorski proof systems are the first to be presented here

Gentzen Style Proof Systems

Historical importance and lasting influence of
Rasiowa and Sikorski work lays in the fact that they were the first to use the proof searching capacity of their proof system to define a constructive method of proving the completeness theorem for both propositional and predicate classical logic

We introduce and explain in detail their constructive method and use it prove the completeness of the RS system and the systems RS1 and RS2

Gentzen Style Proof Systems

We also generalize the constructive method developed by Rasiowa and Sikorski to the Gentzen sequent systems and prove the completeness of GL and G

The completeness proof for classical predicate logic system RSQ is presented in Chapter 9

RS Proof System

RS Proof System

Components of RS

Language

$$
\mathcal{L}_{\{\neg,=, \cup, \cap\}}
$$

Expressions

We adopt as the set of expressions \mathcal{E} the set \mathcal{F}^{*} of all finite sequences of formulas

$$
\mathcal{E}=\mathcal{F}^{*}
$$

Notation

Elements of \mathcal{E} are finite sequences of formulas and we denote them by

$$
\Gamma, \Delta, \Sigma \ldots
$$

with indices if necessary.

RS Proof System

Semantic Link

The the intuitive meaning of a sequence $\Gamma \in \mathcal{F}^{*}$ is that the truth assignment v makes it true if and only if it makes the formula of the form of the disjunction of all formulas of Γ true
For any sequence $\Gamma \in \mathcal{F}^{*}$

$$
\Gamma=A_{1}, A_{2}, \ldots, A_{n}
$$

we denote

$$
\delta_{\Gamma}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}
$$

We define as the next step a formal semantics for RS

Formal Semantics for RS

Formal Semantics

Let $v: V A R \longrightarrow\{T, F\}$ be a truth assignment and
v^{*} its classical semantics extension to the set of formulas \mathcal{F}
We formally extend v to the set \mathcal{F}^{*} of all finite sequences of \mathcal{F} as follows

$$
v^{*}(\Gamma)=v^{*}\left(\delta_{\Gamma}\right)=v^{*}\left(A_{1}\right) \cup v^{*}\left(A_{2}\right) \cup \ldots \cup v^{*}\left(A_{n}\right)
$$

Formal Semantics for RS

Model

The sequence Γ is said to be satisfiable if there is a truth assignment $v: V A R \longrightarrow\{T, F\}$ such that $v^{*}(\Gamma)=T$
We write it as

$$
v \models \Gamma
$$

and call v a model for Γ

Counter- Model

The sequence Γ is said to be falsifiable if there is a truth assignment v, such that $v^{*}(\Gamma)=F$
Such a truth assignment v is called a counter-model for Γ

Formal Semantics for RS

Tautology

The sequence Γ is said to be a tautology if and only if
$v^{*}(\Gamma)=T$ for all truth assignments $v: V A R \longrightarrow\{T, F\}$
We write

$$
\models \Gamma
$$

to denote that Γ is a tautology

Example

Example

Let 「 be a sequence

$$
a,(b \cap a), \neg b,(b \Rightarrow a)
$$

The truth assignment v such that

$$
v(a)=F \quad \text { and } \quad v(b)=T
$$

falsifies Γ, i.e. is a counter-model for Γ as shows the following computation
$v^{*}(\Gamma)=v^{*}\left(\delta_{\Gamma}\right)=v^{*}(a) \cup v^{*}(b \cap a) \cup v^{*}(\neg b) \cup v^{*}(b \Rightarrow a)=$ $F \cup(F \cap T) \cup F \cup(T \Rightarrow F)=F \cup F \cup F \cup F=F$

Exercise

Exercise

1. Let Γ be a sequence

$$
a,(\neg b \cap a), \neg b,(a \cup b)
$$

and let v be a truth assignment for which $v(a)=T$
Prove that

$$
v \models \Gamma
$$

2. Let 「 be a sequence

$$
a,(\neg b \cap a), \neg b,(a \cup b)
$$

Prove that

$$
\models \Gamma
$$

Exercise

Solution

1. Γ is a sequence

$$
a,(\neg b \cap a), \neg b,(a \cup b)
$$

We evaluate

$$
\begin{aligned}
& v^{*}(\Gamma)=v^{*}\left(\delta_{\Gamma}\right)=v^{*}(a) \cup v^{*}(\neg b \cap a) \cup v^{*}(\neg b) \cup v^{*}(a \cup b)= \\
& T \cup v^{*}(\neg b \cap a) \cup v^{*}(\neg b) \cup v^{*}(a \cup b)=T
\end{aligned}
$$

We proved

$$
v \models \Gamma
$$

Exercise

Solution

2. Assume now that 「 is falsifiable i.e. that we have a truth assignment v for which
$v^{*}(\Gamma)=v^{*}\left(\delta_{\Gamma}\right)=v^{*}(a) \cup v^{*}(\neg b \cap a) \cup v^{*}(\neg b) \cup v^{*}(a \cup b)=F$

This is possible only when (in short-hand notation)

$$
a \cup(\neg b \cap a) \cup \neg b \cup a \cup b=F
$$

what is impossible as $(\neg b \cup b)=T$ for all v
This contradiction proves that Γ is a tautology

Rules of inference

Rules of inference are of the form:

$$
\frac{\Gamma_{1}}{\Gamma} \quad \text { or } \quad \frac{\Gamma_{1} ; \Gamma_{2}}{\Gamma}
$$

where Γ_{1}, Γ_{2} are called premisses and Γ is called the conclusion of the rule
Each rule of inference introduces a new logical connective or a negation of a logical connective
We name the rule that introduces the logical connective o in the conclusion sequent Γ by (\circ)
The notation $(\neg \circ)$ means that the negation of the logical connective \circ is introduced in the conclusion sequence Γ

Rules of inference of RS

Rules of Inference

RS contains seven inference rules:

$$
(\cup), \quad(\neg \cup), \quad(\cap), \quad(\neg \cap), \quad(\Rightarrow), \quad(\neg \Rightarrow), \quad(\neg \neg)
$$

Before we define the rules of RS we need to introduce some definitions.

Literals

Definition

Any propositional variable, or a negation of propositional variable is called a literal
The set

$$
L T=V A R \cup\{\neg a: \quad a \in V A R\}
$$

is called a set of all propositional literals
The variables are called positive literals
Negations of variables are called negative literals

Literals

We denote by

$$
\Gamma^{\prime}, \quad \Delta^{\prime}, \quad \Sigma^{\prime} \ldots
$$

finite sequences (empty included) formed out of literals i.e

$$
\Gamma^{\prime}, \Delta^{\prime}, \Sigma^{\prime} \in L T^{*}
$$

We will denote by

$$
\Gamma, \quad \Delta, \quad \Sigma \ldots
$$

the elements of \mathcal{F}^{*}

Logical Axioms of RS

Logical Axioms

We adopt as an logical axiom of RS any sequence of
literals which contains a propositional variable and its negation, i.e any sequence

$$
\begin{aligned}
& \Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime}, \neg a, \Gamma_{3}^{\prime} \\
& \Gamma_{1}^{\prime}, \neg a, \Gamma_{2}^{\prime}, a, \Gamma_{3}^{\prime}
\end{aligned}
$$

where $a \in V A R$ is any propositional variable

We denote by LA the set of all logical axioms of RS

Logical Axioms of RS

Semantic Link

Consider axiom

$$
\Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime}, \neg a, \Gamma_{3}^{\prime}
$$

Directly from the extension of the notion of tautology to RS we have that for any truth assignment $v: V A R \longrightarrow\{T, F\}$
$v^{*}\left(\Gamma_{1}^{\prime}, \neg a, \Gamma_{2}^{\prime}, a, \Gamma_{3}^{\prime}\right)=v^{*}\left(\Gamma_{1}^{\prime}\right) \cup v^{*}(\neg a) \cup v^{*}(a) \cup v^{*}\left(\Gamma_{2}^{\prime}, \Gamma_{3}^{\prime}\right)=$ $v^{*}\left(\Gamma_{1}^{\prime}\right) \cup T \cup v^{*}\left(\Gamma_{2}^{\prime}, \Gamma_{3}^{\prime}\right)=T$
The same applies to the axiom

$$
\Gamma_{1}^{\prime}, \neg a, \Gamma_{2}^{\prime}, a, \Gamma_{3}^{\prime}
$$

We have thus proved the following

Fact

Logical axioms of RS are tautologies

Inference Rules of RS

Disjunction rules

$$
\text { (ن) } \frac{\Gamma^{\prime}, A, B, \Delta}{\Gamma^{\prime},(A \cup B), \Delta}, \quad(\neg \cup) \frac{\Gamma^{\prime}, \neg A, \Delta ; \Gamma^{\prime}, \neg B, \Delta}{\Gamma^{\prime}, \neg(A \cup B), \Delta}
$$

Conjunction rules

$$
(\cap) \frac{\Gamma^{\prime}, A, \Delta ; \Gamma^{\prime}, B, \Delta}{\Gamma^{\prime},(A \cap B), \Delta}
$$

$$
(\neg \cap) \frac{\Gamma^{\prime}, \neg A, \neg B, \Delta}{\Gamma^{\prime}, \neg(A \cap B), \Delta}
$$

Inference Rules of RS

Implication rules

$$
(\Rightarrow) \frac{\Gamma^{\prime}, \neg A, B, \Delta}{\Gamma^{\prime},(A \Rightarrow B), \Delta}, \quad(\neg \Rightarrow) \frac{\Gamma^{\prime}, A, \Delta: \Gamma^{\prime}, \neg B, \Delta}{\Gamma^{\prime}, \neg(A \Rightarrow B), \Delta}
$$

Negation rule

$$
(\neg \neg) \frac{\Gamma^{\prime}, A, \Delta}{\Gamma^{\prime}, \neg \neg A, \Delta}
$$

where $\quad \Gamma^{\prime} \in L T^{*}, \Delta \in \mathcal{F}^{*}, A, B \in \mathcal{F}$

Proof System RS

Formally we define the system $\mathbf{R S}$ as follows

$$
\mathbf{R S}=\left(\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{u}, \cap\}}, \mathcal{F}^{*}, \quad L A, \mathcal{R}\right)
$$

where the set of inference rules is

$$
\mathcal{R}=\{(\cup),(\neg \cup),(\cap),(\neg \cap),(\Rightarrow),(\neg \Rightarrow),(\neg \neg)\}
$$

and LA is the set of logical axioms

Formal Proofs

Definition

By a formal proof of a sequence 「 in the proof system RS we understand any sequence

$$
\Gamma_{1}, \Gamma_{2}, \ldots . \Gamma_{n}
$$

of sequences of formulas (elements of \mathcal{F}^{*}, such that

$$
\Gamma_{1} \in L A \quad \text { and } \quad \Gamma_{n}=\Gamma
$$

and for all $1 \leq i \leq n$
$\Gamma_{i} \in A L$, or Γ_{i} is a conclusion of one of the inference rules of RS with all its premisses placed in the sequence $\Gamma_{1} \Gamma_{2}, \ldots, \Gamma_{i-1}$

Formal Proofs

When he proof system under consideration is fixed, we will write, as usual,

$$
\vdash \Gamma
$$

instead of $\vdash_{\text {RS }} \Gamma$ to denote that Γ has a formal proof in RS

As the proofs in RS are sequences (definition of the formal proof) of sequences of formulas (definition of RS) we will not use "," to separate the steps of the proof, and write the formal proof as

$$
\Gamma_{1} ; \Gamma_{2} ; \ldots . \Gamma_{n}
$$

Formal Proofs

We write, however, the formal proofs in RS in a form of tree proofs rather then in a form of sequences expressions We write a proofs in form of a tree such that

1. all leafs of the tree are axioms
2. nodes are sequences such that each sequence on the tree tree follows from the ones immediately preceding it by one of the rules
3. The root is a the therem

Moreover, we write the tree proofs with the node on the top, and leafs on the very bottom
We adopt hence the following definition

Proof Trees

Definition

By a proof tree in RS of Γ we understand a tree

$$
\mathbf{T}_{\Gamma}
$$

built out of $\Gamma \in \mathcal{E}$ satisfying the following conditions:

1. The topmost sequence, i.e the root of T_{Γ} is the sequence 「
2. all leafs are axioms
3. the nodes are sequences such that each sequence on the tree follows from the ones immediately preceding it by one of the inference rules

Proof Trees

We picture, and write our proof trees with the root on the top, and the leafs on the very bottom

Additionally we write our proof trees indicating the name of the inference rule used at each step of the proof

Example

Assume that a proof of a sequence 「 from some
three axioms was obtained by the subsequent use of the rules
$(\cap),(\cup),(\cup),(\cap),(\cup)$, and $(\neg \neg),(\Rightarrow)$
We represent it as the following tree

Proof Trees

The tree T_{Γ}

Γ
$\mid(\Rightarrow)$
conclusion of $(\neg \neg)$
$\mid(\neg \neg)$
conclusion of (\cup)
$\mid(\cup)$
conclusion of (\cap)
$\bigwedge(\cap)$
conclusion of (\cap)
I (U)
axiom
conclusion of ((\cup)
I (U)
conclusion of (\cap)

$$
\bigwedge(\cap)
$$

axiom
axiom

Proof Trees

The Proof Trees represent a certain visualization
for the proofs and proof search
Any formal proof in can be represented in a tree form and vice- versa
Any proof tree can be re-written in a linear form as
a previously defined formal proof
Example
The proof tree in RS of the de Morgan Law

$$
A=(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b))
$$

is the as follows

Proof Trees

The tree T_{A}

$$
\begin{gathered}
(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b)) \\
\mid(\Rightarrow) \\
\neg \neg(a \cap b),(\neg a \cup \neg b) \\
\mid(\neg \neg) \\
(a \cap b),(\neg a \cup \neg b) \\
\bigwedge(\cap)
\end{gathered}
$$

$$
\begin{array}{cc}
a,(\neg a \cup \neg b) & b,(\neg a \cup \neg b) \\
\mid(\cup) & \mid(\cup) \\
a, \neg a, \neg b & b, \neg a, \neg b
\end{array}
$$

Formal Proof

To obtain a formal proof (written in a vertical form) of A it we just write down the tree as a sequence, starting from the leafs
and going up (from left to right) to the root

$$
\begin{gathered}
a, \neg a, \neg b \\
b, \neg a, \neg b \\
a,(\neg a \cup \neg b) \\
b,(\neg a \cup \neg b \\
(a \cap b),(\neg a \cup \neg b) \\
\neg \neg(a \cap b),(\neg a \cup \neg b) \\
(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b))
\end{gathered}
$$

Example

Example

A search for the proof in RS of other de Morgan Law

$$
A=(\neg(a \cup b) \Rightarrow(\neg a \cap \neg b))
$$

consists of building a certain tree and proceeds as follows.

Example

The tree T_{A}

$$
\begin{gathered}
(\neg(a \cup b) \Rightarrow(\neg a \cap \neg b)) \\
\mid(\Rightarrow) \\
\neg \neg(a \cup b),(\neg a \cap \neg b) \\
\mid(\neg \neg) \\
(a \cup b),(\neg a \cap \neg b) \\
\mid(\cup) \\
a, b,(\neg a \cap \neg b) \\
\bigwedge(\cap)
\end{gathered}
$$

Example

We construct its formal proof , as before, written in a vertical manner

Here it is

$$
\begin{gathered}
a, b, \neg b \\
a, b, \neg a \\
a, b,(\neg a \cap \neg b) \\
(a \cup b),(\neg a \cap \neg b) \\
\neg \neg(a \cup b),(\neg a \cap \neg b) \\
(\neg(a \cup b) \Rightarrow(\neg a \cap \neg b))
\end{gathered}
$$

Decomposition Trees

The goal in inventing proof systems like RS is to facilitates automatic proof search

We conduct such proof search by building what is called a decomposition tree

A decomposition tree T_{A} for the formula

$$
A=(((a \Rightarrow b) \cap \neg c) \cup(a \Rightarrow c))
$$

is build as follows

Decomposition Trees

$\mathrm{T}_{\text {A }}$

$$
(((a \Rightarrow b) \cap \neg c) \cup(a \Rightarrow c))
$$

I (U)

$$
((a \Rightarrow b) \cap \neg c),(a \Rightarrow c)
$$

$\Lambda(n)$

$$
\begin{array}{cc}
(a \Rightarrow b),(a \Rightarrow c) & \neg c,(a \Rightarrow c) \\
\mid(\Rightarrow) & \mid(\Rightarrow) \\
\neg a, b,(a \Rightarrow c) & \neg c, \neg a, c \\
\mid(\Rightarrow) & \\
\neg a, b, \neg a, c &
\end{array}
$$

RS Decomposition Rules and
 Decomposition Trees

Decomposition Trees

The process of searching for a proof of a formula $A \in \mathcal{F}$ in RS consists of building a certain tree T_{A}, called a decomposition tree

Building a decomposition tree is really a proof search

We define it by transforming the RS ineference rules into corresponding decomposition rules

Decomposition Rules

RS Decomposition Rules

Disjunction

$$
(\cup) \frac{\Gamma^{\prime},(A \cup B), \Delta}{\Gamma^{\prime}, A, B, \Delta}, \quad(\neg \cup) \frac{\Gamma^{\prime}, \neg(A \cup B), \Delta}{\Gamma^{\prime}, \neg A, \Delta ; \Gamma^{\prime}, \neg B, \Delta}
$$

Conjunction

$$
(\cap) \frac{\Gamma^{\prime},(A \cap B), \Delta}{\Gamma^{\prime}, A, \Delta ; \Gamma^{\prime}, B, \Delta}
$$

$$
(\neg \cap) \frac{\Gamma^{\prime}, \neg(A \cap B), \Delta}{\Gamma^{\prime}, \neg A, \neg B, \Delta}
$$

Decomposition Rules

Implication

$$
(\Rightarrow) \frac{\Gamma^{\prime},(A \Rightarrow B), \Delta}{\Gamma^{\prime}, \neg A, B, \Delta}, \quad(\neg \Rightarrow) \frac{\Gamma^{\prime}, \neg(A \Rightarrow B), \Delta}{\Gamma^{\prime}, A, \Delta ; \Gamma^{\prime}, \neg B, \Delta}
$$

Negation

$$
(\neg \neg) \frac{\Gamma^{\prime}, \neg \neg A, \Delta}{\Gamma^{\prime}, A, \Delta}
$$

where $\Gamma^{\prime} \in \mathcal{F}^{\prime *}, \Delta \in \mathcal{F}^{*}, A, B \in \mathcal{F}$

Tree Rules

We write the Decomposition Rules in a visual tree form as follows

Tree Rules
(\cup) rule

$$
\begin{gathered}
\Gamma^{\prime},(A \cup B), \Delta \\
\mid(\cup) \\
\Gamma^{\prime}, A, B, \Delta
\end{gathered}
$$

Tree Rules

$(\neg \cup)$ rule

$$
\begin{gathered}
\Gamma^{\prime}, \neg(A \cup B), \Delta \\
\bigwedge(\neg \cup)
\end{gathered}
$$

$$
\Gamma^{\prime}, \neg A, \Delta \quad \Gamma^{\prime}, \neg B, \Delta
$$

(\cap) rule

$$
\begin{gathered}
\Gamma^{\prime},(A \cap B), \Delta \\
\bigwedge(\cap)
\end{gathered}
$$

$$
\Gamma^{\prime}, A, \Delta \quad \Gamma^{\prime}, B, \Delta
$$

Tree Rules

$(\neg \cup)$ rule

$$
\begin{gathered}
\Gamma^{\prime}, \neg(A \cap B), \Delta \\
\mid(\neg \cap) \\
\Gamma^{\prime}, \neg A, \neg B, \Delta
\end{gathered}
$$

(\Rightarrow) rule

$$
\begin{gathered}
\Gamma^{\prime},(A \Rightarrow B), \Delta \\
\mid(\Rightarrow) \\
\Gamma^{\prime}, \neg A, B, \Delta
\end{gathered}
$$

Tree Rules

($\neg \Rightarrow$) rule

$$
\begin{gathered}
\Gamma^{\prime}, \neg(A \Rightarrow B), \Delta \\
\bigwedge(\neg \Rightarrow) \\
\Gamma^{\prime}, A, \Delta \quad \Gamma^{\prime}, \neg B, \Delta
\end{gathered}
$$

($\neg \neg) ~ r u l e ~$

$$
\begin{gathered}
\Gamma^{\prime}, \neg \neg A, \Delta \\
\quad(\neg \neg) \\
\Gamma^{\prime}, A, \Delta
\end{gathered}
$$

Definitions and Observations

Observe that we use the same names for the inference and decomposition rules

We do so because once the we have built a decomposition tree for a formula A with all leaves being axioms, it constitutes a proof of A in $\mathbf{R S}$ with branches labeled by the proper inference rules

Now we still need to introduce few standard and useful definitions and observations.

Definitions and Observations

Definition

A sequence Γ^{\prime} built only out of literals, i.e. $\Gamma \in \mathcal{F}^{\prime *}$ is called an indecomposable sequence

Definition

A formula A that is not a literal, i.e. $A \in \mathcal{F}-L T$ is called a decomposable formula

Definition

A sequence 「 that contains a decomposable formula is called a decomposable sequence

Definitions and Observations

Observation 1

For any decomposable sequence, i.e. for any $\Gamma \notin L T^{*}$ there is exactly one decomposition rule that can be applied to it

This rule is determined by the first decomposable formula in 「 and by the main connective of that formula

Definitions and Observations

Observation 2

If the main connective of the first decomposable formula is \cup, \cap, \Rightarrow,
then the decomposition rule determined by it is
$(\cup),(\cap),(\Rightarrow)$, respectively
Observation 3
If the main connective of the first decomposable formula A is negation \neg
then the decomposition rule is determined by the second connective of the formula A
The corresponding decomposition rules are $(\neg \cup),(\neg \cap),(\neg \neg),(\neg \Rightarrow)$

Decomposition Lemma

Because of the importance of the Observation 1 we re-write it in a form of the following

Decomposition Lemma
For any sequence $\Gamma \in \mathcal{F}^{*}$,
$\Gamma \in L T^{*}$ or Γ is in the domain of exactly one of RS
Decomposition Rules
This rule is determined by the first decomposable formula in Γ and by the main connective of that formula

Decomposition Tree Definition

Definition: Decomposition Tree T_{A}

Let $A \in \mathcal{F}$, we define the decomposition tree T_{A} as follows

Step 1.

The formula A is the root of T_{A}
For any other node 「 of the tree we follow the steps below

Step 2.

If Γ is indecomposable then Γ becomes a leaf of the tree

Decomposition Tree Definition

Step 3.
If Γ is decomposable, then we traverse 「 from left to right and identify the first decomposable formula B

By the Decomposition Lemma, there is exactly one decomposition rule determined by the main connective of B

We put its premiss as a node below, or its left and right premisses as the left and right nodes below, respectively

Step 4.
We repeat Step 2 and Step 3 until we obtain only leaves

Decomposition Theorem

We now prove the following Decomposition Tree Theorem.
This Theorem provides a crucial step in the proof of the
Completeness Theorem for RS

Decomposition Tree Theorem

For any sequence $\Gamma \in \mathcal{F}^{*}$ the following conditions hold

1. T_{Γ} is finite and unique
2. T_{Γ} is a proof of Γ in RS if and only if all its leafs are axioms
3. $\Vdash_{R S} \Gamma$ if and only if T_{Γ} has a non- axiom leaf

Theorem

Proof

The tree $T_{\ulcorner }$is unique by the Decomposition Lemma

It is finite because there is a finite number of logical connectives in「 and all decomposition rules diminish the number of connectives

If the tree T_{Γ} has a non- axiom leaf it is not a proof by definition

By 1. it also means that the proof does not exist

Example

Example

Let's construct, as an example a decomposition tree T_{A} of the following formula A

$$
((a \cup b) \Rightarrow \neg a) \cup(\neg a \Rightarrow \neg c))
$$

The formula A forms a one element decomposable sequence
The first decomposition rule used is determined by its main connective
We put a box around it, to make it more visible

$$
((a \cup b) \Rightarrow \neg a) \cup(\neg a \Rightarrow \neg c))
$$

Example

The first and only decomposition rule to be applied is (\cup) The first segment of the decomposition tree T_{A} is

$$
\begin{aligned}
&((a \cup b) \Rightarrow \neg a) \cup(\neg a \Rightarrow \neg c)) \\
& \mid(\cup) \\
&((a \cup b) \Rightarrow\neg a),(\neg a \Rightarrow \neg c)
\end{aligned}
$$

Example

Now we decompose the sequence

$$
((a \cup b) \Rightarrow \neg a),(\neg a \Rightarrow \neg c)
$$

It is a decomposable sequence with the first, decomposable formula

$$
((a \cup b) \Rightarrow \neg a)
$$

The next step of the construction of our decomposition tree is determined by its main connective \Rightarrow and we put the box around it

$$
((a \cup b) \Rightarrow \neg a),(\neg a \Rightarrow \neg c)
$$

Example

The decomposition tree becomes now

$$
\begin{gathered}
((a \cup b) \Rightarrow \neg a) \cup(\neg a \Rightarrow \neg c)) \\
\mid(\cup) \\
((a \cup b) \Rightarrow \neg a),(\neg a \Rightarrow \neg c) \\
\mid(\Rightarrow) \\
\neg(a \cup b), \neg a,(\neg a \Rightarrow \neg c)
\end{gathered}
$$

Example

The next sequence to decompose is

$$
\neg(a \cup b), \neg a,(\neg a \Rightarrow \neg c)
$$

with the first decomposable formula

$$
\neg(a \cup b)
$$

Its main connective is \neg, so to find the appropriate rule we have to examine next connective, which is \cup
The decomposition rule determine by this stage of decomposition is $(\neg \cup)$

Example

Next stage of the construction of the tree T_{A} is

$$
\begin{gathered}
((a \cup b) \Rightarrow \neg a) \cup(\neg a \Rightarrow \neg c)) \\
\mid(\cup) \\
((a \cup b) \underset{\square}{\Rightarrow} \neg a),(\neg a \Rightarrow \neg c) \\
\mid(\Rightarrow) \\
\neg \neg(a \backslash b), \neg a,(\neg a \Rightarrow \neg c) \\
\bigwedge(\neg \cup)
\end{gathered}
$$

Example

Finally, the complete T_{A} is

$$
\begin{aligned}
& ((a \cup b) \Rightarrow \neg a) \cup(\neg a \Rightarrow \neg c)) \\
& \text { I (U) } \\
& ((a \cup b) \Rightarrow \neg a),(\neg a \Rightarrow \neg c) \\
& 1(\Rightarrow) \\
& \neg(a \cup b), \neg a,(\neg a \Rightarrow \neg c) \\
& \bigwedge(\neg \cup) \\
& \neg a, \neg a,(\neg a \Rightarrow \neg) \\
& \mid(\Rightarrow) \\
& \neg a, \neg a, \neg \neg a, \neg c \\
& \text { | (} \neg \neg) \\
& \neg a, \neg a, a, \neg c \\
& \neg b, \neg a,(\neg a \Rightarrow \neg) \\
& \mid(\Rightarrow) \\
& \neg b, \neg a, \neg \neg a, \neg c \\
& \text { | (} \neg \neg) \\
& \neg b, \neg a, a, \neg c
\end{aligned}
$$

Example

All leaves of T_{A} are axioms

The tree T_{A} is a proof of A in $\mathbf{R S}$, i.e.

$$
\left.\vdash_{\operatorname{RS}}((a \cup b) \Rightarrow \neg a) \cup(\neg a \Rightarrow \neg c)\right)
$$

Example

Example Given a formula A and its decomposition tree T_{A}

$$
\begin{gathered}
(((a \Rightarrow b) \cap \neg c) \cup(a \Rightarrow c)) \\
\mid(\cup) \\
\bigwedge((a \Rightarrow b) \cap \neg c),(a \Rightarrow c) \\
\bigwedge(\cap) \\
(a \Rightarrow b),(a \Rightarrow c) \\
\mid(\Rightarrow) \\
\neg a, b,(a \Rightarrow c) \\
\mid(\Rightarrow) \\
\neg a, b, \neg a, c
\end{gathered}
$$

Example

There is a leaf $\neg a, b, \neg a, c$ of the tree T_{A} that is not an axiom. By the Decomposition Tree Theorem

$$
\nvdash \mathbf{R S}((a \Rightarrow b) \cap \neg c) \cup(a \Rightarrow c))
$$

It means that the proof in RS of the formula

$$
((a \Rightarrow b) \cap \neg c) \cup(a \Rightarrow c)) \text { does not exists }
$$

Completeness Theorem

Our main goal is to prove the Completeness Theorem for RS We prove first the following Completeness Theorem for formulas $A \in \mathcal{F}$
Completeness Theorem 1 For any formula $A \in \mathcal{F}$

$$
\vdash_{\text {RS }} A \quad \text { if and only if } \models A
$$

and then we generalize it to the following
Completeness Theorem 2 For any $\Gamma \in \mathcal{F}^{*}$,

$$
\vdash_{\text {RS }} \Gamma \quad \text { if and only if } \quad \models \Gamma
$$

Do do so we need to introduce a new notion of a
Strong Soundness and prove that the RS is strongly sound

Part 2: Strong Soundness and
 Constructive Completeness

Strong Soundness

Definition

Given a proof system

$$
S=(\mathcal{L}, \mathcal{E}, L A, \mathcal{R})
$$

Definition
A rule $r \in \mathcal{R}$ such that the conjunction of all its premisses is logically equivalent to its conclusion is called strongly sound

Definition

A proof system S is called strongly sound if and only if all its rules $r \in \mathcal{R}$ are strongly sound

Strong Soundness of RS

Theorem

The proof system RS is strongly sound

Proof

We prove as an example the strong soundness of two of inference rules: (\cup) and $(\neg \cup)$
Proof for all other rules follows the same patterns and is left as an exercise
By definition of strong soundness we have to show that
If P_{1}, P_{2} are premisses of a given rule and C is its conclusion, then for all v ,

$$
v^{*}\left(P_{1}\right)=v^{*}(C)
$$

in case of one premiss rule and

$$
v^{*}\left(P_{1}\right) \cap v^{*}\left(P_{2}\right)=v^{*}(C)
$$

in case of the two premisses rule.

Strong Soundness of RS

Consider the rule

$$
\text { (ن) } \frac{\Gamma^{\prime}, A, B, \Delta}{\Gamma^{\prime},(A \cup B), \Delta}
$$

We evaluate:

$$
\begin{gathered}
v^{*}\left(\Gamma^{\prime}, A, B, \Delta\right)=v^{*}\left(\delta_{\left\{\Gamma^{\prime}, A, B, \Delta\right\}}\right)=v^{*}\left(\Gamma^{\prime}\right) \cup v^{*}(A) \cup v^{*}(B) \cup v^{*}(\Delta) \\
=v^{*}\left(\Gamma^{\prime}\right) \cup v^{*}(A \cup B) \cup v^{*}(\Delta)=v^{*}\left(\delta_{\left\{\Gamma^{\prime},(A \cup B), \Delta\right\}}\right) \\
=v^{*}\left(\Gamma^{\prime},(A \cup B), \Delta\right)
\end{gathered}
$$

Strong Soundness of RS

Consider the rule $(\neg \cup)$

$$
(\neg \cup) \frac{\Gamma^{\prime}, \neg A, \Delta: \Gamma^{\prime}, \neg B, \Delta}{\Gamma^{\prime}, \neg(A \cup B), \Delta}
$$

We evaluate:

$$
\begin{gathered}
v^{*}\left(P_{1}\right) \cap v^{*}\left(P_{2}\right)=v^{*}\left(\Gamma^{\prime}, \neg A, \Delta\right) \cap v^{*}\left(\Gamma^{\prime}, \neg B, \Delta\right) \\
=\left(v^{*}\left(\Gamma^{\prime}\right) \cup v^{*}(\neg A) \cup v^{*}(\Delta)\right) \cap\left(v^{*}\left(\Gamma^{\prime}\right) \cup v^{*}(\neg B) \cup v^{*}(\Delta)\right) \\
=\left(v^{*}\left(\Gamma^{\prime}, \Delta\right) \cup v^{*}(\neg A)\right) \cap\left(v^{*}\left(\Gamma^{\prime}, \Delta\right) \cup v^{*}(\neg B)\right) \\
={ }^{\text {distrib }}\left(v^{*}\left(\Gamma^{\prime}, \Delta\right) \cup\left(v^{*}(\neg A) \cap v^{*}(\neg B)\right)\right. \\
=v^{*}\left(\Gamma^{\prime}\right) \cup v^{*}(\Delta) \cup v^{*}(\neg A \cap \neg B)={ }^{\text {deMorgan }} v^{*}\left(\delta_{\left\{\Gamma^{\prime}, \neg(A \cup B), \Delta\right\}}\right. \\
=v^{*}\left(\Gamma^{\prime}, \neg(A \cup B), \Delta\right)=v^{*}(C)
\end{gathered}
$$

Soundness Theorem

Observe that the strong soundness notion implies soundness (not only by name!)
Obviously the LA of RS are tautologies, hence we have also proved the following
Soundness Theorem for RS
For any $\Gamma \in \mathcal{F}^{*}$,

If $\vdash_{\mathrm{RS}} \Gamma$, then $\models \Gamma$
In particular, for any $A \in \mathcal{F}$,
If $\quad \vdash_{\text {rs }} A$, then $\models A$

Strong Soundness

We proved that all the rules of inference of $\mathbf{R S}$ of are strongly sound, i.e. $C \equiv P$ and $C \equiv P_{1} \cap P_{2}$

Strong soundness of the rules hence means that if at least one of premisses of a rule is false, so is its conclusion

Given a formula A, such that its T_{A} has a branch ending with a non-axiom leaf

By strong soundness, any v that make this non-axiom leaf false also falsifies all sequences on that branch and hence falsifies the the formula A

Counter Model Theorem

We have proved the following

Counter Model Theorem

Let $A \in \mathcal{F}$ be such that its decomposition tree T_{A} contains a non- axiom leaf L_{A}
Any truth assignment v that falsifies L_{A} is a counter model for A

Any truth assignment that falsifies a non- axiom leaf is called a counter-model for A determined by the decomposition tree T_{A}

Counter Model Example

Consider a tree T_{A}

$$
\begin{gathered}
(((a \Rightarrow b) \cap \neg c) \cup(a \Rightarrow c)) \\
\mid(\cup) \\
((a \Rightarrow b) \cap \neg c),(a \Rightarrow c) \\
\bigwedge(\cap)
\end{gathered}
$$

$$
\begin{gathered}
(a \Rightarrow b),(a \Rightarrow c) \\
\mid(\Rightarrow) \\
\neg a, b,(a \Rightarrow c) \\
\mid(\Rightarrow) \\
\neg a, b, \neg a, c
\end{gathered}
$$

Counter Model Example

The tree T_{A} has a non-axiom leaf

$$
L_{A}: \neg a, b, \neg a, c
$$

We want to define a truth assignment $v: V A R \longrightarrow\{T, F\}$ falsifies this leaf L_{A}

Observe that v must be such that
$v^{*}(\neg a, b, \neg a, c)=v^{*}(\neg a) \cup v^{*}(b) \cup v^{*}(\neg a) \cup v^{*}(c)=$ $\neg v(a) \cup v(b) \cup \neg v(a) \cup v(c)=F$
It means that all components of the disjunction must be put to F

Counter Model Example

We hence get that v must be such that

$$
v(a)=T, \quad v(b)=F, \quad v(c)=F
$$

By the Counter Model Theorem, the v determined by the non-axiom leaf also falsifies the formula A It proves that v is a counter model for A and

$$
\forall=(((a \Rightarrow b) \cap \neg c) \cup(a \Rightarrow c))
$$

Counter Model

The Counter Model Theorem says that \mathbf{F} determined by the non-axiom leaf "climbs" the tree T_{A}

$$
\begin{gathered}
(((a \Rightarrow b) \cap \neg c) \cup(a \Rightarrow c))=\mathbf{F} \\
((a \Rightarrow b) \cap \neg c),(a \Rightarrow c)=\mathbf{F} \\
\bigwedge(\cap) \\
(a \Rightarrow b),(a \Rightarrow c)=\mathbf{F} \\
\mid(\Rightarrow) \\
\neg a, b,(a \Rightarrow c)=\mathbf{F} \\
\mid(\Rightarrow) \\
\neg a, b, \neg a, c=\mathbf{F}
\end{gathered}
$$

Counter Model

Observe that the same counter model construction applies to any other non-axiom leaf, if exists

The other non-axiom leaf defines another \mathbf{F} that also "climbs the tree" picture, and hence defines another counter- model
for A

By Decomposition Tree Theorem all possible restricted counter-models for A are those determined by all non- axioms leaves of the T_{A}

In our case the formula T_{A} has only one non-axiom leaf, and hence only one restricted counter model

RS Completeness Theorem

Completeness Theorem (Completeness Part)

For any $A \in \mathcal{F}$,

$$
\text { If } \vDash A \text {, then } \vdash_{\mathrm{RS}} A
$$

We prove instead the opposite implication

Completeness Theorem

$$
\text { If } \Vdash_{\mathrm{RS}} A \text { then } \not \models A
$$

Proof of Completeness Theorem

Proof of Completeness Theorem
Assume that A is any formula is such that

$$
K_{\mathrm{RS}} A
$$

By the Decomposition Tree Theorem the T_{A} contains a non-axiom leaf
The non-axiom leaf L_{A} defines a truth assignment v which falsifies it as follows:

$$
v(a)= \begin{cases}F & \text { if a appears in } L_{A} \\ T & \text { if } \neg a \text { appears in } L_{A} \\ \text { any value } & \text { if a does not appear in } L_{A}\end{cases}
$$

Hence by Counter Model Theorem we have that v also falsifies A, i.e.
$\notin A$

PART3:
 Proof Systems RS1 and RS2

RS1 Proof System

Poof System RS1
Language of RS1 is the same as the language of RS i.e.

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}
$$

Expressions

$$
\mathcal{E}=\mathcal{F}^{*}
$$

is the set of expressions of RS1

Notation

Elements of \mathcal{E} are finite sequences of formulas and we denote them by

$$
\Gamma, \Delta, \Sigma \ldots
$$

with indices if necessary.

Rules of inference of RS1

Rules of inference
RS1 contains seven inference rules, denoted by the same symbols as the rules of RS

$$
(\cup), \quad(\neg \cup), \quad(\cap), \quad(\neg \cap), \quad(\Rightarrow), \quad(\neg \Rightarrow), \quad(\neg \neg)
$$

The inference rules of RS1 are quite similar to the rules of RS Observe them carefully to see where lies the difference Reminder
Any propositional variable, or a negation of a propositional variable is called a literal
The set

$$
L T=V A R \cup\{\neg a: \quad a \in V A R\}
$$

is called a set of all propositional literals

Literals Notation

We denote, as before, by

$$
\Gamma^{\prime}, \quad \Delta^{\prime}, \quad \Sigma^{\prime} \ldots
$$

finite sequences (empty included) formed out of literals i.e

$$
\Gamma^{\prime}, \Delta^{\prime}, \Sigma^{\prime} \in L T^{*}
$$

We will denote by

$$
\Gamma, \quad \Delta, \quad \Sigma \ldots
$$

the elements of \mathcal{F}^{*}

Logical Axioms

Logical Axioms

We adopt all logical axioms of RS as the axioms of RS1, i.e.

$$
\begin{aligned}
& \Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime}, \neg a, \Gamma_{3}^{\prime} \\
& \Gamma_{1}^{\prime}, \neg a, \Gamma_{2}^{\prime}, a, \Gamma_{3}^{\prime}
\end{aligned}
$$

where $a \in V A R$ is any propositional variable

Inference Rules of RS1

Disjunction rules

$$
(\cup) \frac{\Gamma, A, B, \Delta^{\prime}}{\Gamma,(A \cup B), \Delta^{\prime}} \quad(\neg \cup) \frac{\Gamma, \neg A, \Delta^{\prime} ; \Gamma, \neg B, \Delta^{\prime}}{\Gamma, \neg(A \cup B), \Delta^{\prime}}
$$

Conjunction rules

$$
(\cap) \frac{\Gamma, A, \Delta^{\prime} ; \Gamma, B, \Delta^{\prime}}{\Gamma,(A \cap B), \Delta^{\prime}}
$$

$$
(\neg \cap) \frac{\Gamma, \neg A, \neg B, \Delta^{\prime}}{\Gamma, \neg(A \cap B), \Delta^{\prime}}
$$

Inference Rules of RS1

Implication rules

$$
(\Rightarrow) \frac{\Gamma, \neg A, B, \Delta^{\prime}}{\Gamma,(A \Rightarrow B), \Delta^{\prime}} \quad(\neg \Rightarrow) \frac{\Gamma, A, \Delta^{\prime}: \Gamma, \neg B, \Delta^{\prime}}{\Gamma, \neg(A \Rightarrow B), \Delta^{\prime}}
$$

Negation rule

$$
(\neg \neg) \frac{\Gamma, A, \Delta^{\prime}}{\Gamma, \neg \neg A, \Delta^{\prime}}
$$

where $\quad \Gamma^{\prime} \in L T^{*}, \Delta \in \mathcal{F}^{*}, A, B \in \mathcal{F}$

Proof System RS1

Formally we define the system RS1 as follows

$$
\mathbf{R S 1}=\left(\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}, \mathcal{E}, \quad L A, \mathcal{R}\right)
$$

where

$$
\mathcal{R}=\{(\cup),(\neg \cup),(\cap),(\neg \cap),(\Rightarrow),(\neg \Rightarrow),(\neg \neg)\}
$$

for the inference rules is defined above and LA is the set of all logical axioms is the same as for RS

System RS1

Exercises

E1. Construct a proof in RS1 of a formula

$$
A=(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b))
$$

E2. Prove that RS1 is strongly sound

E3. Define in your own words, for any formula A, the decomposition tree T_{A} in RS1

E4. Prove Completeness Theorem for RS1

Exercises Solutions

E1. The decomposition tree T_{A} is a proof of A in RS1 as all leaves are axioms

$$
\left.\begin{array}{c}
\mathrm{T}_{A} \\
(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b)) \\
\mid(\Rightarrow) \\
(\neg \neg(a \cap b),(\neg a \cup \neg b) \\
\mid(\cup) \\
\neg \neg(a \cap b), \neg a, \neg b \\
\mid(\neg \neg) \\
(a \cap b), \neg a, \neg b \\
\bigwedge(\cap) \\
a, \neg a, \neg b
\end{array} \quad b, \neg a, \neg b\right)
$$

Exercises Solutions

E2. Prove that RS1 is strongly sound
Observe that the system RS1 is obtained from RS by changing the sequence Γ^{\prime} into Γ and the sequence Δ into Δ^{\prime} in all of the rules of inference of RS

These changes do not influence the essence of proof of strong soundness of the rules of RS

One has just to replace the sequence Γ^{\prime} by Γ and Δ by Δ^{\prime} in the the proof of strong soundness of each rule of $\mathbf{R S}$ to obtain the corresponding proof of strong soundness of corresponding rule of RS1

Strong Soundness of RS1

We do it, for example for the rule (\cup) as follows

$$
\text { (ن) } \frac{\Gamma, A, B, \Delta^{\prime}}{\Gamma,(A \cup B), \Delta^{\prime}}
$$

We evaluate:

$$
\begin{gathered}
v^{*}\left(\Gamma, A, B, \Delta^{\prime}\right)=v^{*}\left(\delta_{\left\{\Gamma, A, B, \Delta^{\prime}\right\}}\right)=v^{*}(\Gamma) \cup v^{*}(A) \cup v^{*}(B) \cup v^{*}\left(\Delta^{\prime}\right) \\
=v^{*}(\Gamma) \cup v^{*}(A \cup B) \cup v^{*}\left(\Delta^{\prime}\right)=v^{*}\left(\delta_{\left\{\Gamma,(A \cup B), \Delta^{\prime}\right\}}\right) \\
=v^{*}\left(\Gamma,(A \cup B), \Delta^{\prime}\right)
\end{gathered}
$$

Decomposition Trees in RS1

E3. Define in your own words, for any formula A, the decomposition tree T_{A} in RS1

The definition of the decomposition tree T_{A} is in its essence similar to the one for RS except for the changes which reflect the differences in the corresponding rules of inference

Decomposition Trees in RS1

Definition

To construct the decomposition tree T_{A} we follow the steps below

Step 1
Decompose formula A using a rule defined by its main connective

Step 2

Traverse resulting sequence Γ on the new node of the tree from right to left and find the first decomposable formula Step 3
Repeat Step 1 and Step 2 until there is no more decomposable formulas

End of the decomposition tree construction

Completeness Theorem for RS1

E4. Prove the following Completeness Theorem
For any $A \in \mathcal{F}$,
If $\models A$, then $\vdash_{\mathrm{RS} 1} A$
We prove instead the opposite implication

Completeness Theorem
If $\Vdash_{\mathrm{RS} 1} A$ then $\notin A$

Completeness Theorem for RS1

Observe that directly from the definition of the the decomposition tree T_{A} we have that the following holds

Fact 1: The decomposition tree T_{A} is a proof if and only if all leaves are axioms

Fact 2: The proof does not exist otherwise, i.e.
$\not_{R S 1} A$ if and only if there is a non- axiom leaf on T_{A}

Fact 2 holds because the tree T_{A} is unique

Proof of Completeness Theorem for RS1

Observe that we need Facts 1, $\mathbf{2}$ in order to prove the Completeness Theorem by construction of a counter-model generated by a the a non- axiom leaf
Proof
Assume that A is any formula such that

$$
\Vdash_{\mathrm{RS} 1} A
$$

By Fact 2 the decomposition tree T_{A} contains a non-axiom leaf L_{A}
We use the non-axiom leaf L_{A} and define a truth assignment v which falsifies A as follows:

$$
v(a)= \begin{cases}F & \text { if a appears in } L_{A} \\ T & \text { if } \neg a \text { appears in } L_{A} \\ \text { any value } & \text { if a does not appear in } L_{A}\end{cases}
$$

This proves that
$\notin A$

System RS2 Definition

RS2 Definition

System RS2 is a proof system obtained from RS by changing the sequences Γ^{\prime} into Γ in all of the rules of inference of RS
The logical axioms $L A$ remind the same

Observe that now the decomposition tree may not be unique

Exercise 1

Construct two decomposition trees in RS2 of the formula

$$
(\neg(\neg a \Rightarrow(a \cap \neg b)) \Rightarrow(\neg a \cap(\neg a \cup \neg b)))
$$

RS2 Exercises

$$
\begin{aligned}
& T 1_{A} \\
& (\neg(\neg a=>(a \cap \neg b))=>(\neg a \cap(\neg a \cup \neg b))) \\
& \text { I }(\Rightarrow) \\
& \neg \neg(\neg a=>(a \cap \neg b)),(\neg a \cap(\neg a \cup \neg b)) \\
& \text { (} \neg \neg \text {) } \\
& (\neg a=>(a \cap \neg b)),(\neg a \cap(\neg a \cup \neg b)) \\
& 1(\Rightarrow) \\
& \neg \neg a,(a \cap \neg b),(\neg a \cap(\neg a \cup \neg b)) \\
& \text { I (} \neg \text {) } \\
& a,(a \cap \neg b),(\neg a \cap(\neg a \cup \neg b)) \\
& \Lambda(n) \\
& a, a,(\neg a \cap(\neg a \cup \neg b)) \\
& \Lambda(n) \\
& a, \neg b,(\neg a \cap(\neg a \cup \neg b)) \\
& \Lambda(\cap)
\end{aligned}
$$

a, a. $\neg a,(\neg a \cup \neg b)$	$a, a,(\neg a \cup \neg b)$	$a, \neg b, \neg a$
$\mid(\cup)$	$\mid(\cup)$	axiom

RS2 Exercises

$$
\begin{aligned}
& \text { T2 }{ }_{A} \\
& (\neg(\neg a=>(a \cap \neg b))=>(\neg a \cap(\neg a \cup \neg b))) \\
& 1(\Rightarrow) \\
& \neg \neg(\neg a=>(a \cap \neg b)),(\neg a \cap(\neg a \cup \neg b)) \\
& \text { |(} \neg \text {) } \\
& (\neg a=>(a \cap \neg b)),(\neg a \cap(\neg a \cup \neg b)) \\
& \Lambda(n) \\
& (\neg a=>(a \cap \neg b)), \neg a \\
& \text { I }(\Rightarrow) \\
& (\neg \neg a,(a \cap \neg b)), \neg a \\
& \text { I (} \neg) \\
& a,(a \cap \neg b), \neg a \\
& \Lambda(n) \\
& (\neg a=>(a \cap \neg b)),(\neg a \cup \neg b) \\
& \text { I (} ~(~) ~ \\
& (\neg a=>(a \cap \neg b)), \neg a, \neg b \\
& \text { I }(\Rightarrow) \\
& (\neg \neg a,(a \cap \neg b), \neg a, \neg b \\
& \text { I (} \neg \text {) } \\
& \text { a, }(a \cap \neg b), \neg a, \neg b \\
& a, \neg b, \neg a \\
& \text { axiom }
\end{aligned}
$$

System RS2

Exercise 2

Explain why the system RS2 is strongly sound
You can use the soundness of the system RS

Solution

The only difference between RS and RS2 is that in RS2 each inference rule has at the beginning a sequence of any formulas, not only of literals, as in RS

So there are many ways to apply rules as the decomposition rules while constructing the decomposition tree

But it does not affect strong soundness, since for all rules of RS2 premisses and conclusions are still logically equivalent as they were in RS

RS2 Exercises

Consider, for example, RS2 rule

$$
(\cup) \frac{\Gamma, A, B, \Delta}{\Gamma,(A \cup B), \Delta}
$$

We evaluate
$v^{*}(\Gamma, A, B, \Delta)=v^{*}(\Gamma) \cup v^{*}(A) \cup v^{*}(B) \cup v^{*}(\Delta)=$ $v^{*}(\Gamma) \cup v^{*}(A \cup B) \cup v^{*}(\Delta)=v^{*}(\Gamma,(A \cup B), \Delta)$

Similarly, as in RS, we show all other rules of RS2 to be strongly sound, thus RS2 is also strongly sound

RS2 Exercises

Exercise 3

Define shortly, in your own words, for any formula A, its decomposition tree T_{A} in RS2

Justify why your definition is correct

Show that in RS2 the decomposition tree for some formula A may not be unique

RS2 Exercises

Solution

Given a formula A
The decomposition tree T_{A} can be defined as follows
It has A as a root
For each node,
if there is a rule of RS2 which conclusion has the same form as node sequence, i.e. there is a decomposition rule to be applied,
then the node has children that are premises of the rule

RS2 Exercises

If the node consists only of literals (i.e. no decomposition rules to be applied),
then it does not have any children

The last statement defines a termination condition for the tree

This definition correctly defines a decomposition tree as it identifies and uses appropriate the decomposition rules

RS2 Exercises

Since in RS2 all rules of inference have a sequence Γ instead of Γ^{\prime} as it was defined for in RS, the choice of the decomposition rule for a node may be not unique

For example consider a node

$$
(a=>b),(b \cup a)
$$

The 「 in the RS2 rules is a sequence of formulas, not literals, so for this node we can choose as a decomposition rule either rule (=>) or rule (\cup)

This leads to a non-unique tree

RS2 Exercises

Exercise 4

Prove the Completeness Theorem for RS2

Solution

We need to prove the completeness part only, as the soundness has been already proved, i.e. we have to prove the implication: for any formula A ,

$$
\text { if } \nVdash_{R S 2} A \text { then } \forall=A
$$

Assume $\Vdash_{R S 2} A$,
Then every decomposition tree of A has at least one non-axiom leaf

Otherwise, there would exist a tree with all axiom leaves and it would be a proof for A

RS2 Exercises

Let \mathcal{T}_{A} be a set of all decomposition trees of A
We choose an arbitrary $T_{A} \in \mathcal{T}_{A}$ with at least one non-axiom leaf L_{A}
The non-axiom leaf L_{A} defines a truth assignment v which falsifies A, as follows:

$$
v(a)= \begin{cases}F & \text { if a appears in } L_{A} \\ T & \text { if } \neg a \text { appears in } L_{A} \\ \text { any value } & \text { if a does not appear in } L_{A}\end{cases}
$$

The value for a sequence that corresponds to the leaf in is F Since, because of the strong soundness F "climbs" the tree, we found a counter-model for A, i.e.

RS2 Exercises

Exercise 5 Write a procedure $T R E E_{A}$ such that for any formula A of RS2 it produces its unique decomposition tree

Procedure TREE_{A} (Formula A, Tree T)
\{
$B=$ ChoseLeftMostFormula $(A) / /$ Choose the left most formula that is not a literal
$c=$ MainConnective $(B) / /$ Find the main connective of B
$R=$ FindRule(c)// Find the rule which conclusion that
has this connective
$P=\operatorname{Premises}(R) / /$ Get the premises for this rule
AddToTree $(A, P) / /$ add premises as children of A to the
tree
For all p in P // go through all premises
$\operatorname{TREE}_{A}(p, T) / /$ build subtrees for each premiss

RS2 Exercises

Exercise 6
 Prove completeness of your Procedure TREE $_{A}$

Procedure $T R E E_{A}$ provides a unique tree, since it always chooses the most left indecomposable formula for a choice of a decomposition rule and there is only one such rule

This procedure is equivalent to RS system, since with the decomposition rules of RS the most left decomposable formula is always chosen
RS system is complete, thus this Procedure is complete

Chapter 6
 Automated Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 2

PART 4: Gentzen Sequent Systems GL, G
Strong Soundness and Constructive Completeness

Gentzen Sequent Systems GL, G

The book own Gentzen style proof systems GL and G for the classical propositional logic presented here are inspired by and are versions of the original (1934) Gentzen system LK

Their axioms, the rules of inference of the proof system considered here operate on expressions called by Gentzen, sequents

The original system LK is presented and discussed in detail in Slides Set 3

Gentzen Sequent System GL

The system GL presented here is the most similar in its structure to the system RS and is the first to be considered

GL admits a constructive proof of the Completeness

Theorem

The proof is very similar to the proof of the completeness of the system RS

Gentzen Sequent System GL

GL Componenets

Language

We adopt a propositional language

$$
\mathcal{L}=\mathcal{L}_{\{\mathrm{u}, \cap, \Rightarrow, \neg\}}
$$

with the set of formulas denoted by \mathcal{F} and we add a new symbol \longrightarrow called a Gentzen arrow to it
It means we consider formally a new language

$$
\mathcal{L}_{1}=\mathcal{L} \cup\{\longrightarrow\}
$$

Gentzen Sequent System GL

As the next step we build expressions called sequents

The sequents are built out of finite sequences (empty included) of formulas of $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$ and the Gentzen arrow
\longrightarrow as additional symbol

We denote, as in the RS type systems, the finite sequences (with indices if necessary) of of formulas of $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$ by Greek capital letters

$$
\ulcorner, \Delta, \Sigma, \ldots
$$

with indices if necessary
We define a sequent as follows

Sequent Definition

Definition

For any $\Gamma, \Delta \in \mathcal{F}^{*}$, the expression

$$
\ulcorner\longrightarrow \Delta
$$

is called a sequent
Γ is called the antecedent of the sequent
Δ is called the succedent of the sequent
Each formula in Γ and Δ is called a sequent formula.

Gentzen Sequent

Intuitively, we interpret semantically a sequent

$$
A_{1}, \ldots, A_{n} \longrightarrow B_{1}, \ldots, B_{m}
$$

where $n, m \geq 1$, as a formula

$$
\left(A_{1} \cap \ldots \cap A_{n}\right) \Rightarrow\left(B_{1} \cup \ldots \cup B_{m}\right)
$$

of the language $\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}$

Gentzen Sequents

The sequent

$$
A_{1}, \ldots, A_{n} \longrightarrow
$$

where $m \geq 1$ means that $A_{1} \cap \ldots \cap A_{n}$ yields a contradiction

The sequent

$$
\longrightarrow B_{1}, \ldots, B_{m}
$$

where $m \geq 1$ means semantically $T \Rightarrow\left(B_{1} \cup \ldots \cup B_{m}\right)$
The empty sequent
means a contradiction

Gentzen Sequents

Given non empty sequences Γ, Δ

We denote by σ_{Γ} any conjunction of all formulas of Γ

We denote by δ_{Δ} any disjunction of all formulas of Δ

The intuitive semantics of a non- empty sequent $\Gamma \longrightarrow \Delta$ is

$$
\left\ulcorner\longrightarrow \Delta \equiv\left(\sigma_{\Gamma} \Rightarrow \delta_{\Delta}\right)\right.
$$

Formal Semantics

Formal semantics

Let $v: V A R \longrightarrow\{T, F\}$ be a truth assignment and v^{*} its extension to the set of formulas \mathcal{F} of $\mathcal{L}\{\cup, \cap, \Rightarrow, \neg\}$
We extend v^{*} to the set

$$
S Q=\left\{\Gamma \longrightarrow \Delta: \Gamma, \Delta \in \mathcal{F}^{*}\right\}
$$

of all sequents as follows
For any sequent $\Gamma \longrightarrow \Delta \in S Q$

$$
v^{*}(\Gamma \longrightarrow \Delta)=v^{*}\left(\sigma_{\Gamma}\right) \Rightarrow v^{*}\left(\delta_{\Delta}\right)
$$

Formal Semantics

Special Cases

When $\Gamma=\emptyset$ or $\Delta=\emptyset$ we define

$$
v^{*}(\longrightarrow \Delta)=\left(T \Rightarrow v^{*}\left(\delta_{\Delta}\right)\right)
$$

and

$$
v^{*}(\Gamma \longrightarrow)=\left(v^{*}\left(\sigma_{\Gamma}\right) \Rightarrow F\right)
$$

Formal Semantics

Model

The sequent $\Gamma \longrightarrow \Delta$ is satisfiable if there is a truth assignment $v: V A R \longrightarrow\{T, F\}$ such that

$$
v^{*}(\Gamma \longrightarrow \Delta)=T
$$

Such a truth assignment v is called a model for $\Gamma \longrightarrow \Delta$ We write

$$
v \models \Gamma \longrightarrow \Delta
$$

Formal Semantics

Counter- model

The sequent $\Gamma \longrightarrow \Delta$ is falsifiable if there is a truth assignment v, such that $v^{*}(\Gamma \longrightarrow \Delta)=F$

In this case v is called a counter-model for $\Gamma \longrightarrow \Delta$ We write it as

$$
v \not \vDash \Gamma \longrightarrow \Delta
$$

Formal Semantics

Tautology

A sequent $\Gamma \longrightarrow \Delta$ is a tautology if
$v^{*}(\Gamma \longrightarrow \Delta)=T$ for all truth assignments $v: \operatorname{VAR} \longrightarrow\{T, F\}$
We write it

$$
\vDash\ulcorner\longrightarrow \Delta
$$

Example

Example

Let $\Gamma \longrightarrow \Delta$ be a sequent

$$
a,(b \cap a) \longrightarrow \neg b,(b \Rightarrow a)
$$

The truth assignment v for which

$$
v(a)=T \quad \text { and } \quad v(b)=T
$$

is a model for $\Gamma \longrightarrow \Delta$ as shows the following computation

$$
\begin{gathered}
v^{*}(a,(b \cap a) \longrightarrow \neg b,(b \Rightarrow a))= \\
v^{*}\left(\sigma_{\{a,(b \cap a)\}}\right) \Rightarrow v^{*}\left(\delta_{\{\neg b,(b \Rightarrow a)\}}\right) \\
=v(a) \cap(v(b) \cap v(a)) \Rightarrow \neg v(b) \cup(v(b) \Rightarrow v(a)) \\
=T \cap T \cap T \Rightarrow \neg T \cup(T \Rightarrow T)=T \Rightarrow(F \cup T)=T \Rightarrow T=T
\end{gathered}
$$

Example

Observe that the truth assignment v for which

$$
v(a)=T \quad \text { and } \quad v(b)=T
$$

is the only one for which

$$
v^{*}(\Gamma)=v^{*}(a,(b \cap a)=T
$$

and we proved that it is a model for

$$
a,(b \cap a) \longrightarrow \neg b,(b \Rightarrow a)
$$

It is hence impossible to find v which would falsify it, what proves that

$$
\vDash a,(b \cap a) \longrightarrow \neg b,(b \Rightarrow a)
$$

Indecomposable Sequents

Definition

Finite sequences formed out of positive literals i.e. out of propositional variables are called indecomposable We denote them by

with indices, if necessary.

A sequent is indecomposable if it is formed out of indecomposable sequences, i.e. is of the form

$$
\Gamma^{\prime} \longrightarrow \Delta^{\prime}
$$

for any $\Gamma^{\prime}, \Delta^{\prime} \in V A R^{*}$

Indecomposable Sequents

Remark

Remember that in the GL system the symbols

denote sequences of positive literals i.e. variables

They do not denote the sequences of literals as they did in the RS type systems

GL Components: Axioms

Logical Axioms LA
We adopt as an axiom any sequent of variables
(positive literals) which contains a propositional variable that appears
on both sides of the sequent arrow \longrightarrow, i.e any sequent of the form

$$
\Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime} \longrightarrow \Delta_{1}^{\prime}, a, \Delta_{2}^{\prime}
$$

for any $a \in V A R$ and any sequences $\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime} \in V A R^{*}$

GL Components: Axioms

Semantic Link

Consider axiom

$$
\Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime} \longrightarrow \Delta_{1}^{\prime}, a, \Delta_{2}^{\prime}
$$

We evaluate (in shorthand notation), for any truth assignment $v: V A R \longrightarrow\{T, F\}$

$$
\begin{gathered}
v^{*}\left(\Gamma_{1}^{\prime}, a, \Gamma^{\prime}{ }_{2} \longrightarrow{\Delta^{\prime}}_{1}, a, \Delta^{\prime}{ }_{2}\right)= \\
\left(\sigma_{\Gamma^{\prime} 1} \cap a \cap \sigma_{\Gamma^{\prime} 2}\right) \Rightarrow\left(\delta_{\Delta^{\prime} 1} \cup a \cup \delta_{\Delta^{\prime} 2}\right)=T
\end{gathered}
$$

The evaluation is correct because

$$
\vDash(((A \cap a) \cap B) \Rightarrow(C \cup a) \cup D)))
$$

We have thus proved the following.
Fact
Logical axioms of GL are tautologies

GL Components: Rules

Inference rules

Let $\Gamma^{\prime}, \Delta^{\prime} \in V A R^{*}$ and $\Gamma, \Delta \in \mathcal{F}^{*}$

Conjunction rules

$$
\begin{array}{r}
(\cap \rightarrow) \frac{\Gamma^{\prime}, A, B, \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime},(A \cap B), \Gamma \longrightarrow \Delta^{\prime}} \\
(\rightarrow \cap) \frac{\Gamma \rightarrow \Delta, A, \Delta^{\prime} ; \Gamma \longrightarrow \Delta, B, \Delta^{\prime}}{\Gamma \longrightarrow \Delta,(A \cap B) \Delta^{\prime}}
\end{array}
$$

GL Rules

Disjunction rules

$$
\begin{array}{r}
(\rightarrow \cup) \frac{\Gamma \longrightarrow \Delta, A, B, \Delta^{\prime}}{\Gamma \longrightarrow \Delta,(A \cup B), \Delta^{\prime}} \\
(\cup \rightarrow) \frac{\Gamma^{\prime}, A, \Gamma \rightarrow \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \rightarrow \Delta^{\prime}}{\Gamma^{\prime},(A \cup B), \Gamma \rightarrow \Delta^{\prime}}
\end{array}
$$

GL Rules

Implication rules

$$
\begin{array}{r}
(\rightarrow \Rightarrow) \frac{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, B, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta,(A \Rightarrow B), \Delta^{\prime}} \\
(\Rightarrow \rightarrow) \frac{\Gamma^{\prime}, \Gamma \rightarrow \Delta, A, \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \rightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime},(A \Rightarrow B), \Gamma \rightarrow \Delta, \Delta^{\prime}}
\end{array}
$$

GL Rules

Negation rules

$$
\begin{aligned}
& (\neg \rightarrow) \frac{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, A, \Delta^{\prime}}{\Gamma^{\prime}, \neg A, \Gamma \longrightarrow \Delta, \Delta^{\prime}} \\
& (\rightarrow \neg) \frac{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, \neg A, \Delta^{\prime}}
\end{aligned}
$$

Gentzen System GL Definition

Definition

$$
\mathbf{G L}=\left(\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}, S Q, L A, \mathcal{R}\right)
$$

where

$$
\begin{gathered}
S Q=\left\{\Gamma \longrightarrow \Delta: \Gamma, \Delta \in \mathcal{F}^{*}\right\} \\
\mathcal{R}=\{(\cap \longrightarrow),(\longrightarrow \cap),(\cup \longrightarrow),(\longrightarrow \cup),(\Rightarrow \longrightarrow),(\longrightarrow \Rightarrow)\} \\
\cup\{(\neg \longrightarrow),(\longrightarrow \neg)\}
\end{gathered}
$$

We write, as usual,

$$
\vdash \mathrm{GL} \Gamma \longrightarrow \Delta
$$

to denote that $\Gamma \longrightarrow \Delta$ has a formal proof in $\mathbf{G L}$
For any formula $A \in \mathcal{F}$
$\vdash_{\mathrm{GL}} A$ if ad only if $\longrightarrow A$

Proof Trees

We consider, as we did with RS the proof trees for GL, i.e. we define
A proof tree, or GL-proof of $\Gamma \longrightarrow \Delta$ is a tree

$$
\mathrm{T}_{\Gamma \rightarrow \Delta}
$$

of sequents satisfying the following conditions:

1. The topmost sequent, i.e the root of $\mathrm{T}_{\Gamma \rightarrow \Delta}$ is $\Gamma \longrightarrow \Delta$
2. All leafs are axioms
3. The nodes are sequents such that each sequent
on the tree follows from the ones immediately preceding it by one of the rules of inference

Proof Trees

Remark

The proof search in GL as defined by the decomposition tree for a given formula A is not always unique

We show an example on the next slide

Example

A tree-proof in GL of the de Morgan Law

$$
\begin{gathered}
\longrightarrow(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b)) \\
\mid(\longrightarrow \Rightarrow) \\
\neg(a \cap b) \longrightarrow(\neg a \cup \neg b) \\
\mid(\longrightarrow \cup) \\
\neg(a \cap b) \longrightarrow \neg a, \neg b \\
\mid(\longrightarrow \neg) \\
b, \neg(a \cap b) \longrightarrow \neg a \\
\mid(\longrightarrow \neg) \\
b, a, \neg(a \cap b) \longrightarrow \\
\mid(\neg \longrightarrow) \\
b, a \longrightarrow(a \cap b) \\
\bigwedge(\longrightarrow \cap)
\end{gathered}
$$

$$
b, a \longrightarrow a \quad b, a \longrightarrow b
$$

Example

Here is another tree-proof in GL of the de Morgan Law

$$
\begin{gathered}
\longrightarrow(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b)) \\
\mid(\longrightarrow \Rightarrow) \\
\neg(a \cap b) \longrightarrow(\neg a \cup \neg b) \\
\mid(\longrightarrow \cup) \\
\neg(a \cap b) \longrightarrow \neg a, \neg b \\
\mid(\longrightarrow \neg) \\
b, \neg(a \cap b) \longrightarrow \neg a \\
\mid(\neg \longrightarrow) \\
b \longrightarrow \neg a,(a \cap b) \\
\bigwedge(\longrightarrow \cap)
\end{gathered}
$$

$$
\begin{array}{cc}
b \longrightarrow \neg a, a & b \longrightarrow \neg a, b \\
I(\longrightarrow \neg) & \mid(\longrightarrow \neg) \\
b, a \longrightarrow a & b, a \longrightarrow b
\end{array}
$$

Decomposition Trees

The process of searching for proofs of a formula A in GL consists, as in the RS type systems, of building certain trees, called decomposition trees
Their construction is similar to the one for RS type systems We take a root of a decomposition tree T_{A} of of a formula A a sequent $\longrightarrow A$
For each node, if there is a rule of GL which conclusion has the same form as node sequent, then the node has children that are premises of the rule
If the node consists only of a sequent built only out of variables then it does not have any children
This is a termination condition for the tree

Decomposition Trees

We prove that each formula A generates a finite set

$$
\mathcal{T}_{A}
$$

of decomposition trees such that the following holds

If thereexist a tree $T_{A} \in \mathcal{T}_{A}$ whose all leaves are axioms, then tree T_{A} constitutes a proof of A in $G L$

If all trees in \mathcal{T}_{A} have at least one non-axiom leaf, the proof of A does not exist

Decomposition Trees

The first step in defining a notion of a decomposition tree consists of transforming the inference rules of GL, as we did in the case of the RS type systems, into corresponding decomposition rules

Decomposition Rules of GL

Decomposition rules

Let $\Gamma^{\prime}, \Delta^{\prime} \in V A R^{*}$ and $\Gamma, \Delta \in \mathcal{F}^{*}$

Conjunction rules

$$
\begin{array}{r}
(\cap \rightarrow) \frac{\Gamma^{\prime},(A \cap B), \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, A, B, \Gamma \longrightarrow \Delta^{\prime}} \\
(\rightarrow \cap) \frac{\Gamma \rightarrow \Delta,(A \cap B) \Delta^{\prime}}{\Gamma \longrightarrow \Delta, A, \Delta^{\prime} ; \Gamma \longrightarrow \Delta, B, \Delta^{\prime}}
\end{array}
$$

Decomposition Rules of GL

Disjunction rules

$$
\begin{array}{r}
(\rightarrow \cup) \frac{\Gamma \longrightarrow \Delta,(A \cup B), \Delta^{\prime}}{\Gamma \longrightarrow \Delta, A, B, \Delta^{\prime}} \\
(\cup \rightarrow) \frac{\Gamma^{\prime},(A \cup B), \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \longrightarrow \Delta^{\prime}}
\end{array}
$$

Decomposition Rules of GL

Implication rules

$$
\begin{array}{r}
(\rightarrow \Rightarrow) \frac{\Gamma^{\prime}, \Gamma \rightarrow \Delta,(A \Rightarrow B), \Delta^{\prime}}{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, B, \Delta^{\prime}} \\
(\Rightarrow \rightarrow) \frac{\Gamma^{\prime},(A \Rightarrow B), \Gamma \rightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, A, \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \longrightarrow \Delta, \Delta^{\prime}} \\
\end{array}
$$

Decomposition Rules of GL

Negation rules

$$
\begin{aligned}
& (\neg \rightarrow) \frac{\Gamma^{\prime}, \neg A, \Gamma \rightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, A, \Delta^{\prime}} \\
& (\rightarrow \neg) \frac{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, \neg A, \Delta^{\prime}}{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, \Delta^{\prime}}
\end{aligned}
$$

Decomposition Tree Definition

Definition

For each formula $A \in \mathcal{F}$, a decomposition tree T_{A} is a tree build as follows

Step 1. The sequent $\longrightarrow A$ is the root of T_{A}
For any node $\Gamma \longrightarrow \Delta$ of the tree we follow the steps below

Step 2. If $\Gamma \longrightarrow \Delta$ is indecomposable, then $\Gamma \longrightarrow \Delta$
becomes a leaf of the tree

Decomposition Tree Definition

Step 3. If $\Gamma \longrightarrow \Delta$ is decomposable then we pick a decomposition rule that matches the sequent of the current node

To do so we proceed as follows

1. Given a node $\Gamma \longrightarrow \Delta$

We traverse 「 from left to right to find the first decomposable formula

Its main connective \circ identifies a possible decomposition rule $(\circ \longrightarrow)$
Then we check if this decomposition rule ($\circ \longrightarrow$) applies
If it does we put its conclusion(s) as leaf (leaves)

Decomposition Tree Definition

2. We traverse Δ from right to left to find the first decomposable formula
Its main connective \circ identifies a possible decomposition rule ($\longrightarrow \circ$)
Then we check if this decomposition rule applies
If it does we put its conclusion(s as leaf (leaves)
3. If 1. and 2. apply we choose one of the rules

Step 4. We repeat Step 2. and Step 3. until we obtain only leaves

Decomposition Tree Definition

Observe that a decomposable $\Gamma \longrightarrow \Delta$ is always in the domain of one of the decomposition rules $(\circ \longrightarrow),(\longrightarrow)$, or is in the domain of both of them

Hence the tree T_{A} may not be unique

All possible choices of $\mathbf{3}$. give all possible decomposition trees

System GL Exercises

Exercise

Prove, by constructing a proper decomposition tree that

$$
\vdash \mathrm{GL}((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a))
$$

Solution

By definition, we have that

$$
\begin{gathered}
\vdash \mathrm{GL}((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \text { if and only if } \\
\quad \vdash_{\mathrm{GL}} \longrightarrow((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a))
\end{gathered}
$$

We construct a decomposition tree $\mathrm{T}_{\rightarrow A}$ as follows

System GL Exercises

$$
\begin{aligned}
& \mathbf{T}_{\rightarrow A} \\
& \rightarrow((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
& 1(\rightarrow \Rightarrow) \\
& (\neg a \Rightarrow b) \rightarrow(\neg b \Rightarrow a) \\
& \text { (} \rightarrow \Rightarrow \text {) } \\
& \neg b,(\neg a \Rightarrow b) \rightarrow a \\
& 1(\rightarrow \neg) \\
& (\neg a \Rightarrow b) \rightarrow b, a \\
& \bigwedge(\Rightarrow \rightarrow) \\
& 1(\rightarrow-) \\
& a \longrightarrow b, a \\
& \text { axiom }
\end{aligned}
$$

All leaves of the tree are axioms, hence we have found the proof of A in GL

System GL Exercises

Exercise

Prove, by constructing proper decomposition trees that

$$
\Vdash_{\mathbf{G L}}((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a))
$$

Solution

For some formulas A, their decomposition tree $T_{\rightarrow A}$ may not be unique
Hence we have to construct all possible decomposition trees to show that none of them is a proof, i.e. to show that each of them has a non axiom leaf.

We construct the decomposition trees for $\longrightarrow A$ as follows

System GL Exercises

$$
\begin{aligned}
& \mathrm{T}_{1 \rightarrow A} \\
& \rightarrow((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
& \text { I }(\rightarrow \Rightarrow) \text { (one choice) } \\
& (a \Rightarrow b) \longrightarrow(\neg b \Rightarrow a) \\
& \text { I }(\rightarrow \Rightarrow) \text { (first of two choices) } \\
& \neg b,(a \Rightarrow b) \longrightarrow a \\
& \text { I }(\neg \rightarrow) \text { (one choice) } \\
& (a \Rightarrow b) \longrightarrow b, a \\
& \bigwedge(\Rightarrow \longrightarrow) \text { (one choice) } \\
& \longrightarrow a, b, a \\
& \text { non - axiom } \\
& b \longrightarrow b, a \\
& \text { axiom }
\end{aligned}
$$

The tree contains a non- axiom leaf, hence it is not a proof We have one more tree to construct

System GL Exercises

$$
\begin{gathered}
\mathbf{T}_{2} \rightarrow A \\
\longrightarrow((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
\mid(\rightarrow \Rightarrow)(\text { one choice }) \\
(a \Rightarrow b) \longrightarrow(\neg b \Rightarrow a) \\
\bigwedge(\Rightarrow \rightarrow)(\text { second choice })
\end{gathered}
$$

All possible trees end with a non-axiom leaf. It proves that $\Vdash_{G L}((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a))$

System GL Exercises

Does the tree below constitute a proof in GL ? Justify your answer

$$
\begin{aligned}
& \mathrm{T}_{\rightarrow A} \\
& \rightarrow \neg \neg((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
& \text { I }(\rightarrow \neg) \\
& \neg((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \longrightarrow \\
& \text { I }(\neg \rightarrow) \\
& \rightarrow((\neg a \Rightarrow b) \Rightarrow(\neg b \Rightarrow a)) \\
& \text { I }(\rightarrow \Rightarrow) \\
& (\neg a \Rightarrow b) \longrightarrow(\neg b \Rightarrow a) \\
& \text { I }(\rightarrow \Rightarrow) \\
& (\neg a \Rightarrow b), \neg b \longrightarrow a \\
& \text { I }(\neg \rightarrow) \\
& (\neg a \Rightarrow b) \longrightarrow b, a \\
& \bigwedge(\Rightarrow \rightarrow) \\
& \longrightarrow \neg a, b, a \\
& \mid(\rightarrow \neg) \\
& a \longrightarrow b, a \\
& \text { axiom } \\
& b \longrightarrow b, a \\
& \text { axiom }
\end{aligned}
$$

System GL Exercises

Solution

The tree $\mathrm{T}_{\rightarrow A}$ is not a proof in GL because a rule corresponding to the decomposition step below does not exists in GL

$$
\begin{gathered}
(\neg a \Rightarrow b), \neg b \longrightarrow a \\
\mid(\neg \rightarrow) \\
(\neg a \Rightarrow b) \longrightarrow b, a
\end{gathered}
$$

It is a proof is some system GL1 that has all the rules of GL except its rule $(\neg \rightarrow)$

$$
(\neg \rightarrow) \frac{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, A, \Delta^{\prime}}{\Gamma^{\prime}, \neg A, \Gamma \longrightarrow \Delta, \Delta^{\prime}}
$$

This rule has to be replaced in by the rule:

$$
(\neg \rightarrow)_{1} \frac{\Gamma, \Gamma^{\prime} \longrightarrow \Delta, A, \Delta^{\prime}}{\Gamma, \neg A, \Gamma^{\prime} \longrightarrow \Delta, \Delta^{\prime}}
$$

Exercises

Exercise 1

Write all possible proofs of

$$
(\neg(a \cap b) \Rightarrow(\neg a \cup \neg b))
$$

Exercise 2

Find a formula which has a unique decomposition tree

Exercise 3

Describe for which kind of formulas the decomposition tree is unique

GL Soundness and Completeness

GL Strong Soundness

The system GL admits a constructive proof of the
Completeness Theorem, similar to completeness proofs for
RS type proof systems

The completeness proof relays on the strong soundness property of the inference rules

We are going now prove the strong soundness property of the proof system GL

GL Strong Soundness

Proof of strong soundness property

We have already proved that logical axioms of GL are tautologies, so we have to prove now that its rules of inference are strongly sound

Proofs of strong soundness of rules of inference of GL are more involved then the proofs for the RS type rules

We prove as an example the strong soundness of four of inference rules

GL Strong Soundness

By definition of strong soundness we have to show that that for all rules of inference of GL the following conditions hold

If P_{1}, P_{2} are premisses of a given rule and C is its conclusion,
then for all truth assignments $v: V A R \longrightarrow\{T, F\}$,
$v^{*}\left(P_{1}\right)=v^{*}(C)$ in case of one premiss rule, and
$v^{*}\left(P_{1}\right) \cap v^{*}\left(P_{2}\right)=v^{*}(C)$ in case of a two premisses rule

GL Strong Soundness

We prove as an example the strong soundness of the following rules

$$
(\cap \rightarrow), \quad(\rightarrow \cap), \quad(\cup \rightarrow), \quad(\rightarrow \neg)
$$

In order to prove it we need additional classical logical equivalencies listed below
You can find a list of most basic classical equivalences in Chapter 3

$$
\begin{gathered}
((A \Rightarrow B) \cap(A \Rightarrow C)) \equiv(A \Rightarrow(B \cap C)) \\
((A \Rightarrow C) \cap(B \Rightarrow C)) \equiv((A \cup B) \Rightarrow C) \\
\quad((A \cap B) \Rightarrow C) \equiv(A \Rightarrow(\neg B \cup C))
\end{gathered}
$$

GL Strong Soundness

Strong soundness of $(\cap \rightarrow)$

$$
\begin{aligned}
& \quad(\cap \rightarrow) \frac{\Gamma^{\prime}, A, B, \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime},(A \cap B), \Gamma \longrightarrow \Delta^{\prime}} \\
& =v^{*}\left(\Gamma^{\prime}, A, B, \Gamma \longrightarrow \Delta^{\prime}\right) \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A) \cap v^{*}(B) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right) \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A \cap B) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right) \\
& =v^{*}\left(\Gamma^{\prime},(A \cap B), \Gamma \longrightarrow \Delta^{\prime}\right)
\end{aligned}
$$

GL Strong Soundness

Strong soundness of $(\rightarrow \cap)$

$$
\begin{aligned}
& \quad(\rightarrow \cap) \frac{\Gamma \rightarrow \Delta, A, \Delta^{\prime} ; \Gamma \longrightarrow \Delta, B, \Delta^{\prime}}{\Gamma \longrightarrow \Delta,(A \cap B), \Delta^{\prime}} \\
& v^{*}\left(\Gamma \longrightarrow \Delta, A, \Delta^{\prime}\right) \cap v^{*}\left(\Gamma \longrightarrow \Delta, B, \Delta^{\prime}\right) \\
& =\left(v^{*}(\Gamma) \Rightarrow v^{*}(\Delta) \cup v^{*}(A) \cup v^{*}\left(\Delta^{\prime}\right)\right) \cap\left(v^{*}(\Gamma) \Rightarrow\right. \\
& \left.v^{*}(\Delta) \cup v^{*}(B) \cup v^{*}\left(\Delta^{\prime}\right)\right) \\
& {[\text { we use : }((A \Rightarrow B) \cap(A \Rightarrow C)) \equiv(A \Rightarrow(B \cap C))]} \\
& =v^{*}(\Gamma) \Rightarrow \\
& \left(\left(v^{*}(\Delta) \cup v^{*}(A) \cup v^{*}\left(\Delta^{\prime}\right)\right) \cap\left(v^{*}(\Delta) \cup v^{*}(B) \cup v^{*}\left(\Delta^{\prime}\right)\right)\right) \\
& {[\text { we use commutativity and distributivity] }} \\
& =v^{*}(\Gamma) \Rightarrow\left(v^{*}(\Delta) \cup\left(v^{*}(A \cap B)\right) \cup v^{*}\left(\Delta^{\prime}\right)\right) \\
& =v^{*}\left(\Gamma \longrightarrow \Delta,(A \cap B), \Delta^{\prime}\right)
\end{aligned}
$$

GL Strong Soundness

Strong soundness of $(\cup \rightarrow)$

$$
(\cup \rightarrow) \frac{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta^{\prime} ; \Gamma^{\prime}, B, \Gamma \longrightarrow \Delta^{\prime}}{\Gamma^{\prime},(A \cup B), \Gamma \longrightarrow \Delta^{\prime}}
$$

$v^{*}\left(\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta^{\prime}\right) \cap v^{*}\left(\Gamma^{\prime}, B, \Gamma \longrightarrow \Delta^{\prime}\right)$
$=\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A) \cap v^{*}(\Gamma)\right) \Rightarrow$
$\left.\left.v^{*}\left(\Delta^{\prime}\right)\right) \cap\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(B) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right)\right)$
[we use: $((A \Rightarrow C) \cap(B \Rightarrow C)) \equiv((A \cup B) \Rightarrow C)$]
$=\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A) \cap v^{*}(\Gamma)\right) \cup\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(B) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right)$
$=\left(\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \cap v^{*}(A)\right) \cup\left(\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \cap v^{*}(B)\right) \Rightarrow$
$v^{*}\left(\Delta^{\prime}\right)$
[we use commutativity and distributivity]
$=\left(\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \cap\left(v^{*}(A \cup B)\right) \Rightarrow v^{*}\left(\Delta^{\prime}\right)\right.$
$=v^{*}\left(\Gamma^{\prime},(A \cup B), \Gamma \longrightarrow \Delta^{\prime}\right)$

GL Strong Soundness

Strong soundness of $(\rightarrow \neg)$

$$
\begin{aligned}
& \quad(\rightarrow \neg) \frac{\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, \Delta^{\prime}}{\Gamma^{\prime}, \Gamma \longrightarrow \Delta, \neg A, \Delta^{\prime}} \\
& v^{*}\left(\Gamma^{\prime}, A, \Gamma \longrightarrow \Delta, \Delta^{\prime}\right) \\
& =v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(A) \cap v^{*}(\Gamma) \Rightarrow v^{*}(\Delta) \cup v^{*}\left(\Delta^{\prime}\right) \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \cap v^{*}(A) \Rightarrow v^{*}(\Delta) \cup v^{*}\left(\Delta^{\prime}\right) \\
& {[\text { we use: }((A \cap B) \Rightarrow C) \equiv(A \Rightarrow(\neg B \cup C))]} \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \Rightarrow \neg v^{*}(A) \cup v^{*}(\Delta) \cup v^{*}\left(\Delta^{\prime}\right) \\
& =\left(v^{*}\left(\Gamma^{\prime}\right) \cap v^{*}(\Gamma)\right) \Rightarrow v^{*}(\Delta) \cup v^{*}(\neg A) \cup v^{*}\left(\Delta^{\prime}\right) \\
& =v^{*}\left(\Gamma^{\prime}, \Gamma \longrightarrow \Delta, \neg A, \Delta^{\prime}\right)
\end{aligned}
$$

GL Strong Soundness

The above shows the premises and conclusions are logically equivalent
Therefore the four rules are strongly sound
This ends the proof
Observe that the strong soundness implies soundness (not only by name) hence we have proved the following Soundness Theorem
For any sequent $\Gamma \longrightarrow \Delta \in S Q$,

$$
\text { if } \vdash \mathrm{GL}\ulcorner\longrightarrow \Delta \text { then }] \models \Gamma \longrightarrow \Delta
$$

In particular, for any $A \in \mathcal{F}$,

$$
\text { if } \vdash_{\mathrm{GL}} A \text { then } \models A
$$

GL Strong Soundness

The strong soundness of the rules of inference means that if at least one of premisses of a rule is false, the conclusion of the rule is also false
Hence given a sequent $\Gamma \longrightarrow \Delta \in S Q$, such that its decomposition tree $T_{\Gamma \rightarrow \Delta}$ has a branch ending with a non-axiom leaf

It means that any truth assignment v that makes this non-axiom leaf bf false also falsifies all sequents on that branch

Hence v falsifies the sequent $\ulcorner\longrightarrow \Delta$

Counter Model

In particular, given a sequent

and its decomposition tree

any v, that falsifies its non-axiom leaf is a counter-model for the formula A

We call such va counter model determined by the decomposition tree

Counter Model Theorem

We have hence proved the following

Counter Model Theorem

Given a sequent $\Gamma \longrightarrow \Delta$, such that its decomposition tree
$\mathrm{T}_{\Gamma \rightarrow \Delta}$ contains a non- axiom leaf L_{A}
Any truth assignment v that falsifies the non-axiom leaf L_{A} is a counter model for $\Gamma \longrightarrow \Delta$

In particular, given a formula
$A \in \mathcal{F}$, and its decomposition tree T_{A} with a non-axiom leaf, this leaf let us define a counter-model for A determined by the decomposition tree T_{A}

Exercise

Exercise

We know that the system GL is strongly sound
Prove, by constructing a counter-model determined by a proper decomposition tree that

$$
\not \vDash((b \Rightarrow a) \Rightarrow(\neg b \Rightarrow a))
$$

We construct the decomposition tree for the formula $A=((b \Rightarrow a) \Rightarrow(\neg b \Rightarrow a))$ as follows

Exercise

$$
\begin{aligned}
& \mathrm{T}_{\rightarrow A} \\
& \rightarrow((b \Rightarrow a) \Rightarrow(\neg b \Rightarrow a)) \\
& \mid(\rightarrow \Rightarrow) \\
& (b \Rightarrow a) \longrightarrow(\neg b \Rightarrow a) \\
& \text { I }(\rightarrow \Rightarrow) \\
& \neg b,(b \Rightarrow a) \longrightarrow a \\
& l(\neg \rightarrow) \\
& (b \Rightarrow a) \longrightarrow b, a \\
& \bigwedge(\Rightarrow \longrightarrow) \\
& \longrightarrow b, b, a \\
& a \longrightarrow b, a \\
& \text { non - axiom } \\
& \text { axiom }
\end{aligned}
$$

Exercise

The non-axiom leaf L_{A} we want to falsify is
$\longrightarrow b, b, a$
Let $v: V A R \longrightarrow\{T, F\}$ be a truth assignment
By definition of semantic for sequents we have that
$v^{*}(\longrightarrow b, b, a)=(T \Rightarrow v(b) \cup v(b) \cup v(a))$
Hence $v^{*}(\longrightarrow b, b, a)=F$ if and only if
$(T \Rightarrow v(b) \cup v(b) \cup v(a))=F$ if and only if
$v(b)=v(a)=F$
The counter model determined by the $T_{\rightarrow A}$ is any $v: V A R \longrightarrow\{T, F\}$ such that

$$
v(b)=v(a)=F
$$

Counter Model Theorem

The Counter Model Theorem, says that the logical value F determined by the evaluation a non-axiom leaf L_{A} "climbs" the decomposition tree. We picture it as follows

$$
\begin{gathered}
\mathrm{T}_{\rightarrow A} \\
\longrightarrow((b \Rightarrow a) \Rightarrow(\neg b \Rightarrow a)) \mathrm{F} \\
\mid(\rightarrow \Rightarrow) \\
(b \Rightarrow a) \xrightarrow{\longrightarrow}(\neg b \Rightarrow a) \mathrm{F} \\
\mid(\rightarrow \Rightarrow) \\
\neg b,(b \Rightarrow a) \longrightarrow a \mathrm{~F} \\
\mid(\neg \rightarrow) \\
(b \Rightarrow a) \longrightarrow b, a \mathrm{~F} \\
\bigwedge(\Rightarrow \longrightarrow) \\
\longrightarrow b, b, a \text { F } \\
\text { non-axiom }
\end{gathered}
$$

Counter Model Theorem

By Counter Model Theorem, any truth assignment

$$
v: V A R \longrightarrow\{T, F\}
$$

such that

$$
v(b)=v(a)=F
$$

falsifies the sequence $\longrightarrow A$
We evaluate

$$
v^{*}(\longrightarrow A)=T \Rightarrow v^{*}(A)=F \quad \text { if and only if } \quad v^{*}(A)=F
$$

This proves that v is a counter model for A and we proved that
$\notin A$

GL Completeness

Our goal now is to prove the Completeness Theorem for GL

Completeness Theorem
For any formula $A \in \mathcal{F}$,

$$
\vdash \mathrm{GL} A \quad \text { if and only if } \quad \models A
$$

Moreover

For any sequent $\Gamma \longrightarrow \Delta \in S Q$,

$$
\vdash_{\mathrm{GL}}\ulcorner\longrightarrow \Delta \quad \text { if and only if } \quad \models\ulcorner\longrightarrow \Delta
$$

GL Completeness

Proof

We have already proved the Soundness Theorem, so we only need to prove the implication:

$$
\text { if } \models A \text { then } \vdash_{\mathrm{GL}} A
$$

We prove instead of the logically equivalent opposite implication:

$$
\text { if } \nVdash \mathrm{GL} A \text { then } \not \models A
$$

GL Completeness

Assume $\Vdash_{\mathrm{GL}} A$, i.e. $\Vdash_{\mathrm{GL}} \longrightarrow A$
Let \mathcal{T}_{A} be a set of all decomposition trees of $\longrightarrow A$
As $\nvdash G L^{\longrightarrow} A$ each tree $T_{\rightarrow A}$ in the set \mathcal{T}_{A} has a
non-axiom leaf. We choose an arbitrary $\mathrm{T}_{\rightarrow A} \in \mathcal{T}_{A}$
Let $L_{A}=\Gamma^{\prime} \longrightarrow \Delta^{\prime}$ be a non-axiom leaf of $T_{\rightarrow A}$
We define a truth assignment $v: V A R \longrightarrow\{T, F\}$ which falsifies $L_{A}=\Gamma^{\prime} \longrightarrow \Delta^{\prime}$ as follows

$$
v(a)= \begin{cases}T & \text { if a appears in } \Gamma^{\prime} \\ F & \text { if a appears in } \Delta^{\prime} \\ \text { any value } & \text { if a does not appear in } \Gamma^{\prime} \rightarrow \Delta^{\prime}\end{cases}
$$

By Counter Model Theorem

Gentzen Proof System G

Gentzen Proof System G

Gentzen Proof system G

We obtain the proof system G from the system GL by changing the indecomposable sequences $\Gamma^{\prime}, \Delta^{\prime}$ into any sequences $\Sigma, \Lambda \in \mathcal{F}^{*}$ in all of the rules of inference of GL The logical axioms LA remain the same as in GL, i.e.
Axioms of G

$$
\Gamma_{1}^{\prime}, a, \Gamma_{2}^{\prime} \longrightarrow \Delta_{1}^{\prime}, a, \Delta^{\prime}{ }_{2}
$$

where

$$
a \in V A R \text { and } \Gamma^{\prime}{ }_{1}, \Gamma^{\prime}{ }_{2}, \Delta^{\prime}{ }_{1}, \Delta^{\prime}{ }_{2} \in V A R^{*}
$$

Gentzen Proof System G

Rules of Inference

Conjunction

$$
\begin{aligned}
(\cap \rightarrow) & \frac{\Sigma, A, B, \Gamma \longrightarrow \Lambda}{\Sigma,(A \cap B), \Gamma \longrightarrow \Lambda} \\
(\rightarrow \cap) & \frac{\Gamma \longrightarrow \Delta, A, \Lambda ; \Gamma \longrightarrow \Delta, B, \Lambda}{\Gamma \longrightarrow \Delta,(A \cap B), \Lambda}
\end{aligned}
$$

Disjunction

$$
\begin{gathered}
(\rightarrow \cup) \frac{\Gamma \longrightarrow \Delta, A, B, \Lambda}{\Gamma \longrightarrow \Delta,(A \cup B), \Lambda} \\
(\cup \rightarrow) \frac{\Sigma, A, \Gamma \longrightarrow \Lambda ; \Sigma, B, \Gamma \longrightarrow \Lambda}{\Sigma,(A \cup B), \Gamma \longrightarrow \Lambda}
\end{gathered}
$$

Gentzen Proof System G

Implication

$$
\begin{gathered}
(\rightarrow \Rightarrow) \frac{\Sigma, A, \Gamma \longrightarrow \Delta, B, \Lambda}{\Sigma, \Gamma \longrightarrow \Delta,(A \Rightarrow B), \Lambda} \\
(\Rightarrow \rightarrow) \frac{\Sigma, \Gamma \longrightarrow \Delta, A, \Lambda ; \Sigma, B, \Gamma \longrightarrow \Delta, \Lambda}{\Sigma,(A \Rightarrow B), \Gamma \longrightarrow \Delta, \Lambda}
\end{gathered}
$$

Negation rules
$(\neg \rightarrow) \frac{\Sigma, \Gamma \longrightarrow \Delta, A, \wedge}{\Sigma, \neg A, \Gamma \longrightarrow \Delta, \Lambda}, \quad(\rightarrow \neg) \frac{\Sigma, A, \Gamma \longrightarrow \Delta, \Lambda}{\Sigma, \Gamma \longrightarrow \Delta, \neg A, \Lambda}$
where
$\Gamma, \Delta, \Sigma . \Lambda \in \mathcal{F}^{*}$

System G Exercises

Exercises

Follow the example of the GL system and adopt all needed definitions and proofs to prove the completeness of the system G
Here are steps S1-S10 needed to carry a full proof of the Completeness Theorem

We leave completion of them as series of Exercises

Write careful and full solutions for each of $\mathbf{S 1}$ - $\mathbf{S 1 0}$ steps Base them on corresponding proofs for GL system

System G Exercises

Here the steps
S1 Explain why the system G is strongly sound. You can use the strong soundness of the system GL

S2 Prove, as an example, a strong soundness of 4 rules of \mathbf{G} S3 Prove the the strong soundness of \mathbf{G}

S4 Define shortly, in your own words, for any formula $A \in \mathcal{F}$, its decomposition tree $\mathrm{T}_{\rightarrow A}$

System G Exercises

S5 Extend your definition of $T_{\rightarrow A}$ to a decomposition tree
$\mathrm{T}_{\Gamma \rightarrow \Delta}$ for any $\Gamma \rightarrow \Delta \in S Q$

S6 Prove that for any $\Gamma \rightarrow \Delta \in S Q$, all decomposition trees $\mathrm{T}_{\Gamma \rightarrow \Delta}$ are finite

S7 Give an example of formulas $A, B \in \mathcal{F}$ such that that the tree $\mathrm{T}_{\rightarrow A}$ is unique and the tree $\mathrm{T}_{\rightarrow B}$ is not unique

System G Exercises

S8 Prove the following Counter Model Theorem for G

Theorem

Given a sequent $\Gamma \longrightarrow \Delta$, such that its decomposition tree
$\mathrm{T}_{\Gamma \rightarrow \Delta}$ contains a non- axiom leaf L_{A}
Any truth assignment v that falsifies the non-axiom leaf L_{A} is a counter model for $\Gamma \longrightarrow \Delta$

In particular, given a formula $A \in \mathcal{F}$, and its decomposition tree T_{A} with a non-axiom leaf, this leaf let us define a counter-model for A determined by the decomposition tree $\mathrm{T}_{\text {A }}$

System G Exercises

S8 Prove the following Completeness Theorem for G

Theorem

1. For any formula $A \in \mathcal{F}$,

$$
\vdash_{G} A \text { if and only if } \models A
$$

2. For any sequent $\Gamma \longrightarrow \Delta \in S Q$,

$$
\vdash_{G} \Gamma \longrightarrow \Delta \quad \text { if and only if } \quad \models\ulcorner\longrightarrow \Delta
$$

Chapter 6
 Automated Proof Systems
 Completeness of Classical Propositional Logic

Slides Set 3

PART 5: Original Gentzen Systems LK, LI
Classical and Intiutionistic Completeness Theorem
and Hauptzatz Theorem

Original Gentzen Systems LK, LI

The original systems LK and LI were created by Gentzen in 1935 for classical and intuitionistic predicate logics, respectively

We present now their propositional verisons and use the same names LK and LI

The proof system LI for intuitionistic logic is a particular case of the proof system LK

Original Gentzen Systems LK, LI

Both systems LK and LI have two groups of inference rules

They both have a special rule called a cut rule

First group consists of a set of rules similar to the rules of systems GL and G callled Logical Rules

Second group contains a new type of rules
We call them Structural Rules

Original Gentzen Systems LK, LI

The cut rule in Gentzen sequent systems corresponds to the Modus Ponens rule in Hilbert proof systems

Modus Ponens is a particular case of the cut rule

The cut rule is needed to carry out the original Gentzen proof of the completeness of the system LK and for proving the adequacy of LI system for intituitionistic logic

Original Gentzen Systems LK, LI

Gentzen proof of completeness of LK was not direct

He used the completeness of already known Hilbert proof system H and proved that any formula provable in the systems H is also provable in LK

Hence the need of the cut rule

Original Gentzen Systems LK, LI

For the system LI he proved only the adequacy of LI system for intituitionistic logic since the semantics for the intuitionistic logic didn't yet exist

He used the acceptance of Heying intuitionistic axiom system as a definition of the intuitionistic logic and proved that any formula provable in the Heyting system is also provable in LI

Original Gentzen Systems LK, LI

Observe that by presence of the cut rule, Gentzen systems LK and LI are also Hilbert system

What distinguishes them from all other known Hilbert proof systems is the fact that the cut rule could be eliminated f

This is Gentzen famous Hauptzatz Theorem, also called Cut Elimination Theorem

The elimination of the cut rule and the structure of other rules makes it possible to define an effective automatic procedures for proof search, what is impossible in a case of the Hilbert style systems

Original Gentzen Systems LK, LI

Gentzen in his proof of Hauptzatz Theorem developed a powerful technique of proof adaptable to other logics

We present it here in classical propositional case and show how to adapt it to the intuitionistic case

Gentzen proof is purely syntactical

The proof defines a constructive method of transformation of any formal proof (derivation) of a sequent $\Gamma \longrightarrow \Delta$ that uses the cut rule (and other rules) into its proof without use of the cut rule

Hence the English name Cut Elimination Theorem

Gentzen System LK

LK Components

LK Components

Language

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \quad \text { and } \quad \mathcal{E}=S Q
$$

for

$$
S Q=\left\{\Gamma \longrightarrow \Delta: \quad \Gamma, \Delta \in \mathcal{F}^{*}\right\}
$$

Logical Axioms

There is only one logical axiom, namely

where A is any formula of \mathcal{L}

LK Components

Rules of Inference

Group one: Structural Rules Weakening

$$
\begin{array}{ll}
(\text { weak } \rightarrow) & \frac{\Gamma \longrightarrow \Delta}{A, \Gamma \longrightarrow \Delta} \\
(\rightarrow \text { weak }) & \frac{\Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, A}
\end{array}
$$

Contraction

$$
\begin{aligned}
& (\text { contr } \rightarrow) \frac{A, A, \Gamma \longrightarrow \Delta}{A, \Gamma \longrightarrow \Delta} \\
& (\rightarrow \text { contr }) \frac{\Gamma \longrightarrow \Delta, A, A}{\Gamma \longrightarrow \Delta, A}
\end{aligned}
$$

LK Components

Exchange

$$
\begin{aligned}
& (\text { exch } \rightarrow)
\end{aligned} \frac{\Gamma_{1}, A, B, \Gamma_{2} \rightarrow \Delta}{\Gamma_{1}, B, A, \Gamma_{2} \longrightarrow \Delta}
$$

Cut Rule

$$
\text { (cut) } \frac{\Gamma \longrightarrow \Delta, A ; A, \Sigma \longrightarrow \Theta}{\Gamma, \Sigma \longrightarrow \Delta, \Theta}
$$

A is called a cut formula

LK Components

Group Two: Logical Rules

Conjunction rules

$$
\begin{array}{r}
(\cap \rightarrow)_{1} \frac{A,\ulcorner\rightarrow \Delta}{(A \cap B), \Gamma \rightarrow \Delta} \\
(\cap \rightarrow)_{2} \frac{B, \Gamma \rightarrow \Delta}{(A \cap B), \Gamma \rightarrow \Delta} \\
(\rightarrow \cap) \\
\frac{\Gamma \rightarrow \Delta, A ;\ulcorner\rightarrow \Delta, B, \Delta}{\Gamma \rightarrow \Delta,(A \cap B)}
\end{array}
$$

LK Components

Disjunction rules

$$
\begin{aligned}
(\rightarrow \cup)_{1} & \frac{\Gamma \rightarrow \Delta, A}{\Gamma \longrightarrow \Delta,(A \cup B)} \\
(\rightarrow \cup)_{2} & \frac{\Gamma \rightarrow \Delta, B}{\Gamma \longrightarrow \Delta,(A \cup B)} \\
(\cup \rightarrow) & \frac{A,\ulcorner\rightarrow \Delta ; B,\ulcorner\rightarrow \Delta}{(A \cup B), \Gamma \rightarrow \Delta}
\end{aligned}
$$

LK Components

Implication rules

$$
\begin{gathered}
(\rightarrow \Rightarrow) \frac{A, \Gamma \rightarrow \Delta, B}{\Gamma \longrightarrow \Delta,(A \Rightarrow B)} \\
(\Rightarrow \rightarrow) \\
\frac{\Gamma \rightarrow \Delta, A ; B, \Gamma \rightarrow \Delta}{(A \Rightarrow B), \Gamma \rightarrow \Delta}
\end{gathered}
$$

Negation rules

$$
\begin{aligned}
& (\neg \longrightarrow) \frac{\Gamma \longrightarrow \Delta, A}{\neg A, \Gamma \longrightarrow \Delta} \\
& (\longrightarrow \neg) \frac{A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \neg A}
\end{aligned}
$$

LK Definition

Classical System LK

We define the classical Gentzen system LK as

$$
\mathbf{L K}=(\mathcal{L}, S Q, L A, \mathcal{R})
$$

where

$$
\mathcal{R}=\{\text { Structural Rules, Cut Rule, Logical Rules })
$$

as defined by the components definitions

LI Definition

Intuitionistic System LI
We define the intuitionistic Gentzen system LI as

$$
\mathrm{LI}=(\mathcal{L}, I S Q, A L, \mathcal{R})
$$

$\mathcal{R}=\{$ I-Structural Rules, I-Cut Rule, I-Logical Rules)
where \mathcal{R} are the LK rules restricted to the set ISQ of the intuitionistic sequents defined as follows

$$
\text { ISQ }=\{\Gamma \longrightarrow \Delta: \Delta \text { consists of at most one formula }\}
$$

We will study the intuitionistic system LI in Chapter 7

Classical System LK

We say that a formula $A \in \mathcal{F}$ has a proof in LK and denote it by

$$
\text { 「LK } A
$$

if the sequent $\longrightarrow A$ has a proof in LK, i.e. we write
トLK A if and only if $\vdash_{\text {LK }} \longrightarrow A$

LK Proof Trees

We write formal proofs in LK, as we did for other Gentzen style proof systems in a form of the proof trees defined as follows

Definition
By a proof tree of a sequent $\ulcorner\longrightarrow \Delta$ in LK we understand a tree

$$
\mathrm{D}_{\Gamma \rightarrow \Delta}
$$

satisfying the following conditions:

1. The topmost sequent, i.e the root of $\mathrm{D}_{\Gamma \rightarrow \Delta}$ is $\Gamma \longrightarrow \Delta$
2. All leaves are axioms
3. The nodes are sequents such that each sequent on the tree follows from the ones immediately preceding it by one of the rules

Derivations in LK

Proofs are often called derivations
In particular, Gentzen, in his work used the term derivation for the proof and we will use this notion as well

This is why we denote the proof trees by D , for the derivation

Finding derivations D in LK is a complex process
LK logical rules are different, then in GL and G
Consequently, proofs rely strongly on use of the structural rules

Derivations in LK

For example, a derivation of Excluded Middle $(A \cup \neg A)$ formula in LK is as follows

$$
\begin{gathered}
\mathrm{D} \\
\longrightarrow(A \cup \neg A) \\
I(\rightarrow \text { contr }) \\
\longrightarrow(A \cup \neg A),(A \cup \neg A) \\
\mid(\rightarrow \cup)_{1} \\
\longrightarrow(A \cup \neg A), A \\
\mid(\rightarrow \text { exch }) \\
\longrightarrow A,(A \cup \neg A) \\
I(\rightarrow \cup)_{1} \\
\longrightarrow A, \neg A \\
\mid(\rightarrow \neg) \\
A \longrightarrow A
\end{gathered}
$$

axiom

Derivations in LK

Here is as yet another example a cut free derivation in LK D

$$
\begin{gathered}
\longrightarrow(\neg(A \cap B) \Rightarrow(\neg A \cup \neg B)) \\
\mid(\rightarrow \Rightarrow) \\
(\neg(A \cap B) \longrightarrow(\neg A \cup \neg B)) \\
\mid(\rightarrow \neg) \\
\longrightarrow(\neg A \cup \neg B),(A \cap B) \\
\bigwedge(\Rightarrow \rightarrow)
\end{gathered}
$$

$\longrightarrow(\neg A \cup \neg B), A$	$\longrightarrow(\neg A \cup \neg B), B$
$1(\rightarrow$ exch $)$	$1(\rightarrow$ exch $)$
$\rightarrow A,(\neg A \cup \neg B)$	$\rightarrow B,(\neg A \cup \neg B)$
$1(\rightarrow \cup)_{1}$	$1(\rightarrow \cup)_{1}$
$\rightarrow A, \neg A$	$\rightarrow B, \neg B$
$1(\rightarrow \neg)$	$B \longrightarrow B$
$A \longrightarrow A$	axiom

axiom

LK Soundness

LK Soundness

Observe that the Logical Rules of LK are similar in their structure to the rules of the system G

Hence LK Logical Rules admit similar proof of their soundness

The sound rules

$$
(\rightarrow \cap)_{1}, \quad(\rightarrow \cap)_{2} \quad \text { and } \quad(\rightarrow \cup)_{1}, \quad(\rightarrow \cup)_{2}
$$

are not strongly sound because
$A \not \equiv(A \cap B), B \not \equiv(A \cap B)$ and $A \not \equiv(A \cup B), B \not \equiv(A \cup B)$
All other Logical Rules are strongly sound.

LK Soundness

The Contraction and Exchange structural rules are strongly sound as for any formulas $A, B \in \mathcal{F}$,

$$
\begin{gathered}
A \equiv(A \cap A), \quad A \equiv(A \cup A) \quad \text { and } \\
(A \cap B) \equiv(B \cap A), \quad(A \cap B) \equiv(B \cap A)
\end{gathered}
$$

The Weakening rule is sound because (we use shorthand notation)

$$
\text { if }(\Gamma \Rightarrow \Delta)=T \text { then } \quad((A \cap \Gamma) \Rightarrow \Delta)=T
$$

for any logical value of the formula A
Obviously

$$
(\Gamma \Rightarrow \Delta) \not \equiv((A \cap \Gamma) \Rightarrow \Delta))
$$

i.e. the Weakening rule is not strongly sound

LK Soundness

The Cut rule is sound as the fact that

$$
(\Gamma \Rightarrow(\Delta \cup A))=T \quad \text { and } \quad((A \cap \Sigma) \Rightarrow \Lambda)=T
$$

implies that

$$
((\Gamma \cap \Sigma) \Rightarrow(\Delta \cup \wedge))=T
$$

Cut rule is not strongly sound
Any truth assignment such that

$$
\Gamma=T \quad \text { and } \quad \Delta=\Sigma=\Lambda=A=F
$$

proves that

$$
(\Gamma \longrightarrow \Delta, A) \cap(A, \Sigma \longrightarrow \Lambda) \not \equiv(\Gamma, \Sigma \longrightarrow \Delta, \Lambda)
$$

LK Soundness

Obviously, the Logical Axiom is a tautology, i.e.

$$
\vDash A \quad \longrightarrow A
$$

We have proved that LK is sound and the following theorem holds

Soundness Theorem

For any sequent $\Gamma \longrightarrow \Delta$,

$$
\text { if } \vdash \text { LK } \Gamma \longrightarrow \Delta, \text { then } \models\ulcorner\longrightarrow \Delta
$$

In particular, for any $A \in \mathcal{F}$,

$$
\text { if } \vdash_{\text {LK }} A \text {, then } \models A
$$

LK Completeness

LK Completeness

We follow Gentzen original proof of completeness of LK

We choose any complete Hilbert proof system for the LK language

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}
$$

and prove, after Gentzen, its equivalency with LK

Gentzen referred to the Hilbert-Ackerman (1920) system (axiomatization) included in chapter 5

We choose the Rasiowa-Sikorski (1952) formalization R also included in Chapter 5

LK Completeness

We choose the formalization R for two reasons

First, it reflexes a connection between classical and intuitionistic logics very much in a spirit Gentzen relationship between LK and LI

We obtain a complete proof system / from R by just removing the last axiom A12

Second, both sets of axioms reflect the best what set of rovable formulas is needed to conduct algebraic proofs of completeness of R and I, as discussed in Chapter 7

Hilbert System R

The set of logical axioms of the poof system R
A1 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A2 $\quad(A \Rightarrow(A \cup B))$
A3 $\quad(B \Rightarrow(A \cup B))$
A4 $\quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C)))$
A5 $\quad((A \cap B) \Rightarrow A)$
A6 $\quad((A \cap B) \Rightarrow B)$
A7 $\quad((C \Rightarrow A) \Rightarrow((C \Rightarrow B) \Rightarrow(C \Rightarrow(A \cap B)))$
A8 $\quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C))$
A9 $\quad(((A \cap B) \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C))$
A10 $(A \cap \neg A) \Rightarrow B)$
A11 $((A \Rightarrow(A \cap \neg A)) \Rightarrow \neg A)$

Hilbert System R

A12 $(A \cup \neg A)$
where $A, B, C \in \mathcal{F}$ are any formulas
We adopt a Modus Ponens

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

as the only inference rule
We define the proof system R as

$$
R=\left(\mathcal{L}_{\{\uparrow, \cap, \cup, \Rightarrow\}}, \mathcal{F},\{A 1-A 12\}, \quad(M P)\right)
$$

where A1-A12 are logical axioms defined above

Hilbert System R

The system R is complete, i.e. we have the following
R Completeness Theorem
For any formula $A \in \mathcal{F}$,

$$
\vdash_{R} A \text { if and only if } \models A
$$

We leave it as an exercise to show that all axioms A1-A12 of the system R are provable in LK
Moreover, the Modus Ponens rule of R is a particular case of the Cut rule, namely

$$
(M P) \frac{\longrightarrow A ; A \longrightarrow B}{\longrightarrow B}
$$

This proves the following theorem

Hilbert System R

Provability Theorem

For any formula $A \in \mathcal{F}$

$$
\text { if } \vdash_{R} A \text {, then } \vdash_{\text {LK }} A
$$

Directly from the above provability theorem, the soundness of LK and the completeness of R we get the following

LK Completeness Theorem
For any formula $A \in \mathcal{F}$
\vdash LK A if and only if $\models A$

Hauptzatz

Hauptzatz

Here is Gentzen original formulation of the Hauptzatz Theorems for classical LK and intuitionistic LI proof systems
They are also routinely called the Cut Elimination Theorems

LK Hauptzatz

Every derivation in LK can be transformed into another LK derivation of the same sequent, in which no cuts occur

LI Hauptzatz

Every derivation in LI can be transformed into another LI derivation of the same sequent, in which no cuts occur

Mix Rule

Hauptzatz proof is quite long and very involved. We present its main and most important steps

To facilitate the proof we introduce as Gentzen did, a general form of the cut rule, called a mix rule

It is defined as follows

$$
(\text { mix }) \frac{\Gamma \longrightarrow \Delta ; \Sigma \longrightarrow \Theta}{\Gamma, \Sigma^{*} \longrightarrow \Delta^{*}, \Theta}
$$

where Σ^{*}, Δ^{*} are obtained from Σ, Δ by removing all occurrences of a common formula A
The formula A is now called a mix formula

Mix Example

Here are some examples of an applications of the mix rule Observe \mathbf{t} hat the mix rule applies, as the cut does, to only one mix formula at the time
b is the mix formula in

$$
(\text { mix }) \frac{a \longrightarrow b, \neg a ;(b \cup c), b, b, D, b \longrightarrow}{a,(b \cup c), D \longrightarrow \neg a}
$$

B is the mix formula in

$$
(\text { mix }) \frac{A \longrightarrow B, B, \neg A ;(b \cup c), B, B, D, B \longrightarrow \neg B}{A,(b \cup c), D \longrightarrow \neg A, \neg B}
$$

$\neg A$ is the mix formula in

$$
\text { (mix) } \frac{A \longrightarrow B, \neg A, \neg A ; \neg A, B, B, \neg A, B \longrightarrow \neg B}{A, B, B \longrightarrow B, \neg B}
$$

Mix and Cut

Notice, that every derivation with cut may be transformed into a derivation with mix

We do so by means of a number of weakenings and interchanges, i.e. multiple application of the weakening rules exchange rules

Conversely, every mix may be transformed into a cut derivation by means of a certain number of preceding exchanges and contractions, though we do not use this fact in the Hauptzatz proof
Observe that cut is a particular case of mix

Two Hauptzatz Theorems

There are two Hauptzatz theorems: classical LK Hauptzatz and LI Hauptzatz

The proof of intuitionistic LI Hauptzatz is basically the same as for LK

We must just be careful and add, at each step, the restriction made to the ISQ sequents and the form of the LI rules of inference. These restrictions do not alter the flow and validity of the LK proof

We discuss and present now the proof of LK Hauptzatz We leave it as a homework exercise to re-write this proof the case of for LI

Proof of LK Hauptzatz

Proof of LK Hauptzatz

We conduct the proof in three main steps

Step 1: we consider only derivations in which only mix rule is used

Step 2: we consider first derivation with a certain Property H (to be defined) and prove an \mathbf{H} Lemma for them

The H Lemma is the most crucial for the proof of the Hauptzatz

Property H

Property H

We say that a derivation $\mathrm{D}_{\Gamma \rightarrow \Delta}$ of a sequent $\Gamma \longrightarrow \Delta$ has a Property \mathbf{H} if it satisfies the the following conditions

1. The root $\Gamma \longrightarrow \Delta$ of the derivation $\mathrm{D}_{\Gamma \rightarrow \Delta}$ is obtained by direct use of the mix rule It means that the mix rule is the last rule used in the derivation of $\Gamma \longrightarrow \Delta$
2. The derivation $\mathrm{D}_{\Gamma \rightarrow \Delta}$ does not contain any other application of the mix rule

H Lemma

H Lemma
Any derivation that fulfills the Property \mathbf{H} may be transformed into a derivation of the same sequent in which no mix occurs

Step 3: we use the H Lemma and to prove the Hauptzatz

Proof of Hauptzatz

Step 3: Hauptzatz proof from H Lemma

Let D be any derivation (tree proof)
Let $\Gamma \longrightarrow \Delta$ be any node on D such that its sub-tree
$\mathrm{D}_{\Gamma \rightarrow \Delta}$ has the Property \mathbf{H}

By \mathbf{H} Lemma the sub-tree $\mathrm{D}_{\Gamma \rightarrow \Delta}$ can be replaced by a tree
$\mathrm{D}^{*}{ }^{\mathrm{H}} \rightarrow \Delta$ in which no mix occurs
The rest of \mathbf{D} remains unchanged

We repeat this procedure for each node N, such that the sub-tree D_{N} has the Property \mathbf{H} until every application of mix rule has systematically been eliminated

This ends the proof of Hauptzatz provided the H Lemma has already been proved

Proof of H Lemma

Step 2: proof of H lemma

We consider derivation tree \mathbf{D} with the Property \mathbf{H} It means that D is such that the mix rule is the last rule of inference used and D does not contain any other application of the mix rule

Observe that D contains only one application of mix rule, and the mix rule, contains only one mix formula A
Mix rule used may contain many copies of A, but there always is only one mix formula A. We call A the mix formula of D

We define two important notions: degree n and rank r of the derivation D

Degree of \mathbf{D}

Definition

Given a derivation tree D with the Property H
Let $A \in \mathcal{F}$ be the mix formula of \mathbf{D} The degree $n \geq 0$ of A is called the degree of the derivation D

We write it as

$$
\operatorname{deg} \mathbf{D}=\operatorname{deg} \mathrm{A}=\mathrm{n}
$$

Degree of \mathbf{D}

Definition

Given a derivation tree D with the Property H
We define the rank r of D as a sum of its left rank $L r$ and right rank Rr of D, i.e.

$$
r=L r+R r
$$

where:

1. left rank Lr of D is the largest number of consecutive nodes on the branch of D staring with the node containing the left premiss of the mix rule, such that each sequent on these nodes contains the mix formula in the succedent;
2. right rank $R r$ of D is the largest number of consecutive nodes on the branch of \mathbf{D} staring with the node containing the right premiss of the mix rule, such that each sequent on these nodes contains the mix formula in the antecedent.

Proof of H Lemma

We prove the H Lemma by carrying out two inductions One on the degree n, the other on the rank r, of the derivation D

It means we prove the \mathbf{H} Lemma for a derivation of the degree n, assuming it to hold for derivations of a lower degree as long as $n \neq 0$, i.e. we assume that derivations of lower degree can be already transformed into derivations without mix

Proof of H Lemma

The lowest possible rank is evidently 2

We begin by considering the case $\mathbf{1}$ when the rank is $r=2$ We carry induction with respect to the degree n of the derivation D

After that we examine the case $\mathbf{2}$ when the rank is $r>2$ and we assume that the \mathbf{H} Lemma already holds for derivations of the same degree, but a lower rank

Proof of H Lemma

Case 1. Rank of $r=2$

We carry induction with respect to the degree n of derivation
D, i.e. with respect to degree $n \geq 0$ of the mix formula

We split the induction cases to consider in two groups
GROUP 1. Axioms and Structural Rules
GROUP 2. Logical Rules

We present now some cases of rules of inference as examples. There are some more cases presented in the chapter, and the rest are left as exercises

Proof of H Lemma

Observe that first group contains cases that are especially simple in that they allow the mix to be immediately eliminated

The second group contains the most important case since their consideration brings out the basic idea behind the whole proof

Here we use the induction hypothesis with respect do the degree of the derivation. We reduce each one of the cases to transformed derivations of a lower degree

Proof of H Lemma

GROUP 1. Axioms and Structural Rules

1. The left premiss of the mix rule is an axiom

$$
A \longrightarrow A
$$

Then the sub-tree of D containing mix is as follows

$$
\begin{gathered}
A, \Sigma^{*} \longrightarrow \Delta \\
\bigwedge(\operatorname{mix})
\end{gathered}
$$

$$
A \longrightarrow A
$$

$$
\Sigma \longrightarrow \Delta
$$

Proof of H Lemma

We transform it, and replace it in the derivation tree D by

$$
A, \Sigma^{*} \longrightarrow \Delta
$$

(possibly several exchanges and contractions)

$$
\Sigma \longrightarrow \Delta
$$

Such obtained tree D^{*} proves the same sequent as D and contains no mix

Proof of H Lemma

2. The right premiss of the mix rule is an axiom $A \longrightarrow A$ Then the sub-tree of D containing mix is as follows

$$
\begin{gathered}
\Sigma \longrightarrow \Delta^{*}, A \\
\bigwedge(m i x)
\end{gathered}
$$

$$
\Sigma \longrightarrow \Delta \quad A \longrightarrow A
$$

We transform it, and replace it in D by

$$
\Sigma \longrightarrow \Delta^{*}, A
$$

(possibly several exchanges and contractions)

$$
\Sigma \longrightarrow \Delta
$$

Such obtained D* proves the same sequent and contains no mix

Proof of H Lemma

Suppose that neither of premisses of mix is an axiom As the rank is $r=2$, the right and left ranks are requal 1

This means that in the sequents on the nodes directly below left premiss of the mix, the mix formula A does not occur in the succedent; in the sequents on the nodes directly below right premiss of the mix, the mix formula A does not occur in the antecedent

In general, if a formula occurs in the antecedent (succedent) of a conclusion of a rule of inference, it is either obtained by a logical rule or by a contraction rule

Proof of H Lemma

3. The left premiss of the mix rule is the conclusion of a contraction rule. The sub-tree of D containing mix is:

$$
\begin{gathered}
\Gamma, \Sigma^{*} \longrightarrow \Delta, \Theta \\
\bigwedge(\text { mix })
\end{gathered}
$$

$$
\begin{array}{ll}
\Gamma \longrightarrow \Delta, A & \Sigma \longrightarrow \Theta \\
I(\rightarrow \text { contr }) & \\
\Gamma \longrightarrow \Delta &
\end{array}
$$

Proof of H Lemma

We transform it, and replace it in D by

$$
\left\ulcorner, \Sigma^{*} \longrightarrow \Delta, \Theta\right.
$$

(possibly several weakenings and exchanges)

$$
\ulcorner\longrightarrow \Delta
$$

Such obtained D* contains no mix
Observe that the whole branch of D that starts with the node $\Sigma \longrightarrow \Theta$ disappears
4. The right premiss of the mix rule is the conclusion of a contraction rule (\rightarrow contr). It is a dual case to 3 . s left as an exercise

Proof of H Lemma

GROUP 2. Logical Rules

1. The mix formula is $(A \cap B)$ The left premiss of the mix rule is the conclusion of a rule $(\rightarrow \cap)$. The right premiss of the mix rule is the conclusion of a rule $(\cap \rightarrow)_{1}$
The sub-tree T of D containing mix is:

$$
\begin{aligned}
& \Gamma, \Sigma \longrightarrow \Delta, \Theta \\
& \Lambda(\text { mix }) \\
& \Gamma \longrightarrow \Delta,(A \cap B) \\
& \bigwedge(\rightarrow \cap) \\
& (A \cap B), \Sigma \longrightarrow \Theta \\
& \text { I }(\cap \rightarrow)_{1} \\
& A, \Sigma \longrightarrow \Theta \\
& \Gamma \longrightarrow \Delta, A \quad \Gamma \longrightarrow \Delta, B
\end{aligned}
$$

Proof of H Lemma

We transform T into T^{*} as follows.

$$
\Gamma, \Sigma \longrightarrow \Delta, \Theta
$$

(possibly several weakenings and exchanges)

$$
\begin{gathered}
\left\ulcorner, \Sigma^{*} \longrightarrow \Delta^{*}, \Theta\right. \\
\bigwedge(\text { mix }) \\
\Gamma \longrightarrow \Delta, A \xrightarrow{ } \quad A, \Sigma \longrightarrow \Theta
\end{gathered}
$$

We replace T by T^{*} in D and obtain D^{*}

Proof of H Lemma

Now we can apply induction hypothesis with respect to the degree of the mix formula
The mix formula A in D^{*} has a lower degree then the mix formula $(A \cap B)$
By the inductive assumption the derivation D^{*}, and hence the derivation D may be transformed into one without mix
2. The case when the left premiss of themix rule is the conclusion of a rule ($\rightarrow \cap$) and right premiss of the mix rule is the conclusion of a rule $(\cap \rightarrow)_{2}$ is dual to $\mathbf{1}$. and is left as exercise

Proof of H Lemma

3. The main connective of the mix formula is \cup, i.e. the mix formula is $(A \cup B)$
This case is to be dealt with symmetrically to the \cap cases and is presented in the book chapter 6
4. The main connective of the mix formula is \neg, i.e. the mix formula is $\neg A$
This case is also presented in the book chapter 6

We consider now a slightly more complicated case of the implication, i.e. the case of the mix formula $(A \Rightarrow B)$

Proof of H Lemma

5. The main connective of the mix formula is \Rightarrow, i.e. the mix formula is $(A \Rightarrow B)$
Here is the sub-tree T of D containing the application of the mix rule

$$
\begin{aligned}
& \Gamma, \Sigma \longrightarrow \Delta, \Theta \\
& \Lambda(m i x) \\
& \Gamma \longrightarrow \Delta,(A \Rightarrow B) \\
& \text { I }(\rightarrow \Rightarrow) \\
& (A \Rightarrow B), \Sigma \longrightarrow \Theta \\
& \Lambda((\Rightarrow \rightarrow) \\
& A,\ulcorner\longrightarrow \Delta, B \\
& \Sigma \longrightarrow \Theta, A \quad B, \Sigma \longrightarrow \Theta,
\end{aligned}
$$

Proof of H Lemma

We transform Tinto \mathbf{T}^{*} as follows.

$$
\Gamma, \Sigma \longrightarrow \Delta, \Theta
$$

(possibly several weakenings and exchanges)

$$
\begin{gathered}
\Sigma, \Gamma^{*}, \Sigma^{* *} \longrightarrow \Theta^{*}, \Delta^{*}, \Theta \\
\bigwedge(m i x)
\end{gathered}
$$

$$
\Sigma \longrightarrow \Theta, A
$$

$$
A,\left\ulcorner, \Sigma^{*}, \longrightarrow \Delta^{*}, \Theta\right.
$$

$$
\bigwedge(m i x)
$$

$$
A, \Gamma \longrightarrow \Delta, B \quad B, \Sigma \longrightarrow \Theta
$$

Proof of H Lemma

The asteriks are, of course, intended as follows
Σ^{*}, Δ^{*} results from Σ, Δ by the omission of all formulas B
$\Gamma^{*}, \Sigma^{* *}, \Theta^{*}$ results from $\Gamma, \Sigma^{*}, \Theta$ by the omission of all formulas A

Proof of H Lemma

We replace the sub-tree T by T^{*} in D and obtain D^{*}

Now we have two mixes, but both mix formulas A and B are of a lower degree then n

We first apply the inductive assumption to the lower mix (formula B) and the lower mix is eliminated
We then apply by the inductive assumption and eliminate the upper mix (formula A)

This ends the proof of the case of the rank $r=2$

Proof of H Lemma

Case $r>2$
In the case $r=2$, we reduced the derivation to one of lower degree. Now we proceed to reduce the derivation to one of the same degree, but of a lower rank
This allows us to to be able to carry the induction with respect to the rank r of the derivation

We use the inductive assuption in all cases except, as before, a case of an axiom or structural rules
In these cases the mix can be eliminated immediately, as it was eliminated in the previous case of rank $r=2$

Proof of H Lemma

In a case of logical rules we obtain the reduction of the mix to derivations with mix of a lower ranks which consequently can be eliminated by the inductive assumption

We carry proofs for two logical rules $(\rightarrow \cap)$ and $(\cup \rightarrow)$
The proof for all other rules is similar and is left as exercise

We consider only the case of left rank $L r=1$ and right rank $R r>1$

The symmetrical case of left rank $L r>1$ and right rank $R r=1$ is left as an exercise

Proof of H Lemma

Case: $L r=1$ and $R r=r>1$

The right premiss of the mix is a conclusion of the inference rule $(\rightarrow \cap)$, i.e. it is of a form

$$
\ulcorner\longrightarrow \Delta,(A \cap B)
$$

where 「 contains a mix formula M

The left premiss of the mix is a sequent

$$
\Theta \longrightarrow \Sigma
$$

and Σ contains the mix formula M

Proof of H Lemma

The sub-tree T of D containing the application of the mix rule is

$$
\begin{aligned}
& \Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta,(A \cap B) \\
& \bigwedge(m i x) \\
& \Theta \longrightarrow \Sigma \\
& \Gamma \longrightarrow \Delta,(A \cap B) \\
& \bigwedge(\rightarrow \cap) \\
& \Gamma \longrightarrow \Delta, A \quad \Gamma \longrightarrow \Delta, B
\end{aligned}
$$

Proof of H Lemma

We transform T into T^{*} as follows

$$
\begin{gathered}
\Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta,(A \cap B) \\
\bigwedge(\rightarrow \cap) \\
\Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta, A \quad \Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta, B
\end{gathered}
$$

We perform mix on the left branch

$$
\begin{gathered}
\Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta, A \\
\bigwedge(\text { mix })
\end{gathered}
$$

$$
\Theta \longrightarrow \Sigma
$$

$$
\Gamma \longrightarrow \Delta, A
$$

Proof of H Lemma

We perform mix on the right branch

$$
\Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta, B
$$

$$
\bigwedge(m i x)
$$

$$
\Theta \longrightarrow \Sigma
$$

$$
\ulcorner\longrightarrow \Delta, B
$$

We replace T by T* in D and obtain D*
Now we have two mixes, but both have the right rank $R r=r-1$ and both of them can be eliminated by the inductive assumption

Proof of H Lemma

Case: $L r=1$ and $R r=r>1$

The right premiss of the mix is a conclusion of the rule $(\cup \rightarrow)$, i.e. it is of a form

$$
(A \cup B), \Gamma \longrightarrow \Delta
$$

and Γ contains a mix formula M

The left premiss of the mix is a sequent

$$
\Theta \longrightarrow \Sigma
$$

and Σ contains the mix formula M

Proof of H Lemma

The sub-tree T of D containing the application of the mix rule is

$$
\begin{array}{cc}
& \\
& \bigwedge(A \cup(\text { mix }) \\
& \\
& \\
& (A \cup B), \Gamma \longrightarrow \Delta \\
& \bigwedge(\cup \rightarrow)
\end{array}
$$

$$
A,\ulcorner\longrightarrow \Delta \quad В, \Gamma \longrightarrow \Delta
$$

Proof of H Lemma

$(A \cup B)^{*}$ stands either for $(A \cup B)$ or for nothing according as $(A \cup B)$ is unequal or equal to the mix formula M

The mix formula M certainly occurs in 「

For otherwise M would been equal to $(A \cup B)$ and the right rank Rr would be equal to 1 contrary to the assumption that $R r>1$

Proof of H Lemma

We transform T into T^{*} as follows

$$
\begin{gathered}
\Theta,(A \cup B), \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta \\
\bigwedge(\cup \rightarrow) \\
A, \Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta \\
B, \Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta
\end{gathered}
$$

We perform mix on the left branch

$$
A, \Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta
$$

(some weakenings, exchanges)

$$
\begin{gathered}
\Theta, A^{*}, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta \\
\bigwedge(\text { mix })
\end{gathered}
$$

$$
\Theta \longrightarrow \Sigma
$$

$$
A, \Gamma \longrightarrow \Delta
$$

Proof of H Lemma

We perform mix on the right branch

$$
B, \Theta, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta
$$

(some weakenings, exchanges)

$$
\begin{gathered}
\Theta, B^{*}, \Gamma^{*} \longrightarrow \Sigma^{*}, \Delta \\
\bigwedge(\text { mix })
\end{gathered}
$$

$$
\Theta \longrightarrow \Sigma
$$

$$
В, \Gamma \longrightarrow \Delta
$$

Proof of H Lemma

Now we have two mixes
But both have the right rank $R r=r-1$ and hence both of them can be eliminated by the inductive assumption

We replace T by T^{*} in D and obtain D^{*}

This ends the proof of the Hauptzatz Lemma
We have hence completed the proof of the Hauptzatz
Theorem

LK and LI Hauptzatz Theorems

LK and LI Hauptzatz Theorems

Let's denote by LK - c and LI-c the systems LK, LI without the cut rule, i.e. we put

$$
\begin{aligned}
\mathbf{L K}-\mathbf{c} & =\mathbf{L K}-\{(c u t)\} \\
\mathbf{L I}-\mathbf{c} & =\mathbf{L I}-\{(c u t)\}
\end{aligned}
$$

We re-write the Hauptzatz Theorems as follows.

LK and LI Hauptzatz Theorem

LK Hauptzatz
For every LK sequent $\Gamma \longrightarrow \Delta$,

$$
\vdash\llcorner K \Gamma \longrightarrow \Delta \text { if and only if } \vdash\llcorner K-c \Gamma \longrightarrow \Delta
$$

LI Hauptzatz
For every LI sequent $\Gamma \longrightarrow \Delta$,

$$
\vdash_{L I} \Gamma \longrightarrow \Delta \text { if and only if } \vdash_{L 1-c} \Gamma \longrightarrow \Delta
$$

This is why the cut-free Gentzen systems LK-c and LI -c are just called LK, LI, respectively

LK-c Completeness

Directly from the LK Completeness Theorem and the LK Hauptzatz Theorem we get that the following.

LK-c Completeness Theorem
For any sequent $\Gamma \longrightarrow \Delta$,

$$
\vdash_{\text {LK-c }} \Gamma \longrightarrow \Delta \quad \text { if and only if } \quad \models \Gamma \longrightarrow \Delta
$$

LK and GK Systems Equivalency

GK System

Let G be the Gentzen sequents proof system defined previously
We replace the logical axiom of G

$$
\Gamma_{1}^{\prime}, a, \Gamma^{\prime}{ }_{2} \longrightarrow \Delta_{1}^{\prime}, a, \Delta^{\prime}{ }_{2}
$$

where $a \in V A R$ is any propositional variable and

$$
\Gamma^{\prime}{ }_{1}, \Gamma^{\prime}{ }_{2}, \Delta^{\prime}{ }_{1}, \Delta^{\prime}{ }_{2} \in V A R^{*}
$$

are any indecomposable sequences, by a new logical axiom

$$
\Gamma_{1}, A, \Gamma_{2} \longrightarrow \Delta_{1}, A, \Delta_{2}
$$

for any $A \in \mathcal{F}$ and any sequences

$$
\Gamma_{1}, \Gamma_{2}, \Delta_{1}, \Delta_{2} \in S Q
$$

GK System

We call a resulting proof system GK, i.e. we defined it as follows

$$
\mathrm{GK}=\left(\mathcal{L}_{\{\cup, \cap, \Rightarrow, \neg\}}, S Q, L A, \mathcal{R}\right)
$$

where $L A$ is the new axiom defined above and \mathcal{R} is the set of rules of the system \mathbf{G}

Observe that the only difference between the systemsGK and G is the form of their logical axioms, both being tautologies

We get the proof of completeness of GK in the same way as we proved it for \mathbf{G}, i.e. we have the following

GK Completeness

GK Completeness Theorem

For any formula $A \in \mathcal{F}$,
$\vdash_{\mathrm{GK}} A$ if and only if $\models A$
For any sequent $\Gamma \longrightarrow \Delta \in S Q$

$$
\vdash_{\text {GK }} \Gamma \longrightarrow \Delta \quad \text { if and only if } \quad \models \Gamma \longrightarrow \Delta
$$

LK and GK Systems Equivalency

By the GK, LK-c Completeness Theorems we get the equivalency of GK and the cut free LK-c proof systems

LK, GK Equivalency Theorem

The proof systems GK and the cut free LK are equivalent, i.e for any sequent $\Gamma \longrightarrow \Delta$,

$$
\vdash \text { LK }\ulcorner\longrightarrow \Delta \quad \text { if and only if } \quad \vdash \text { GK } \Gamma \longrightarrow \Delta
$$

