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PART 1: Reduction Predicate Logic to Propositional Logic



Proofs of Completeness Theorem

There are several quite distinct approaches to the proof of

the completeness theorem

They correspond to the ways of thinking about proofs

Within each of these approaches there are endless variations

in exact formulation, corresponding to the choice of methods

we want to use to prove the completeness theorem

Different basic approaches are important, though, for

they lead to different applications



Proofs of Completeness Theorem

We have already presented two of the approaches

for the propositional logic, namely

Hilbert style formalizations (proof systems) in chapter 5 and

Gentzen style automated proof systems in chapter 6

We have also presented, for each of these approaches

several methods of proving the completeness theorem:

two very different proofs for Hilbert style proof systems

in chapter 5 and constructive proofs for several automated

Gentzen style proof systems in chapter 6



Proofs of Completeness Theorem

There are many proofs of the completeness theorem for
predicate (first order) logic

We present here in a great detail, a version of Henkin’s proof

as included in a classic

Handbook of Mathematical Logic, North Holland Publishing
Company- Amsterdam - Newy York -Oxford (1977)

It contains a method for reducing certain problems of

first order logic back to problems about propositional logic



Proofs of Completeness Theorem

We follow Henkin method and give independent proof

of compactness theorem for propositional logic

As the next steps we prove the most important, classical

logic theorems:

Reduction to Propositional Logic Theorem,

Compactness Theorem for first-order logic,

Löwenheim-Skolem Theorem and

Gödel Completeness Theorem

They all fall out of the Henkin method



Proofs of Completeness Theorem

We choose this particular proof of completeness not only for

it being one of the oldest and most classical, but also for its

connection with the propositional logic

Moreover, the proof of the compactness theorem is based on

semantical version of syntactical notions and techniques

crucial to the second proof of completeness theorem for

propositional logic covered in chapter 5 and hence is familiar

to the reader



Reduction Predicate Logic to Propositional Logic



Reduction Predicate Logic to Propositional Logic

Let L = L(P,F,C) be a first order language with equality

We assume that the sets P, F, C are infinitely enumerable

We also assume that it has a full set of propositional

connectives, i.e.

L = L{¬,∩,∪,⇒}(P,F,C)

Our goal now is to define a propositional logic within

L = L(P,F,C)

We do it in a sequence of steps



Reduction Predicate Logic to Propositional Logic

First we define a special subset PF of formulas of L

called a set of all propositional formulas of L

Intuitively, these are formulas of L which are direct

propositional combination of simpler formulas, that are

atomic formulas or formulas beginning with quantifiers

These simpler formulas are called prime formulas and are

formally defined as follows.



Prime Formulas

Definition

Prime formula of L is any formula from the set

P = AF ∪ {∀xB : B ∈ F } ∪ {∃xB : B ∈ F }

where the set AF is the set of all atomic formulas of L

The set
P ⊆ F

is called a set of all prime formulas of L



Prime Formulas

Example

The following are prime formulas

R(t1, t2), ∀x(A(x)⇒ ¬A(x)), (c = c), ∃x(Q(x, y) ∩ ∀yA(y))

The following are not prime formulas.

(R(t1, t2)⇒ (c = c)), (R(t1, t2) ∪ ∀x(A(x)⇒ ¬A(x))

Given a set P of prime formulas we define in a standard

way the set PF of propositional formulas of L as follows



Propositional Formulas of L

Definition (Propositional Formulas)

Let F , P be sets of all formulas and prime formulas of L,
respectively

The smallest set PF ⊆ F , such that

(i) P ⊆ PF

(ii) If A , B ∈ PF , then (A ⇒ B), (A ∪ B), (A ∩ B) and
¬A ∈ PF

is called a set of all propositional formulas of the predicate
language L

The set P is called the set of all atomic propositional
formulas of L



Propositional Semantics for L

Propositional Semantics for L

We define propositional semantics for propositional formulas

in PF as follows

Definition (Truth assignment)

Let P be a set of atomic propositional formulas of L and

{T ,F} be the set of logical values ”true” and ”false”

Any function
v : P −→ {T , F}

is called a truth assignment in L



Propositional Semantics for L

We extend v to the set PF of all propositional formulas

by defining the mapping

v∗ : PF −→ {T ,F}

as follows

v∗(A) = v(A) for A ∈ P

and for any A ,B ∈ PF

v∗(A ⇒ B) = v∗(A)⇒ v∗(B)

v∗(A ∪ B) = v∗(A) ∪ v∗(B)

v∗(A ∩ B) = v∗(A) ∩ v∗(B)

v∗(¬A) = ¬v∗(A)



Propositional Model, Tautology

Definition

A truth assignment v : P −→ {T ,F} is called a propositional

model for a formula A ∈ PF if and only if v∗(A) = T

Definition

For any formula A ∈ PF

A ∈ PF is a propositional tautology of L if and only if
v∗(A) = T for all v : P −→ {T ,F}

For the sake of simplicity we will often say model, tautology

instead propositional model, propositional tautology when

there is no confusion



Consistent Inconsistent Sets

Definition

Given a set S of propositional formulas

We say that v is a (propositional) model for the set S

if and only if

v is a model for all formulas A ∈ S

Definition (Consistent Set)

A set S ⊆ PF of propositional formulas of L is consistent if it
has a (propositional) model

Definition (Inconsistent Set)

A set S ⊆ PF of propositional formulas of L is inconsistent if
it does not have a (propositional) model



Compactness Theorem

Compactness Theorem for Propositional Logic of L

A set S ⊆ PF of propositional formulas of L is consistent

if and only if every finite subset of S is consistent

Proof

Assume that S is a consistent set. By definition, it has

a model. Its model is also a model for all its subsets,
including all finite subsets. Hence all its finite subsets

are consistent



Compactness Theorem

To prove the converse implication, i.e. the nontrivial half of

the Compactness Theorem we write it in a slightly modified

form. To do so, we introduce the following definition

Definition

Any set S such that all its finite subsets are consistent

is called finitely consistent

We re-write the compactness theorem as follows.

Compactness Theorem

A set S of propositional formulas of L is consistent

if and only if S is finitely consistent



Compactness Theorem

The nontrivial half of the Compactness Theorem still

to be proved is now stated now as follows

Every finitely consistent set of propositional formulas of L

is consistent

The proof consists of the following four steps

S1 We introduce the notion of a maximal finitely

consistent set

S2 We show that every maximal finitely consistent set

is consistent

We do so by constructing its model



Compactness Theorem

S3 We show that every finitely consistent set S can be
extended to a maximal finitely consistent set S∗

We show that

for every finitely consistent set S there is a set S∗, such that
S ⊆ S∗ and S∗ is maximal finitely consistent

S4 We use steps S2 and S3 to justify the following
reasoning



Compactness Theorem

Given a finitely consistent set S

We extend it, via construction to be defined in the step S3

to a maximal finitely consistent set S∗

By the S2, the set S∗ is consistent and so is the set S

This ends the proof of the Compactness Theorem



Proof of Step S1

Here are the details and proofs needed for completion

of steps S1 - S4

Step S1 We introduce the following definition

Definition of Maximal Finitely Consistent Set (MFC)

Any set
S ⊆ PF

is maximal finitely consistent if it is finitely consistent and

for every formula A ,

either A ∈ S or ¬A ∈ S

We use notation MFC for maximal finitely consistent set, and

FC for the finitely consistent set



Proof of Step S2

Step S2 consists of proving the following Lemma

MFC Lemma

Any MFC set is consistent

Proof

Given a MFC set denoted by S∗

We prove consistency of S∗ by constructing model for it

It means we are going to construct a truth assignment

v : P −→ {T ,F}

such that for all A ∈ S∗

v∗(A) = T



Proof of Step S2

Observe that directly from the definition we have the following

property of the the MFC sets.

Property

For any MFC set S∗ and for every A ∈ PF ,

exactly one of the formulas A , ¬A belongs to S∗

In particular, for any atomic formula P ∈ P, we have that

exactly one of formulas P, ¬P belongs to S∗

This justifies the correctness of the following definition



Proof of Step S2

Definition

For any MFC set S∗, a mapping

v : P −→ {T ,F}

such that

v(P) =

{
T if P ∈ S∗

F if P < S∗

is called a truth assignment defined by S∗



Proof of Step S2

We extend v to
v∗ : PF −→ {T ,F}

in a usual, standard way and we prove that the truth
assignment v is a model for S∗

It means we show for any A ∈ PF ,

v∗(A) =

{
T if A ∈ S∗

F if A < S∗

We prove it by induction on the degree of the formula A

as follows.



Proof of Step S2

The base case of atomic formula P ∈ P follows immediately
from the definition of v

Inductive Case: A = ¬C

1. Assume that A ∈ S∗

This means ¬C ∈ S∗ and by the MFC Property we have that
C < S∗. So by the inductive assumption v∗(C) = F and we
get

v∗(A) = v∗(¬C) = ¬v∗(C) = ¬F = T

2. Assume now that A < S∗.

By MFC Property we have that C ∈ S∗

By the inductive assumption v∗(C) = T and

v∗(A) = v∗(¬C) = ¬v∗(T) = ¬T = F



Proof of Step S2

We proved that for any formula A ∈ PF ,

v∗(¬A) =

{
T if ¬A ∈ S∗

F if ¬A < S∗

Inductive Case: A = (B ∪ C)

1. Assume that A ∈ S∗. i.e. (B ∪ C) ∈ S∗

It is enough to prove that in this case B ∈ S∗ or C ∈ S∗,
because then from the inductive assumption v∗(B) = T and

v∗(B ∪ C) = v∗(B) ∪ v∗(C) = T ∪ v∗(C) = T for any C

The case C ∈ S∗ is similar



Proof of Step S2

Assume that (B ∪ C) ∈ S∗, B < S∗ and C < S∗

Then by MFC Property we have that ¬B ∈ S∗, ¬C ∈ S∗ and
consequently the set

{(B ∪ C),¬B ,¬C}

is a finite inconsistent subset of S∗, what contradicts the fact
that S∗ is finitely consistent

2. Assume now that (B ∪ C) < S∗

By MFC Property, ¬(B ∪C) ∈ S∗ and by already proven case
of A = ¬C we have that v∗(¬(B ∪ C)) = T

But v∗(¬(B ∪ C)) = ¬v∗((B ∪ C)) = T

This means that v∗((B ∪ C)) = F , what ends the proof of this
case



Step S3

The remaining cases of A = (B ∩C) and A = (B ⇒ C) are
similar to the above and are left to the as an exercise

This ends the proof of MFC Lemma and completes the step
S2

S3: Maximal finitely consistent ( MFC ) extension S∗

Given a finitely consistent set S

We construct the MFC extension S∗ of the set S as follows



Proof of Step S3

The set of all formulas of L is infinitely countable and so is the
set PF . We assume that the set PF of all propositional
formulas form a one-to-one sequence

(∗) A1, A2, . . . , An, . . . ,

We define a chain

(∗∗) S0 ⊆ S1 ⊆ S2, . . . , ⊆ Sn ⊆, . . .

of extensions of the set S as follows

S0 = S

Sn+1 =

{
Sn ∪ {An} if Sn ∪ {An} is finitely consistent
Sn ∪ {¬An} otherwise.



Proof of Step S3

We take
S∗ =

⋃
n∈N

Sn

Obviously S ⊆ S∗ also is MFC as clearly and for every A ,

either A ∈ S∗ or ¬A ∈ S∗

To complete the proof that S∗ is MFC set we have to show
that it is finitely consistent

First, let observe that if all sets Sn are finitely consistent,

so is the set S∗ =
⋃

n∈N Sn. Namely, let

SF = {B1, ...,Bk }

be a finite subset of S∗



Proof of Step S3

This means that there are sets Si1 , ...Sik in the chain (∗∗)
such that

Bm ∈ Sim for m = 1, . . . k

Let M = max(i1, ...ik ). Obviously

SF ⊆ SM

and the set SM is finitely consistent as an element of

the chain (∗∗). This proves that if all sets Sn are

finitely consistent, so is S∗

Now we have to prove only that all sets Sn

are FC (finitely consistent)

We carry the proof by induction over the length of the chain



Proof of Step S3

Base Case

S0 = S, so it is FC (finitely consistent) by assumption of

the Compactness Theorem

Inductive Step

Assume now that Sn is FC (finitely consistent)

We prove that Sn+1 is FC

We have two cases to consider

Case 1 Sn+1 = Sn ∪ {An}

Then Sn+1 is FC by the definition of the chain

Case 2 Sn+1 = Sn ∪ {¬An}

Observe that this can happen only if Sn ∪ {An} is not FC, i.e.
there is a finite subset S

′

n ⊆ Sn, such that S
′

n ∪ {An} is not
consistent



Proof of Step S3

Suppose now that Sn+1 is not FC

This means that there is a finite subset S
′′

n ⊆ Sn, such that
S
′′

n ∪ {¬An} is not consistent

Take S
′

n ∪ S
′′

n . It is a finite subset of Sn so it is consistent by
the inductive assumption

Let v be a model of S
′

n ∪ S
′′

n

Then one of v∗(A), v∗(¬A) must be T

This contradicts the inconsistency of both

S
′

n ∪ {An} and S
′

n ∪ {¬An}

Thus, in ether case, Sn+1 is FC

We hence proved that all sets Sn are FC (finitely consistent)



Compactness Theorem

This completes the proof of the step S3

We complete the proof of the Compactness Theorem

for propositional logic of L via the following argument

as presented in the step S4

Given a finitely consistent set S

We extend it, via construction defined in the step S3 to

a maximal finitely consistent set S∗

By the S2, the set S∗ is consistent and so is the set S

This ends the proof of the Compactness Theorem
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PART 2:

Henkin Method

Reduction to Propositional Logic Theorem,

Compactness Theorem,

Löwenheim-Skolem Theorem



Henkin Method

Propositional tautologies within L barely scratch the surface

of the collection of predicate (first -order) tautologies

For example the following first-order formulas are

propositional tautologies

(∃xA(x) ∪ ¬∃xA(x)), (∀xA(x) ∪ ¬∀xA(x)

(¬(∃xA(x) ∪ ∀xA(x))⇒ (¬∃xA(x) ∩ ¬∀xA(x)))

but the following are predicate (first order) tautologies that

are not propositional tautologies

∀x(A(x) ∪ ¬A(x))

(¬∀xA(x)⇒ ∃x¬A(x))



Henkin Method

To stress the difference between the propositional

tautologies of a propositional language and predicate

tautologies the word tautology is used only for the

propositional tautologies of a propositional language

The word a valid formula is used for the predicate tautologies
in this case

We use here both notions, with preference to word predicate
tautology or tautology for short when there is no room for
misunderstanding

To make sure that there is no misunderstandings we remind

the following basic definitions from chapter 8



Basic Definitions

Given a first order language L with the set of variables VAR
and the set of formulas F . Let

M = [M, I ]

be a structure for the languageL, with the universe M and
the interpretation I and let

s : VAR −→ M

be an assignment of L in M

Here are some basic definitions



Basic Definitions

D1. A is satisfied inM

Given a structure M = [M, I ], we say that a formula A

is satisfied inM if there is an assignment s : VAR −→ M
such that

(M, s) |= A

D2. A is true inM

Given a structure M = [M, I ], we say that a formula A

is true inM if
(M, s) |= A

for all assignments s : VAR −→ M



Basic Definitions

D3. Model M

If A is true in a structureM = [M, I ], thenM is called a
model for A

We denote it as
M |= A

D4. A is predicate tautology (valid)

A formula A is a predicate tautology (valid) if it is true in all
structuresM = [M, I ], i.e. if all structures are models of A

We use use the term predicate tautology and and denote it,
when there is no confusion with propositional case as

|= A



Basic Definitions

Case: A is a sentence

If the formula A is a sentence, then the truth or falsity of the
statement (M, s) |= A is completely independent of s

Thus we write
M |= A

and read M is a model of A , if for some (hence every)
valuation s

(M, s) |= A

D5. Model of a set S of formulas

M is a model of a set S (of sentences) if and only if M |= A
for all A ∈ S. We write it

M |= S



Predicate and Propositional Models



Relationship

Given a predicate language L

The predicate models for L are defined in terms of

structures M = [M, I ] and assignments s : VAR −→ M

The propositional models for L are defined in terms of of

truth assignments v : P −→ {T ,F}

The relationship between the predicate models and

propositional models is established by the following Lemma



Relationship Lemma

Lemma

Let M = [M, I] be a structure for the language L and let
s : VAR −→ M an assignment inM

There is a truth assignment

v : P −→ {T ,F}

such that for all formulas A of L,

(M, s) |= A if and only if v∗(A) = T

In particular, for any set S of sentences of L,

if M |= S then S is consistent in the propositional sense



Relationship Lemma Proof

Proof

For any prime formula A ∈ P we define

v(A) =

{
T if (M, s) |= A
F otherwise.

Since every formula in L is either prime or is built up from
prime formulas by means of propositional connectives, the
conclusion is obvious



Relationship Lemma

Observe, that the converse of the Lemma implication:

if M |= S then S is consistent in the propositional sense

is far from true

Consider a set

S = {∀x(A(x)⇒ B(x)),∀xA(x),∃x¬B(x)}

All formulas of S are different prime formulas

So S has and obvious model and hence is consistent in the
propositional sense

Obviously S has no predicate model



Language with Equality

Definition (Language with Equality)
Let L be a predicate (first order) language with equality

L = L{¬,∩,∪,⇒}(P,F,C)

Equality Axioms
For any free variable or constant of L, i.e for any
u,w, ui ,wi ∈ (VAR ∪ C),
E1 u = u
E2 (u = w ⇒ w = u)

E3 ((u1 = u2 ∩ u2 = u3)⇒ u1 = u3)

E4
((u1 = w1 ∩ ... ∩ un = wn)⇒ (R(u1, ..., un)⇒ R(w1, ...,wn)))

E5
((u1 = w1 ∩ ... ∩ un = wn)⇒ (t(u1, ..., un)⇒ t(w1, ...,wn)))

where R ∈ P and t ∈ T, i.e. R is an arbitrary n-ary relation
symbol of L and t ∈ T is an arbitrary n-ary term of L



Language with Equality

Observe that given any structureM = [M, I ]

We have by simple verification that

for all s : VAR −→ M, and

for all A ∈ {E1,E2,E3,E4,E5},

(M, s) |= A

This proves the following

Fact

All equality axioms are predicate tautologies of L

This is why we call logic with equality axioms added to it,
still just a logic



Henkin’s Witnessing Expansion of L



Henkin’s Witnessing Expansion

Now we are going to define notions that are fundamental to
the Henkin’s technique for reducing predicate logic to
propositional logic

The first one is that of witnessing expansion of L

We construct an expansion of the language L by adding a
set of new constants to it

It means the we add a specially constructed the set C to the
set C of constants of L such that

C ∩ C = ∅

The language such constructed is called witnessing
expansion of the language L

The construction of the expansion is described as follows



Henkin’s Witnessing Expansion

Definition
For any predicate language

L = L(P,F,C)

the language
L(C) = L(P,F,C ∪ C))

is called a witnessing expansion of L

The set C of new constants and the language L(C) defined
by the construction described below

We denote L(C) as

L(C) = L ∪ C



Henkin’s Witnessing Expansion

Construction of the witnessing expansion of L

We define the set C of new constants by constructing (by
induction) an infinite sequence

C0,C1, ...,Cn, . . .

of sets of constants together with an infinite sequence

L0,L1, ...,Ln, . . .

of languages as follows

C0 = ∅ and L0 = L ∪ C0 = L

We denote by
A [x]

the fact that the formula A has exactly one free variable



Henkin’s Witnessing Expansion

For each such a formula A [x] we introduce a distinct new
constant denoted by

cA [x]

We define

C1 = {cA [x] : A [x] ∈ L0 } and L1 = L ∪ C1

Assume that we have already defined the set Cn of constants
and the language Ln

To each formula A [x] of Ln which is not already a formula
of Ln−1 we assign distinct new constant symbol

cA [x]



Henkin’s Witnessing Expansion

We write it informally as A [x] ∈ (Ln − Ln−1) to denote that
A [x] of Ln which is not already a formula of Ln−1

We define

Cn+1 = Cn ∪ {cA [x] : A [x] ∈ (Ln − Ln−1) }

Ln+1 = L ∪ Cn+1

We put

(∗) C =
⋃

Cn and L(C) = L ∪ C

For any formula A(x), a constant cA [x] ∈ C as defined by (∗) is
called a witnessing constant



Reduction to Propositional Logic Theorem



Henkin Axioms

Definition(Henkin Axioms)

The following sentences

H1 (∃xA(x)⇒ A(cA [x]))

H2 (A(c¬A [x])⇒ ∀xA(x))

are called Henkin axioms

The informal idea behind the Henkin axioms is the following

The axiom H1 says:

If ∃xA(x) is true in a structure, choose an element a
satisfying A(x) and give it a new name cA [x]

The axiom H2 says:

If ∀xA(x) is false, choose a counter example b and call it by
a new name c¬A [x]



Quantifiers Axioms

Definition (Quantifiers Axioms)

The following sentences

Q1 (∀xA(x)⇒ A(t))

where t is a closed term of L(C)

Q2 (A(t)⇒ ∃xA(x))

where t is a closed term of L(C)

re called quantifiers axioms

Observe that the quantifiers axioms Q1, Q2 obviously are
predicate tautologies



Henkin Set

Henkin Set

Any set of sentences of L(C) which are either Henkin
axioms or quantifiers axioms is called the Henkin set and
denoted by

SHenkin

The sentences of SHenkin are obviously not true in every
L(C)-structure. But we are going to show now the following

Every L-structure can be transformed into an L(C)-structure
which is a model of SHenkin

Before we do so we need to introduce two new notions



Reduct and Expansion

Reduct and Expansion

Given two languages L and L
′

such that

L ⊆ L
′

LetM
′

= [M, I
′

] be a structure for L
′

. The structure

M = [M, I
′

| L]

is called the reduct ofM
′

to the language L andM
′

is
called the expansion ofM to the language L

′

Thus the reduct ofM
′

and the expansion ofM are the same
except thatM

′

assigns meanings to the symbols in L − L
′



Reduct and Expansion Lemma

Lemma

LetM = [M, I] be any structure for the language L and

let L(C) be the witnessing expansion of L

There is an expansionM
′

= [M, I
′

] ofM = [M, I ] such that

M
′

|= SHenkin

Proof

In order to define the expansion ofM toM
′

we have to
define the interpretation I

′

for the symbols of the language
L(C) = L ∪ C , such that I

′

restricted to L is the
interpretation I , i.e. such that

I
′

| L = I



Lemma Proof

This means that we have to define cI′ for all c ∈ C

By the definition, cI′ ∈ M, so this also means that we have to
assign the elements of M to all constants c ∈ C in such a
way that the resulting expansion is a model for all sentences
from SHenkin

The quantifier axioms are predicate tautologies so they

are going to be true regardless. So we have to worry only

about the Henkin axioms



Lemma Proof

Observe now that if the Lemma holds for the Henkin axiom
H1 (∃xA(x)⇒ A(cA [x]))

then it must hold for the axiom H2
Namely, let’s consider the axiom H2:

(A(c¬A [x])⇒ ∀xA(x))

Assume that A(c¬A [x]) is true in the expansionM
′

, i.e. that

M
′

|= A(c¬A [x]) and that M
′

6|= ∀xA(x)

This means that
M

′

|= ¬∀xA(x)

and by the De Morgan Laws

M
′

|= ∃x¬A(x)



Lemma Proof

But we have assumed thatM
′

is a model for H1

In particular

M
′

|= (∃x¬A(x)⇒ ¬A(c¬A [x]))

and hence asM
′

|= ∃x¬A(x) we have that

M
′

|= ¬A(c¬A [x])

This contradicts the assumption that

M
′

|= A(c¬A [x])

Thus we proved that

if M
′

is a model for all axioms of the type H1, it is also a
model for all axioms of the type H2



Lemma Proof

We define now cI′ for all c ∈ C, where

C =
⋃

Cn

We do so by induction on n

Base case: n = 1 and cA [x] ∈ C1

By definition,
C1 = {cA [x] : A [x] ∈ L}

In this case we have that ∃xA(x) ∈ L and hence the notion

M |= ∃xA(x)

is well defined, asM = [M, I] is the structure for the language
L



Lemma Proof

As we consider arbitrary structureM, there are two
possibilities:

M |= ∃xA(x) or M 6|= ∃xA(x)

We define cI′ , for all c ∈ C1 as follows

IfM |= ∃xA(x), then (M, v′) |= A(x) for certain
v′(x) = a ∈ M. We set

(cA [x]))I′ = a

IfM 6|= ∃xA(x), we set

(cA [x]))I′ arbitrarily



Lemma Proof

This makes all the positive H1 type Henkin axioms about the
cA [x] ∈ C1 true, i.e.

M = (M, I) |= (∃xA(x)⇒ A(cA [x]))

But once cA [x] ∈ C1 are all interpreted in M, then the notion

M
′

|= A

is defined for all formulas A ∈ L ∪ C1

We carry the same argument and define cI′ , for all c ∈ C2

and so on . . .



Lemma Proof

The inductive step is performed in the exactly the same way
as the one above

Observe that we have aleady we proved that

if M
′

is a model for all axioms of the type H1, it is also

a model for all axioms of the type H2

Hence this ends the proof of the Lemma



Canonical Structure

Definition (Canonical Structure)

Given a structureM = [M, I] for the language L

The expansion
M

′

= [M, I
′

]

ofM = [M, I] is called a canonical structure for L(C)

if all a ∈ M are denoted by some c ∈ C. That is

M = {cI′ : c ∈ C}

Now we are ready to state and prove a theorem that provides

the essential step in the proof of the completeness theorem

for predicate logic



The Reduction to Propositional Logic

Theorem (The Reduction Theorem)

Let L = L(P,F,C) be a predicate language and let
L(C) = L(P,F,C ∪ C) be a witnessing expansion of L

For any set S of sentences of L the following conditions are
equivalent

(i) S has a model, i.e. there is a structureM = [M, I] for the
language L such thatM |= A for all A ∈ S

(ii) There is a canonical structure M = [M, I] for L(C)
which is a model for S, i.e. such thatM |= A for all A ∈ S

(iii) The set S ∪ SHenkin ∪ EQ is consistent in sense of
propositional logic, where EQ denotes the equality axioms
E1 − E5



Reduction Theorem Proof

Proof

We have to prove that the conditions (i), (ii), (iii) of the
theorem are equivalent

The implication (ii)→ (i) is immediate

The implication (i)→ (iii) follows from the Lemma

We have to prove only the implication (iii) → (ii)

Assume (iii) , i.e. that the set S ∪ SHenkin ∪ EQ is consistent
in sense of propositional logic and let v be a truth assignment
to the prime sentences of L(C) , such that

v∗(A) = T for all A ∈ S ∪ SHenkin ∪ EQ



Reduction Theorem Proof

To prove the theorem, we construct a canonical L(C)
structureM = [M, I] such that, for all sentences A of L(C),

M |= A if and only if v∗(A) = T

By assumption, the truth assignment v is a propositional
model for the set SHenkin, so v∗ satisfies the following
conditions:

(i) v∗(∃xA(x)) = T if and only if v∗(A(cA [x])) = T

(ii) v∗(∀xA(x)) = T if and only if v∗(A(t)) = T

for all closed terms t of L(C)



Reduction Theorem Proof

The conditions (i) and (ii) allow us to construct the canonical
L(C) modelM = [M, I] out of the constants in C in the
following way

To defineM = [M, I] we must

(1.) specify the universe M ofM

(2.) define, for each n-ary predicate symbol R ∈ P, the
interpretation RI as an n-argument relation in M

(3.) define, for each n-ary function symbol f ∈ F, the
interpretation fI : Mn → M, and

(4.) define, for each constant symbol c of L(C), i.e.
c ∈ C ∪ C, its interpretation as element cI ∈ M



Reduction Theorem Proof

The construction of the structure

M = [M, I]

must be such that the condition

(CM) M |= A if and only if v∗(A) = T

holds for for all sentences A of L(C)

This condition (CM) tells us how to construct the definitions
(1.) - (4.) above



Reduction Theorem Proof

Here are the definitions

(1.) Definition of the universe M ofM

In order to define the universe M we first define a relation ≈
on C as follows

c ≈ d if and only if v(c = d)) = T

The equality axioms EQ guarantee that the relation ≈ is
equivalence relation on C. Here is the proof

Reflexivity of ≈

All equality axioms EQ are predicate tautologies, so
v(c = d)) = T by axiom E1 and we have

c ≈ c for all c ∈ C



Reduction Theorem Proof

Symmetry condition

if c ≈ d, then d ≈ c

holds by axiom E2

Assume c ≈ d, by definition v(c = d)) = T

By axiom E2

v∗((c = d ⇒ d = c)) = v(c = d)⇒ v(d = c) = T

i.e. T ⇒ v(d = c) = T

This is possible only if v(d = c) = T

This proves that d ≈ c



Reduction Theorem Proof

We prove transitivity in a similar way

Assume now that c ≈ d and d ≈ e

By the axiom E3 we have that

v∗(((c = d ∩ d = e)⇒ c = e)) = T

Since v(c = d)) = T and v(d = e)) = T by the assumption
c ≈ d and d ≈ e, we evaluate

v∗((c = d ∩ d = e)⇒ c = e) = (T ∩ T ⇒ c = e) =

(T ⇒ c = e) = T and get that (c = e) = T and hence

d ≈ e



Reduction Theorem Proof

We denote by [c] the equivalence class of c and we define
the universe M ofM as

M = {[c] : c ∈ C}

(2.) Definition of RI ⊆ Mn

Let M be the the universe defined above

We define RI ⊆ Mn as follows

([c1], [c2], . . . , [cn]) ∈ RI if and only if v(R(c1, c2, . . . , cn)) = T

We have to prove now that RI is well defined by the condition
above



Reduction Theorem Proof

In order to prove that RI is well defined we must verify:

if [c1] = [d1], . . . , [cn] = [dn] and ([c1], [c2], . . . , [cn]) ∈ RI

then ([d1], [d2], . . . , [dn]) ∈ RI

We have by the axiom E4 that

v∗(((c1 = d1 ∩ ... cn = dn)⇒ (R(c1, .., cn)⇒ R(d1, .., dn)))) = T

By the assumption [c1] = [d1], . . . , [cn] = [dn] we have that

v(c1 = d1) = T , . . . , v(cn = dn) = T



Reduction Theorem Proof

By the assumption ([c1], [c2], . . . , [cn]) ∈ RI, we have that

v(R(c1, ..., cn)) = T

Hence the axiom E4 condition becomes

(T ⇒ (T ⇒ v(R(d1, ..., dn)))) = T

It holds only when v(R(d1, ..., dn)) = T

and so we proved that

([d1], [d2], . . . , [dn]) ∈ RI



Reduction Theorem Proof

(3.) Definition of fI : Mn → M

Let c1, c2, . . . , cn ∈ C and f ∈ F

We claim that there is c ∈ C such that

f(c1, c2, . . . , cn) = c and v(f(c1, c2, . . . , cn) = c) = T

For consider the formula

A [x] given by f(c1, c2, . . . , cn) = x

If v∗(∃xA(x)) = v∗(∃x f(c1, c2, . . . , cn) = x) = T

we want to prove

v∗(A(cA [x])) = T i.e. v(f(c1, c2, . . . , cn) = cA ) = T



Reduction Theorem Proof

So suppose that v(f(c1, c2, . . . , cn) = cA ) = F

But one member of he Henkin set SHenkin is the sentence

(A(f(c1, c2, . . . , cn))⇒ ∃xA(x))

so we must have that

v∗(A(f(c1, c2, . . . , cn))) = F

But this says that v assigns F to the atomic sentence

f(c1, c2, . . . , cn) = f(c1, c2, . . . , cn)



Reduction Theorem Proof

By the axiom E1, v(ci = ci) = T for i = 1, 2 . . . n

By axiom E5 we have that

(v∗(c1 = c1 ∩ . . . cn = cn)⇒ v∗(f(c1, . . . , cn) = f(c1, . . . , cn))) = T

there is c ∈ C such that

f(c1, c2, . . . , cn) = c and v(f(c1, c2, . . . , cn) = c) = T

We hence define

fI(([c1], . . . , [cn]) = [c] for c such that v(f(c1, . . . , cn) = c) = T

The argument similar to the one used in (2.) proves that fI is
well defined



Reduction Theorem Proof

(4.) Definition of cI ∈ M

For any c ∈ C we take

cI = [c]

If d ∈ C, then an argument similar to that used on (3.) shows
that there is c ∈ C such that v(d = c) = T , i.e. d ≈ c, so
we put

dI = [c]

We hence completed the construction of the canonical
structureM = [M, I]



Reduction Theorem Proof

Observe that directly from the definition of the canonical
structureM = [M, I] we have that the property

(CM) M |= A if and only if v∗(A) = T

holds for atomic propositional sentences, i.e. we proved that

M |= B if and only if v∗(B) = T for sentences B ∈ P

To complete the proof of the Reduction Theorem we prove
now that the property (CM) holds for all other sentences

We carry the proof by induction on length of formulas

The Base Case is already proved

The Inductive Case is as follows



Reduction Theorem Proof

Case of propositional connectives is similar to the case of a
formula (A ∩ B) below

M |= (A ∩ B) if and only if M |= A and M |= B

It follows directly from the satisfaction definition

M |= A andM |= B if and only if v∗(A) = T and v∗(B) = T

if and only if v∗(A ∩ B) = T

It holds by the induction hypothesis
We proved

M |= (A ∩ B) if and only if v∗(A ∩ B) = T

for all sentences A ,B of L(C)



Reduction Theorem Proof

We prove now the case of a sentence B of the form

∃xA(x)

We want to show that

M |= ∃xA(x) if and only if v∗(∃xA(x)) = T

Let v∗(∃xA(x)) = T

Then there is a c such that v∗(A(c)) = T , so by

induction hypothesis,M |= A(c) so by definition

M |= ∃xA(x)



Reduction Theorem Proof

On the other hand, if v∗(∃xA(x)) = F , then by SHenking

quantifier axiom Q2 we have that

v∗(A(t)) = F

for all closed terms t of L(C). In particular, for every c ∈ C

v∗(A(c)) = F

By induction hypothesis,

M |= ¬A(c) for all c ∈ C

Since every element of M is denoted by some c ∈ C we have
that

M |= ¬∃xA(x)

The proof of the case of a sentence B of the form ∀xA(x) is
similar and is left as and exercise
This ends the proof of the Reduction Theorem



Compactness Theorem
and

Löwenheim-Skolem Theorem



Compactness and Löwenheim-Skolem Theorems

The Reduction to Propositional Logic Theorem provides a
powerful method of constructing models of theories out of
symbols in a form of canonical models

It also gives us immediate proofs of the two important
theorems: Compactness Theorem for the predicate logic
and the Löwenheim-Skolem Theorem



Compactness Theorem

Compactness theorem
Let S be any set of predicate formulas of L
The set S has a model if and only if any finite subset S0 of
S has a model
Proof
Assume that S is a set of predicate formulas such that every
finite subset S0 of S has a model
We need to show that S has a model

The implication (iii)→ (i) of the Reduction Theorem says:
” If The set S ∪ SHenkin ∪ EQ is consistent in sense of
propositional logic, then S has a model”
So showing that S has a model this is equivalent to proving
that S ∪ SHenkin ∪ EQ is consistent in the sense of
propositional logic



Compactness Theorem

By already proved Compactness Theorem for propositional

ogic of L, it suffices to prove that for every finite subset

S0 ⊂ S, the set S0 ∪ SHenkin ∪ EQ has a model

This follows from the assumption that S is a set such that

every finite subset S0 of S has a model and the implication

(i)→ (iii) of the Reduction Theorem that says:

” if S0 has a model, then the set S0 ∪ SHenkin ∪ EQ

is consistent, ” i.e. has a model



Löwenheim-Skolem Theorem

Löwenheim-Skolem Theorem

Let κ be an infinite cardinal

Let L be a predicate language with the alphabet A such
that card(A) ≤ κ

Let Γ be a set of at most κ formulas of the L

If the set S has a model, then there is a model

M = [M, I]

of S such that
cardM ≤ κ



Löwenheim-Skolem Theorem

Proof

Let L be a predicate language with the alphabet A such
that card(A) ≤ κ

Obviously, card(F ) ≤ κ

By the definition of the witnessing expansion L(C) of L,
C =

⋃
nCn and for each n, card(Cn) ≤ κ. So also cardC ≤ κ

Thus any canonical structure for L(C) has ≤ κ elements

By the implication (i)→ (ii) of the Reduction Theorem that
says: ” if there is a model of S , then there is a canonical
structureM = [M, I] for L(C) which is a model for S”

S has a model (canonical structure) with ≤ κ elements

This ends the proof



Chapter 9
Hilbert Proof Systems

Completeness of Classical Predicate Logic

Slides Set 3

PART 3: Proof of theCompleteness Theorem



Completeness Theorem

The proof of Gödel’s completeness theorem given by

Kurt Gdel in his doctoral dissertation of 1929 and published

as an article in 1930 is not easy to read today

It uses concepts and formalism that are no longer used and
terminology that is often obscure

Gödel’s proof was then simplified in 1947, when

Leon Henkin observed in his Ph.D. thesis that the hard part

of the Gödel’s proof can be presented in the form of his

Model Existence Theorem which published in 1949

Henkin’s proof was simplified by Gisbert Hasenjaeger

in 1953



Completeness Theorem

Other now classical proofs have been published by

Rasiowa and Sikorski in 1951, 1952 using

Boolean algebraic methods and by Beth in 1953, using

topological methods

Still yet other proofs may be found in Hintikka (1955) and in
Beth (1959)

We follow a modern version of of Henkin proof



Hilbert-style Proof System H

We define now a Hilbert style proof system H we are going to
prove the completeness theorem for

Language L

The language L of the proof system H is a predicate (first
order) language with equality

We assume that the sets P, F, C are infinitely enumerable

We also assume that L has a full set of propositional
connectives, i.e.

L = L{¬,∩,∪,⇒}(P,F,C)



Hilbert-style Proof System H

Logical Axioms LA

The set LA of logical axioms consists of three groups of
axioms:

propositional axioms PA , equality axioms EA , and

quantifiers axioms QA

We write it symbolically as

LA = {PA , EA , QA }

For the set PA of propositional axioms we choose any

complete set of axioms for propositional logic with a full set

{¬,∩,∩,⇒} of propositional connectives



Hilbert-style Proof System H

In some formalizations, including the one in the

Handbook of Mathematical Logic, Barwise, ed. (1977)

we base our proof system H on, the authors just say for

this group PA of propositional axioms: ”all tautologies”

They of course mean all predicate formulas of L that are
substitutions of propositional tautologies

This is done for the need of being able to use freely these
predicate substitutions of propositional tautologies in the
proof of completeness theorem for the proof system they

formalize this way.



Hilbert-style Proof System H

In this case these tautologies are listed as axioms of the
system and hence are provable in it

This is a convenient approach, but also the one that makes
such a proof system not to be finitely axiomatizable

We avoid the infinite axiomatization by choosing a proper
finite set of predicate language version of propositional
axioms that is known (proved already for propositional case)
to be complete, i.e. the one in which all propositional
tautologies are provable

We choose, for name of the proof system H for Hilbert
Moreover, historical sake, we adopt Hilbert (1928) set of
axioms from chapter 5



Hilbert-style Proof System H

For the set EA of equational axioms we choose the same
set as in before because they were used in the proof of

Reduction to Propositional Logic Theorem

We want to be able to carry this proof within the system H

For the set QA of quantifiers axioms we choose the axioms

such that the Henkin set SHenkin axioms Q1, Q2 are their

particular cases

This again is needed, so the proof of the Reduction Theorem

can be carried within H



Hilbert-style Proof System H

Rules of inference R

There are four inference rules:

Modus Ponens (MP) and three quantifiers rules
(G), (G1), (G2), called Generalization Rules

We define the proof system H as follows

H = (L{¬,∩,∪,⇒}(P,F,C), F , LA , R = {(MP), (G), (G1), (G2)})

where L = L{¬,∩,∪,⇒}(P,F,C) is predicate language

with equality

We assume that the sets P, F, C are infinitely enumerable

F is the set of all well formed formulas of L



Hilbert-style Proof System H

LA is the set of logical axioms

LA = {PA ,EA ,QA }

for PA ,EA ,QA defined as follows

PA is the set of propositional axioms (Hilbert, 1928)

A1 (A ⇒ A)

A2 (A ⇒ (B ⇒ A))

A3 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A4 ((A ⇒ (A ⇒ B))⇒ (A ⇒ B))

A5 ((A ⇒ (B ⇒ C))⇒ (B ⇒ (A ⇒ C)))

A6 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))



Hilbert-style Proof System H

A7 ((A ∩ B)⇒ A)

A8 ((A ∩ B)⇒ B)

A9 ((A ⇒ B)⇒ ((A ⇒ C)⇒ (A ⇒ (B ∩ C)))

A10 (A ⇒ (A ∪ B))

A11 (B ⇒ (A ∪ B))

A12 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A13 ((A ⇒ B)⇒ ((A ⇒ ¬B)⇒ ¬A))

A14 (¬A ⇒ (A ⇒ B))

A15 (A ∪ ¬A)

for any A ,B ,C ∈ F



Hilbert-style Proof System H

EA is the set of equality axioms

E1 u = u

E2 (u = w ⇒ w = u)

E3 ((u1 = u2 ∩ u2 = u3)⇒ u1 = u3)

E4
((u1 = w1 ∩ ... ∩ un = wn)⇒ (R(u1, ..., un)⇒ R(w1, ...,wn)))

E5
((u1 = w1 ∩ ... ∩ un = wn)⇒ (t(u1, ..., un)⇒ t(w1, ...,wn)))

for any free variable or constant of L, R ∈ P, and t ∈ T

where R is an arbitrary n-ary relation symbol of L and t ∈ T
is an arbitrary n-ary term of L



Hilbert-style Proof System H

QA is the set of quantifiers axioms.

Q1 (∀xA(x)⇒ A(t))

Q2 (A(t)⇒ ∃xA(x))

where where t is a term

A(t) is a result of substitution of t for all free occurrences of
x in A(x) and

t is free for x in A(x), i.e. no occurrence of a variable in t
becomes a bound occurrence in A(t)



Hilbert-style Proof System H

R is the set of rules of inference

R = {(MP), (G), (G1), (G2)}

(MP) is Modus Ponens rule

(MP)
A ; (A ⇒ B)

B
for any formulas A ,B ∈ F

(G) is a quantifier generalization rule

(G)
A
∀xA

where A ∈ F and in particular we write

(G)
A(x)

∀xA(x)

for A(x) ∈ F and x ∈ VAR



Hilbert-style Proof System H

(G1 ) is a quantifier generalization rule

(G1)
(B ⇒ A(x))

(B ⇒ ∀xA(x))

where for A(x),B ∈ F , x ∈ VAR, and B is such that x is not
free in B

(G2 ) is a quantifier generalization rule

(G2)
(A(x)⇒ B)

(∃xA(x)⇒ B)

where for A(x),B ∈ F , x ∈ VAR, and B is such that x is not
free in B



Hilbert-style Proof System H

We define now, as we do for any proof system, a notion of

a formal proof of a formula A from a set S of formulas in H

as a finite sequence

B1,B2, . . . Bn

of formulas with each of which is either a logical axiom of H, a
member of S , or else follows from earlier formulas in the
sequence by one of the inference rules from R

and is such that
Bn = A

We write it formally as follows.



Formal Proof in H

Definition

Let Γ ⊆ F be any set of formulas of L

A proof in H of a formula A ∈ F from a set Γ of formulas is
a sequence

B1,B2, . . . Bn

of formulas, such that

B1 ∈ LA ∪ Γ, Bn = A

and for each 1 < i ≤ n, either Bi ∈ LA ∪ Γ or Bi is a
conclusion of some of the preceding expressions in the
sequence B1,B2, . . . Bn by virtue of one of the rules of
inference from R



Formal Proof in H

We write
Γ `H A

to denote that the formula A has a proof from Γ in H

The case when Γ = ∅ is a special one

By the definition, ∅ `H A means that in the proof of A only
logical axioms LA are used. We hence write

`H A

to denote that a formula A has a proof in H



Formal Proof in H

As we work now with a fixed (and only one) proof system H,
we use the notation

Γ ` A and ` A

to denote the proof of a formula A from a set Γ in H and

the proof of a formula A in H, respectively



Completeness Theorem

Any proof of the completeness theorem for a given proof
system consists always of two parts

First we have show that

all formulas that have a proof in the system are tautologies

This is called a soundness theorem or soundness part of
the completeness theorem



Completeness Theorem

The second implication says:

if a formula is a tautology then it has a proof in the proof
system

This alone is sometimes called a completeness theorem
(on assumption that the proof system issound)

Traditionally it is called a completeness part of the
completeness theorem



Soundness Theorem

We know that all axioms of H are predicate tautologies
(proved in chapter 8)

All rules of inference from R are sound as the
corresponding formulas were also proved in chapter 8 to be
predicate tautologies and so the system H is sound i.e. the
following holds for H

Soundness Theorem

For every formula A ∈ F of the language L of the proof
system H,

if ` A then |= A



Completeness Theorem

The soundness theorem proves that the proofs in the
system H ”produce” only tautologies

We show here, as the next step that our proof system H
”produces” not only tautologies, but that all tautologies are
provable in it

This is called a completeness theorem for classical
predicate (first order logic, as it all is proven with respect to
classical semantics

This is why it is called a completeness of classical predicate
logic



Completeness Theorem

The goal is now to prove the completeness part of the
following original theorem Gödel’ s theorem

Theorem (completeness of predicate logic)

For any formula A of the language L of the proof system H,

A is provable in H if and only if

A is a predicate tautology (valid)

We write it symbolically as

` A if and only if |= A



Completeness Theorem

We are going to prove the above Theorem (completeness of
predicate logic) as a particular case of the Gödel
Completeness Theorem that follows

This theorem is its more general, and more modern version

Its formulation, as well as the method of proving it, was first
introduced by Henkin in 1947

It uses a notion of a logical implication, and some other
notions that we introduce now below



Completeness Theorem

Sentence, Closure

Any formula of L without free variables is called a sentence

For any formula A(x1, . . . xn), a sentence

∀x1∀x2 . . .∀xn A(x1, . . . xn)

is called a closure of A(x1, . . . xn)

Directly from the above definition have that the following hold

Closure Fact

For any formula A(x1, . . . xn),

|= A(x1, . . . xn) if and only if |= ∀x1∀x2 . . .∀xn A(x1, . . . xn)



Completeness Theorem

Logical Implication

For any set Γ ⊆ F of formulas of L and any A ∈ F , we say
that the set Γ logically implies the formula A and write it as

Γ |= A

if and only if all models of Γ are models of A

Observe, that in order to prove that Γ |= B we have to show
that the implication

if M |= Γ then M |= B

holds for all structures M = [U, I] for L



Completeness Theorem

Directly from the Closure Lemma we get the following

Lemma

Let Γ be a set of sentences of L

For any formula A(x1, . . . xn) that is not a sentence,

Γ ` A(x1, . . . xn) if and only if Γ |= ∀x1∀x2 . . .∀xn A(x1, . . . xn)



Completeness Theorem

The above Lemma and Closure Lemma show that we need
to consider only sentences (closed formulas) of L since they
prove two properties:

(1 ) a formula of L is a tautology if and only if its closure
is a tautology

(2 ) a formula of L is provable from Γ if and only if its
closure is provable from Γ

This justifies the following generalization of the original
Gödel’ s completeness of predicate logic theorem



Completeness Theorem

Gödel Completeness Theorem

Let Γ be any set of sentences and A any sentence of

a language L of Hilbert proof system H

A sentence A is provable from Γ in H if and only if

the set Γ logically implies A

We write it in symbols,

Γ ` A if and only if Γ |= A .



Completeness Theorem

Remark

We want to remind that the Section: Reduction Predicate
Logic to Propositional Logic is an integral and the first part of
the proof the Gödel Completeness Theorem

We presented it separately for two reasons

R1. The reduction method and theorems and their proofs are
purely semantical in their nature and hence are independent

of the proof system H

R2. Because of the reason R1. the reduction method can
be used/adapted to a proof of completeness theorem of
any other proof system one needs to prove the classical
completeness theorem for



Consistency

There are two definitions of consistency: semantical and
syntactical

The semantical definition uses the notion of a model and
says, in plain English:

a set of formulas is consistent if it has a model

The syntactical one uses the notion of provability and says:

a set of formulas is consistent if one can’t prove a
contradiction from it

We have used, in the Proof Two of the Completeness
Theorem for propositional logic (chapter 5) the syntactical

definition of consistency

We use now the following semantical definition



Consistency

Definition (Consistent/Inconsistent)

A set Γ ⊆ F of formulas of L is consistent

if and only if it has a model, otherwise, is inconsistent

Directly from the above definition we have the following

Inconsistency Lemma

For any set Γ ⊆ F of formulas of L and any A ∈ F ,

if Γ |= A , then the set Γ ∪ {¬A } is inconsistent

Proof

Assume Γ |= A and Γ ∪ {¬A } is consistent

It means there is a structureM = [U, I], such that

M |= Γ andM |= ¬A , i.e. M 6|= A

This is a contradiction with Γ |= A



Crucial Lemma

Now we are going to prove the following Lemma that is
crucial, to the proof of the Completeness Theorem

Crucial Lemma

Let Γ be any set of sentences of a language L of H

The following conditions hold for any formulas A ,B ∈ F of L

(i) If Γ ` (A ⇒ B) and Γ ` (¬A ⇒ B) , then Γ ` B

(ii) If Γ ` ((A ⇒ C)⇒ B), then Γ ` (¬A ⇒ B) and
Γ ` (C ⇒ B)

(iii) If x does not appear in B and if
Γ ` ((∃yA(y)⇒ A(x))⇒ B), then Γ ` B

(iv) If x does not appear in B and if
Γ ` ((A(x)⇒ ∀yA(y))⇒ B), then Γ ` B



Crucial Lemma Proof

Proof

(i) Notice that the formula ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

is a substitution of a propositional tautology, hence by
definition of H, is provable in it

By monotonicity, Γ ` ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

By assuption Γ ` (A ⇒ B) and by Modus Ponens we get

Γ ` ((¬A ⇒ B)⇒ B)

By assuption Γ ` (¬A ⇒ B) and Modus Ponens we get

Γ ` B
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(ii) The formulas

(1) (((A ⇒ B)⇒ (¬A ⇒ B)))

(2) (((A ⇒ B)⇒ B)⇒ (C ⇒ B))

are substitution of a propositional tautologies, hence are
provable in H

Assume Γ ` ((A ⇒ C)⇒ B)

By monotonicity and (1) we get

Γ ` (¬A ⇒ B)

and by (2) we get
` (C ⇒ B)
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(iii) Assume
Γ ` ((∃yA(y)⇒ A(x))⇒ B)

Observe that it is a particular case of assumption

Γ ` ((A ⇒ C)⇒ B)

in (ii), for A = ∃yA(y), C = A(x) and B= B

Hence by (ii) we have that

Γ ` (¬∃yA(y)⇒ B) and Γ ` (A(x)⇒ B)

Apply Generalization Rule G2 to

Γ ` (A(x)⇒ B)

and we have
Γ ` (∃yA(y)⇒ B)
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Then by (i) applied to

Γ ` (∃yA(y)⇒ B) and Γ ` (¬∃yA(y)⇒ B)

we get
Γ ` B

The proof of (iv) is similar to (iii) but uses the Generalization
Rule G1

This ends the proof of the Lemma



Completeness Theorem for H

Now we are ready to conduct the proof of the Completeness
Theorem for H stated as follows

H Completeness Theorem

Let Γ be any set of sentences and A any sentence of a
language L of Hilbert proof system H

Γ ` A if and only if Γ |= A

In particular, for any formula A of L,

` A if and only if |= A



Proof of Completeness Theorem for H

Proof

We prove the completeness part , i.e. we prove the
implication

if Γ |= A , then Γ ` A

Suppose that Γ |= A

This means that we assume that all L models of Γ are
models of A

By the Inconsistency Lemma the set Γ∪{¬A } is inconsistent

Let M |= Γ

We construct, as a next step, a witnessing expansion
language L(C) of L



Proof of Completeness Theorem for H

By the Reduction Theorem the set

Γ ∪ SHenkin ∪ EQ

is consistent in a sense of propositional logic in L

The set SHenkin is a Henkin Set and EQ are equality axioms
that are also the equality axioms EQ of H

By the Compactness Theorem for propositional logic of L
there is a finite set

S0 ⊆ Γ ∪ SHenkin ∪ EQ

such that S0 ∪ {¬A } is inconsistent in the sense of
propositional logic in L



Proof of Completeness Theorem for H

We list all elements of S0 in a sequence

A1, A2, . . . ,An, B1, B2, . . . ,Bm

where the sequence

A1, A2, . . . ,An

consists of those elements of S0 which are either in Γ ∪ EQ
or else are quantifiers axioms that are particular cases of the
quantifiers axioms QA of H. We list them in any order

The sequence
B1, B2, . . . ,Bm

consists of elements of S0 which are Henkin Axioms but
listed carefully as to be described as follows



Proof of Completeness Theorem for H

Observe that by definition,

L(C) =
⋃

n∈N
Ln for L = L0 ⊆ L1 ⊆ . . .

We define the rank of A ∈ L(C) to be the least n, such that
A ∈ Ln

Now we choose for B1 a Henkin Axiom in S0 of the
maximum rank

We choose for B2 a Henkin Axiom in S0 − {B1} of the
maximum rank

We choose for B3 a Henkin Axiom in S0 − {B1,B2} of the
maximum rank, etc. . . .



Proof of Completeness Theorem for H

The point of choosing the formulas Bi in this way is to make
sure that the witnessing constant about which Bi speaks,
does not appear in

Bi+1, Bi+2, . . . ,Bm

For example , if B1 is

(∃xA(x)⇒ A(cA [x]))

then A [x] does not appear in any of the other B2, . . . ,Bm,

by the maximality condition on B1



Proof of Completeness Theorem for H

We know that that S0 ∪ {¬A } is inconsistent in the sense of
propositional logic, i.e.

S0 ∪ {¬A } does not have a (propositional) model

This means that

v∗(¬A) , T for all v and so v∗(A) = T for all v

Hence a sentence

(S) (A1 ⇒ (A2 ⇒ . . . (An ⇒ (B1 ⇒ . . . (Bm ⇒ A))..)

is a propositional tautology



Proof of Completeness Theorem for H

We now replace in the sentence (S) each witnessing constant
by a distinct new variable and write the result as

(S′) (A1
′ ⇒ (A2

′ ⇒ . . . (An
′ ⇒ (B1

′ ⇒ . . . (Bm
′ ⇒ A))..)

We have A ′ = A since A has no witnessing constant in it

The result is still a tautology and hence is provable in H
from propositional axioms PA and Modus Ponens

By monotonicity

S0 ` (A1
′ ⇒ (A2

′ ⇒ . . . (An
′ ⇒ (B1

′ ⇒ . . . (Bm
′ ⇒ A))..)



Proof of Completeness Theorem for H

Each of A1
′,A2

′, . . . ,An
′ is either a quantifiers axiom from

QA of H or else in S0, so

S0 ` Ai
′ for all 1 ≤ i ≤ n

We apply Modus Ponens to the above and (S’) n times and
get

S0 ` (B1
′ ⇒ (B2

′ ⇒ . . . (Bm
′ ⇒ A))..)



Proof of Completeness Theorem for H

For example, if B1
′ is

(∃xC(x)⇒ C(x))

we have
S0 ` ((∃xC(x)⇒ C(x))⇒ B)

for B = (B2
′ ⇒ . . . (Bm

′ ⇒ A))..)

By the Crucial Lemma part (iii) that says:

(iii) If x does not appear in B and if
Γ ` ((∃yA(y)⇒ A(x))⇒ B) , then Γ ` B

we get S0 ` B, i.e.

S0 ` (B2
′ ⇒ . . . (Bm

′ ⇒ A))..)



Proof of Completeness Theorem for H

If, for example, B2
′ is

(D(x)⇒ ∀xD(x))

we have
S0 ` ((∃xC(x)⇒ C(x))⇒ D)

for D = (B3
′ ⇒ . . . (Bm

′ ⇒ A))..)

By the Crucial Lemma part (iv) that says:

(iv) If x does not appear in B and if
Γ ` ((A(x)⇒ ∀yA(y))⇒ B), then Γ ` B

we get S0 ` D, i.e.

S0 ` (B3
′ ⇒ . . . (Bm

′ ⇒ A))..)



Proof of Completeness Theorem for H

We hence apply parts (iii) and (iv) of the Crucial Lemma to
successively remove all

B1
′, . . . ,Bm

′

and obtain
S0 ` A

This ends the proof that

Γ ` A

We hence we completed the proof of the completeness part
of the first part

Γ ` A if and only if Γ |= A

of the H Completeness Theorem



Gödel’ s Completeness Theorem

The soundness part of the H Completeness Theorem i.e.
the implication

if Γ ` A , then Γ |= A

holds for any sentence A of L directly by Closure Lemma
and Soundness Theorem

The original Gödel’ s Theorem, is expressed by the second
part of the H Completeness Theorem:

` A if and only if |= A

It follows from Closure Lemma and the first part for Γ = ∅
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Deduction Theorem

In mathematical arguments, one often assumes a statement
A on the assumption (hypothesis) of some other statement B
and then concludes that we have proved the implication

”if A, then B”

This reasoning is justified by the following theorem, called a
Deduction Theorem

It was first formulated and proved for a certain Hilbert proof
system S for the classical propositional logic by Herbrand in
1930 in a form stated as follows



Deduction Theorem

Deduction Theorem (Herbrand,1930)

For any formulas A ,B of the language of a propositional
proof system S,

if A `S B then `S (A ⇒ B)

In chapter 5 we formulated and proved the following, more
genera l version of the Herbrand Theorem for a very simple
(two logical axioms and Modus Ponens) propositional proof
system H1



Deduction Theorem

Deduction Theorem

For any subset Γ of the set of formulas F of H1 and for any
formulas A ,B ∈ F ,

Γ, A `H1 B if and only if Γ `H1 (A ⇒ B)

In particular,

A `H1B if and only if `H1 (A ⇒ B)

A natural question arises:

does deduction theorem hold for the predicate logic in
general and for its proof system H we defined here?.



Deduction Theorem

The Deduction Theorem can not be carried directly to the
predicate logic, but it nevertheless holds with some
modifications. Here is where the problem lays.

Fact

Given the proof system

H = (L(P,F,C), F , LA , R = {(MP), (G), (G1), (G2)})

For any formula A(x) ∈ F ,

A(x) ` ∀xA(x)

but it is not always the case that

` (A(x)⇒ ∀xA(x))



Deduction Theorem

Proof

Obviously, A(x) ` ∀xA(x) by Generalization rule (G)

Let now A(x) be an atomic formula P(x)

By the H Completeness Theorem

` (P(x)⇒ ∀xP(x)) if and only if |= (P(x)⇒ ∀xP(x))

Consider a structure
M = [M, I]

where M contains at least two elements c and d

We define PI ⊆ M as a property that holds only for c, i.e.

PI = {c}



Deduction Theorem

Take any assignment s : VAR −→ M

Then (M, s) |= P(x) only when s(x) = c for all x ∈ VAR

M = [M, I] is a counter model for (P(x)⇒ ∀xP(x))

as we found s such (M, s) |= P(x) and obviously
(M, s) 6|= ∀xP(x)

We proved that 6|= (P(x)⇒ ∀xP(x))

By the H Completeness Theorem this is equivalent to

0 (P(x)⇒ ∀xP(x))

and the Deduction Theorem fails as

Px ` ∀xP(x)



Deduction Theorem

The Fact shows that the problem is with application of the
generalization rule (G) to the formula A ∈ Γ

To handle this we introduce, after Mendelson(1987) the
following notion



Deduction Theorem

Definition
Let A be one of formulas in Γ and let

(P) B1,B2, ...,Bn

be a proof (deduction) of Bn from Γ, together with justification
at each step. We say that the formula
Bi depends upon A in the proof B1,B2, ...,Bn

if and only if the following holds
(1) Bi is A and the justification for Bi is Bi ∈ Γ

or
(2) Bi is justified as direct consequence by MP
or
(G) of some preceding formulas in the proof sequence (P),
where at least one of these preceding formulas depends
upon A



Deduction Theorem

Example
Here is a proof (deduction)

B1, B2, . . . , B5

showing that
A , (∀xA ⇒ C) ` ∀xC

B1 A
Hyp
B1 depends upon A
B2 ∀xA
B1, (G)

B2 depends upon A
B3 (∀xA ⇒ C)

Hyp
B3 depends upon (∀xA ⇒ C)
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B3 (∀xA ⇒ C)

Hyp

B3 depends upon (∀xA ⇒ C)

B4 C

MP on B2,B3

B4 depends upon A and (∀xA ⇒ C)

B5 ∀xC

(G)

B4 depends upon A and (∀xA ⇒ C)

Observe that the formulas A ,C may, or may not have x as a
free variable



Deduction Theorem

DT Lemma

If B does not depend upon A in a proof (deduction)
showing that Γ,A ` B, then Γ ` B

Proof

Let
B1,B2, . . . ,Bn = B

be a proof (deduction) of B from Γ,A ,

in which B does not depend upon A

We prove by induction over the length of the proof that

Γ ` B
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Assume that DT Lemma holds for all proofs of the length
less than n

If B ∈ Γ or B ∈ LA , by definition then Γ ` B

If B is a direct consequence of two preceding formulas,
then, since B does not depend upon A , neither do theses
preceding formulas

By inductive hypothesis, theses preceding formulas have a
proof from Γ alone

Hence so does B, i.e.
Γ ` B

Now we are ready to formulate and prove the Deduction
Theorem for predicate logic



Deduction Theorem

Deduction Theorem

For any formulas A ,B of the language of proof system H the
following holds

(1) Assume that in some proof (deduction) showing that

Γ,A ` B

no application of the generalization rule (G) to a formula that
depends upon A has as its quantified variable a free
variable of the formula A

Then we have that
Γ ` (A ⇒ B)

(2) If Γ ` (A ⇒ B), then Γ, A ` B



Deduction Theorem

Proof

The proof we present extends the proof of the Deduction
Theorem for propositional logic from chapter 5

We adopt the propositional proof to the system H and add the
relevant predicate cases

For the sake of clarity and independence we write now the
whole proof in all details
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(1) Assume that
Γ, A ` B

i.e. that we have a formal proof

B1, B2, . . . ,Bn

of B from the set of formulas Γ ∪ {A }

In order to prove that

Γ ` (A ⇒ B)

we will prove the following a stronger statement

(S) Γ ` (A ⇒ Bi) for all Bi (1 ≤ i ≤ n) in the proof of B
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Hence, in particular case, when i = n , we will obtain that also

Γ ` (A ⇒ B)

The proof of the statement (S) is conducted by induction on
1 ≤ i ≤ n

Base Step i = 1

When i = 1, it means that the formal proof contains only one
element B1

By the definition of the formal proof from Γ ∪ {A }, we have
that B1 ∈ LA , or B1 ∈ Γ, or B1 = A , i.e.

B1 ∈ LA ∪ Γ ∪ {A }

Here we have two cases
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Case 1 B1 ∈ LA ∪ Γ

Observe that the formula

(B1 ⇒ (A ⇒ B1))

is a particular case of the axiom A2 of H

By assumption B1 ∈ LA ∪ Γ, hence we get the required proof
of (A ⇒ B1) from Γ by the following application of the MP
rule

(MP)
B1 ; (B1 ⇒ (A ⇒ B1))

(A ⇒ B1)
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Case 2 B1 = A

When B1 = A , then to prove

Γ ` (A ⇒ B)

means to prove Γ ` (A ⇒ A)

But (A ⇒ A) ∈ LA (axiom A1 ) of H, i.e. ` (A ⇒ A). By the
monotonicity of the consequence we have that

Γ`(A ⇒ A)

The above cases conclude the proof of the Base Case i = 1
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Inductive Step

Assume that
Γ `(A ⇒ Bk )

for all k < i, we will show that using this fact we can conclude
that also

Γ `(A ⇒ Bi)

Consider a formula Bi in the proof sequence

By the definition, Bi ∈ LA ∪ Γ ∪ {A }

or Bi follows byMP from certain Bj ,Bm such that j < m < i

We have to consider againtwo cases
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Case 1
Bi ∈ LA ∪ Γ ∪ {A }
The proof of (A ⇒ Bi) from Γ in this case is obtained from
the proof of the Base Step for i = 1 by replacement B1 by
Bi and will be omitted here as a straightforward repetition
Case 2
Bi is a conclusion of MP
If Bi is a conclusion of MP , then we must have two formulas
Bj ,Bm in the proof sequence, such that j < i,m < i, j , m
and

(MP)
Bj ; Bm

Bi

item[[] By the inductive assumption, the formulas Bj ,Bm are
such that

Γ ` (A ⇒ Bj) and Γ ` (A ⇒ Bm)
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Moreover, by the definition of the Modus Ponens rule, the
formula Bm has to have a form (Bj ⇒ Bi), i.e.

Bm = (Bj ⇒ Bi)

and the the inductive assumption can be re-written as

(∗) Γ ` (A ⇒ Bj) and Γ ` (A ⇒ (Bj ⇒ Bi)) for j < i

Observe now that the formula

((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

is a substitution of the axiom A3 of H and hence

` ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))
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By the monotonicity,

(∗∗) Γ ` ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

Applying the rule MP to formulas (∗) and (∗∗) i.e. performing
the following

(MP)
(A ⇒ (Bj ⇒ Bi)); ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

((A ⇒ Bj)⇒ (A ⇒ Bi))

we get that also

Γ `((A ⇒ Bj)⇒ (A ⇒ Bi))
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Applying again the rule MP to formulas (∗) and the above

Γ `((A ⇒ Bj)⇒ (A ⇒ Bi))

i.e. performing the following

(MP)
(A ⇒ Bj) ; ((A ⇒ Bj)⇒ (A ⇒ Bi))

(A ⇒ Bi)

we get that
Γ `(A ⇒ Bi)
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Finally, suppose that there is some j < i such that

Bi is ∀xBj

By inductive assumption

Γ ` (A ⇒ Bj)

and either

(i) Bj does not depend upon A or

(ii) x is not free variable in A

We want to prove
Γ ` Bi

We have theses two cases (i) and (ii) to consider.
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Case (i)
Γ ` (A ⇒ Bj)

and Bj does not depend upon A

Then by DT Lemma we have that Γ ` Bj

and, consequently, by the generalization rule (G)

Γ ` ∀xBj

Thus we proved
Γ ` Bi
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Now, from just proved
Γ ` Bi

and axiom A2 of H

` (Bi ⇒ (A ⇒ Bi))

and monotonicity

Γ ` (Bi ⇒ (A ⇒ Bi))

and MP applied to them we get

Γ ` (A ⇒ Bi)
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Case (ii)
Γ ` (A ⇒ Bj) and x is not free variable in A

We know that |= (∀x(A ⇒ Bj)⇒ (A ⇒ ∀xBj))

hence the Completeness Theorem we get

` (∀x(A ⇒ Bj)⇒ (A ⇒ ∀xBj))

Since Γ ` (A ⇒ Bj) by inductive assumption, we get by the
generalization rule (G) and nmonotonicity

Γ ` ∀x(A ⇒ Bj)

By MP applied to the above

Γ ` (A ⇒ ∀xBj)

That is we got
Γ ` A ⇒ Bi)
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Since Γ ` (A ⇒ Bj) by inductive assumption, we get by the
generalization rule (G),

Γ ` ∀x(A ⇒ Bj)

and so, by MP
Γ ` A ⇒ ∀xBj)

That is we proved
Γ ` (A ⇒ Bi)

This completes the induction and the proves part (1) of the
Deduction Theorem



Deduction Theorem

Deduction Theorem part (2)

The proof of the implication

if Γ ` (A ⇒ B) then Γ, A `B

is straightforward

Assume Γ ` (A ⇒ B). By monotonicity we have also that

Γ,A ` (A ⇒ B)

Obviously, Γ,A ` A . Applying MP to the above, we get the
proof of B from {Γ,A } i.e. we have proved that

Γ, A ` B

This ends the proof of the Deduction Theorem for H



PART 5: Some other Axiomatizations



Hilbert and Ackermann (1928)

We present here some of most known, and historically
important axiomatizations of classical predicate logic, i.e. the
following Hilbert style proof systems

1. Hilbert and Ackermann (1928)

This formalization is based on D. Hilbert and W. Ackermann
book Grundzügen der Theoretischen Logik (Principles of
Theoretical Logic), Springer - Verlag, 1928

The book grew from the courses on logic and foundations of
mathematics Hilbert gave in years 1917-1922

He received help in writeup from Barnays and the material
was put into the book by Ackermann and Hilbert



Hilbert and Ackermann

The Hilbert and Ackermann book was conceived as an
introduction to mathematical logic and was followed by
another two volumes book written by D. Hilbert and P.
Bernays, Grundzügen der Mathematik I, II , Springer
-Verlag, 1934, 1939

Hilbert and Ackermann formulated and asked a question of
the completeness for their deductive (proof) system

It was answered affirmatively by Kurt Gödel in 1929 with
proof of his Completeness Theorem



Hilbert and Ackermann

We define the Hilbert and Ackermann proof system HA
following a pattern established for the H system

The original language used by Hilbert and Ackermann
contained only negation ¬ and disjunction ∪ and so do we

We define

HA = (L{¬,∪}(P,F,C), F , LA , R)

where
R = {(MP), (SB), (G1), (G2)}

The set LA of logical axioms is as follows



Hilbert and Ackermann (1928)

Propositional Axioms

A1 (¬(A ∪ A) ∪ A)

A2 (¬A ∪ (A ∪ B))

A3 (¬(A ∪ B) ∪ (B ∪ A))

A4 (¬(¬B ∪ C) ∪ (¬(A ∪ B) ∪ (A ∪ C)))

for any A ,B ,C , ∈ F

Quantifiers Axioms

Q1 (¬∀xA(x) ∪ A(x))

Q2 (¬A(x) ∪ ∃xA(x))

Q3 (¬A(x) ∪ ∃xA(x)),

for any A(x) ∈ F



Hilbert and Ackermann

Rules of Inference R

(MP) is the Modus Ponens rule. It has, in the language
L{¬,∪}, a form

(MP)
A ; (¬A ∪ B)

B
(SB) is a substitution rule

(SB)
A(x1, x2, . . . xn)

A(t1, t2, . . . tn)

where A(x1, x2, . . . xn) ∈ F and t1, t2, . . . tn ∈ T
.



Hilbert and Ackermann

(G1), (G2) are quantifiers generalization rules

(G1)
(¬B ∪ A(x))

(¬B ∪ ∀xA(x))

(G2)
(¬A(x) ∪ B)

(¬∃xA(x) ∪ B)

where A(x),B ∈ F and B is such that x is not free in B



Hilbert and Ackermann

The HA system is usually written now with the use of
implication, i.e. is based on a language

L = L{¬,⇒}(P,F,C)

We define

HAI = (L{¬,⇒}(P,F,C),F , LA , R)

for
R = {(MP), (SB), (G1), (G2)}

and the set LA of logical axioms as follows



Hilbert and Ackermann

Propositional Axioms

A1 ((A ∪ A)⇒ A)

A2 (A ⇒ (A ∪ B))

A3 ((A ∪ B)⇒ (B ∪ A))

A4 ((¬B ∪ C)⇒ ((A ∪ B)⇒ (A ∪ C)))

for any

A ,B ,C , ∈ F

Quantifiers Axioms

Q1 (∀xA(x)⇒ A(x))

Q2 (A(x)⇒ ∃xA(x))
for any A(x) ∈ F



Hilbert and Ackermann

Rules of Inference R

(MP) is Modus Ponens rule

(MP)
A ; (A ⇒ B)

B

for any formulas A ,B ∈ F

(SB) is a substitution rule

(SB)
A(x1, x2, . . . xn)

A(t1, t2, . . . tn)

where A(x1, x2, . . . xn) ∈ F andt1, t2, . . . tn ∈ T



Hilbert and Ackermann

(G1), (G2) are quantifiers generalization rules.

(G1)
(B ⇒ A(x))

(B ⇒ ∀xA(x))

(G2)
(A(x)⇒ B)

(∃xA(x)⇒ B)

where A(x),B ∈ F and B is such that x is not free in B

The form of the quantifiers axioms Q1, Q2, and quantifiers
generalization rule (G2) is due to Bernays



Mendelson (1987)

Here is the first order logic proof system as introduced in

Elliott Mendelson’s book Introduction to Mathematical Logic
(1987). Hence the name HM

HM is a generalization to the predicate language of the
proof system H2 for propositional logic defined after
Mendelson’s book and studied in Chapter 5

HM = (L{¬,∪}(P,F,C), F , LA , R = {(MP), (G)})

The HM components are as follows



Mendelson (1987)

Propositional Axioms

A1 (A ⇒ (B ⇒ A))

A2 ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

for any A ,B ,C , ∈ F



Mendelson

Quantifiers Axioms

Q1 (∀xA(x)⇒ A(t))

where t is a term, A(t) is a result of substitution of t for all
free occurrences of x in A(x) and t is free for x in A(x), i.e.

no occurrence of a variable in t becomes a bound
occurrence in A(t)

Q2 (∀x(B ⇒ A(x))⇒ (B ⇒ ∀xA(x)))

where A(x),B ∈ F and B is such that x is not free in B



Mendelson

Rules of Inference R

(MP) is the Modus Ponens rule

(MP)
A ; (A ⇒ B)

B

for any formulas A ,B ∈ F

(G) is the generalization rule

(G)
A(x)

∀xA(x)

where A(x) ∈ F and x ∈ VAR



Rasiowa and Sikorski (1950)

Rasiowa, Sikorski (1950)

Helena Rasiowa and Roman Sikorski are the authors of the
first algebraic proof of the Gödel completeness theorem
ever given in 1950

Other algebraic proofs were later given by Rieger, Beth, Łos
in 1951 , and Scott in 1954



Rasiowa and Sikorski (1950)

Here is Rasiowa- Sikorski original formalization

RS = (L{¬,∩,∪,⇒}(P,F,C), F , LA , R)

for
R = {(MP), (SB), (Q1), (Q2), (Q3), (Q4)}

The logical axioms LA are as follows

Propositional Axioms

A1 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A2 (A ⇒ (A ∪ B))

A3 (B ⇒ (A ∪ B))
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A4 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A5 ((A ∩ B)⇒ A)

A6 ((A ∩ B)⇒ B)

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A ∩ B)))

A8 ((A ⇒ (B ⇒ C))⇒ ((A ∩ B)⇒ C))

A9 (((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C))

A10 (A ∩ ¬A)⇒ B)

A11 ((A ⇒ (A ∩ ¬A))⇒ ¬A)

A12 (A ∪ ¬A)

for any A ,B ,C ∈ F



Rasiowa and Sikorski

Rules of Inference R

(MP) is Modus Ponens rule

(MP)
A ; (A ⇒ B)

B
for any formulas A ,B ∈ F

(SB) is a substitution rule

(SB)
A(x1, x2, . . . xn)

A(t1, t2, . . . tn)

where A(x1, x2, . . . xn) ∈ F and t1, t2, . . . tn ∈ T



Rasiowa and Sikorski

(G1), (G2) are the following quantifiers introduction rules

(G1)
(B ⇒ A(x))

(B ⇒ ∀xA(x))

(G2)
(A(x)⇒ B)

(∃xA(x)⇒ B)

where A(x),B ∈ F and B is such that x is not free in B



Rasiowa and Sikorski

(G3), (G3) are the following quantifiers elimination rules.

(G3)
(B ⇒ ∀xA(x))

(B ⇒ A(x))

(G4)
∃x(A(x)⇒ B)

(A(x)⇒ B)

where A(x),B ∈ F and B is such that x is not free in B



Rasiowa and Sikorski

The algebraic logic starts from purely logical
considerations, abstracts from them, places them into a
general algebraic context, and makes use of other branches
of mathematics such as topology, set theory, and functional
analysis

For example, Rasiowa and Sikorski algebraic
generalization of the completeness theorem for classical
predicate logic is the following



Rasiowa and Sikorski

Algebraic Completeness Theorem (Rasiowa, Sikorski 1950)

For every formula A of the classical predicate calculus RS the
following conditions are equivalent

i A is derivable in RS;

ii A is valid in every realization of L;

iii A is valid in every realization of L in any complete
Boolean algebra;

iv A is valid in every realization of L in the field B(X) of all
subsets of any set X , ∅;
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v A is valid in every semantic realization of L in any
enumerable set;

vi there exists a non-degenerate Boolean algebraA and an
infinite set J such that A is valid in every realization of L in J
and A;

vii AR(I) = V for the canonical realization R of L in the
Lindenbaum-Tarski algebra LT of RS and the identity
valuation I;

viii A is a predicate tautology.


