LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

Chapter 9
 Hilbert Proof Systems
 Completeness of Classical Predicate Logic

CHAPTER 9 SLIDES

Chapter 9
 Hilbert Proof Systems
 Completeness of Classical Predicate Logic

Set 1

PART 1: Reduction Predicate Logic to Propositional Logic

Set 2

PART 2: Reduction to Propositional Logic Theorem, Compactness Theorem, Löwenheim-Skolem Theorem
Set 3
PART 3: Proof of the Completeness Theorem
Set 4
PART 4: Deduction Theorem
PART 5: Some other Axiomatizations

Chapter 9
 Hilbert Proof Systems
 Completeness of Classical Predicate Logic

Slides Set 1

PART 1: Reduction Predicate Logic to Propositional Logic

Proofs of Completeness Theorem

There are several quite distinct approaches to the proof of the completeness theorem
They correspond to the ways of thinking about proofs

Within each of these approaches there are endless variations in exact formulation, corresponding to the choice of methods we want to use to prove the completeness theorem

Different basic approaches are important, though, for they lead to different applications

Proofs of Completeness Theorem

We have already presented two of the approaches
for the propositional logic, namely
Hilbert style formalizations (proof systems) in chapter 5 and
Gentzen style automated proof systems in chapter 6

We have also presented, for each of these approaches several methods of proving the completeness theorem:
two very different proofs for Hilbert style proof systems
in chapter 5 and constructive proofs for several automated
Gentzen style proof systems in chapter 6

Proofs of Completeness Theorem

There are many proofs of the completeness theorem for predicate (first order) logic

We present here in a great detail, a version of Henkin's proof as included in a classic

Handbook of Mathematical Logic, North Holland Publishing Company- Amsterdam - Newy York -Oxford (1977)

It contains a method for reducing certain problems of first order logic back to problems about propositional logic

Proofs of Completeness Theorem

We follow Henkin method and give independent proof of compactness theorem for propositional logic

As the next steps we prove the most important, classical logic theorems:

Reduction to Propositional Logic Theorem, Compactness Theorem for first-order logic, Löwenheim-Skolem Theorem and

Gödel Completeness Theorem

They all fall out of the Henkin method

Proofs of Completeness Theorem

We choose this particular proof of completeness not only for it being one of the oldest and most classical, but also for its connection with the propositional logic

Moreover, the proof of the compactness theorem is based on semantical version of syntactical notions and techniques crucial to the second proof of completeness theorem for propositional logic covered in chapter 5 and hence is familiar to the reader

Reduction Predicate Logic to Propositional Logic

Reduction Predicate Logic to Propositional Logic

Let $\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ be a first order language with equality We assume that the sets $\mathbf{P}, \mathrm{F}, \mathrm{C}$ are infinitely enumerable We also assume that it has a full set of propositional connectives, i.e.

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

Our goal now is to define a propositional logic within

$$
\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

We do it in a sequence of steps

Reduction Predicate Logic to Propositional Logic

First we define a special subset $P \mathcal{F}$ of formulas of \mathcal{L} called a set of all propositional formulas of \mathcal{L}

Intuitively, these are formulas of \mathcal{L} which are direct propositional combination of simpler formulas, that are atomic formulas or formulas beginning with quantifiers

These simpler formulas are called prime formulas and are formally defined as follows.

Prime Formulas

Definition

Prime formula of \mathcal{L} is any formula from the set

$$
\mathcal{P}=A \mathcal{F} \cup\{\forall x B: \quad B \in \mathcal{F}\} \cup\{\exists x B: \quad B \in \mathcal{F}\}
$$

where the set $A \mathcal{F}$ is the set of all atomic formulas of \mathcal{L}
The set

$$
\mathcal{P} \subseteq \mathcal{F}
$$

is called a set of all prime formulas of \mathcal{L}

Prime Formulas

Example

The following are prime formulas

$$
R\left(t_{1}, t_{2}\right), \quad \forall x(A(x) \Rightarrow \neg A(x)), \quad(c=c), \quad \exists x(Q(x, y) \cap \forall y A(y))
$$

The following are not prime formulas.

$$
\left(R\left(t_{1}, t_{2}\right) \Rightarrow(c=c)\right), \quad\left(R\left(t_{1}, t_{2}\right) \cup \forall x(A(x) \Rightarrow \neg A(x))\right.
$$

Given a set \mathcal{P} of prime formulas we define in a standard way the set $P \mathcal{F}$ of propositional formulas of \mathcal{L} as follows

Propositional Formulas of \mathcal{L}

Definition (Propositional Formulas)
Let \mathcal{F}, \mathcal{P} be sets of all formulas and prime formulas of \mathcal{L}, respectively
The smallest set $P \mathcal{F} \subseteq \mathcal{F}$, such that
(i) $\mathcal{P} \subseteq P \mathcal{F}$
(ii) If $A, B \in P \mathcal{F}$, then $(A \Rightarrow B),(A \cup B),(A \cap B)$ and $\neg A \in P \mathcal{F}$
is called a set of all propositional formulas of the predicate language \mathcal{L}

The set \mathcal{P} is called the set of all atomic propositional formulas of \mathcal{L}

Propositional Semantics for \mathcal{L}

Propositional Semantics for \mathcal{L}

We define propositional semantics for propositional formulas in Pf as follows

Definition (Truth assignment)
Let \mathcal{P} be a set of atomic propositional formulas of \mathcal{L} and
$\{T, F\}$ be the set of logical values "true" and "false"
Any function

$$
v: \mathcal{P} \longrightarrow\{T, F\}
$$

is called a truth assignment in \mathcal{L}

Propositional Semantics for \mathcal{L}

We extend v to the set $P \mathcal{F}$ of all propositional formulas by defining the mapping

$$
v^{*}: P \mathcal{F} \longrightarrow\{T, F\}
$$

as follows
$v^{*}(A)=v(A)$ for $A \in \mathcal{P}$
and for any $A, B \in P \mathcal{F}$
$v^{*}(A \Rightarrow B)=v^{*}(A) \Rightarrow v^{*}(B)$
$v^{*}(A \cup B)=v^{*}(A) \cup v^{*}(B)$
$v^{*}(A \cap B)=v^{*}(A) \cap v^{*}(B)$
$v^{*}(\neg A)=\neg v^{*}(A)$

Propositional Model, Tautology

Definition

A truth assignment $v: \mathcal{P} \longrightarrow\{T, F\}$ is called a propositional model for a formula $A \in P \mathcal{F}$ if and only if $v^{*}(A)=T$

Definition

For any formula $A \in P \mathcal{F}$
$A \in P \mathcal{F}$ is a propositional tautology of \mathcal{L} if and only if
$v^{*}(A)=T$ for all $v: \mathcal{P} \longrightarrow\{T, F\}$

For the sake of simplicity we will often say model, tautology instead propositional model, propositional tautology when there is no confusion

Consistent Inconsistent Sets

Definition

Given a set S of propositional formulas
We say that v is a (propositional) model for the set S
if and only if
v is a model for all formulas $A \in S$

Definition (Consistent Set)

A set $S \subseteq P \mathcal{F}$ of propositional formulas of \mathcal{L} is consistent if it has a (propositional) model

Definition (Inconsistent Set)

A set $S \subseteq P \mathcal{F}$ of propositional formulas of \mathcal{L} is inconsistent if it does not have a (propositional) model

Compactness Theorem

Compactness Theorem for Propositional Logic of \mathcal{L}

A set $S \subseteq P \mathcal{F}$ of propositional formulas of \mathcal{L} is consistent if and only if every finite subset of S is consistent

Proof

Assume that S is a consistent set. By definition, it has a model. Its model is also a model for all its subsets, including all finite subsets. Hence all its finite subsets are consistent

Compactness Theorem

To prove the converse implication, i.e. the nontrivial half of the Compactness Theorem we write it in a slightly modified form. To do so, we introduce the following definition Definition

Any set S such that all its finite subsets are consistent is called finitely consistent

We re-write the compactness theorem as follows.

Compactness Theorem

A set S of propositional formulas of \mathcal{L} is consistent if and only if S is finitely consistent

Compactness Theorem

The nontrivial half of the Compactness Theorem still
to be proved is now stated now as follows

Every finitely consistent set of propositional formulas of \mathcal{L} is consistent

The proof consists of the following four steps
S1 We introduce the notion of a maximal finitely consistent set
S2 We show that every maximal finitely consistent set is consistent

We do so by constructing its model

Compactness Theorem

S3 We show that every finitely consistent set S can be extended to a maximal finitely consistent set S^{*}

We show that
for every finitely consistent set S there is a set S^{*}, such that $S \subseteq S^{*}$ and S^{*} is maximal finitely consistent

S4 We use steps S2 and S3 to justify the following reasoning

Compactness Theorem

Given a finitely consistent set S
We extend it, via construction to be defined in the step S3
to a maximal finitely consistent set S^{*}

By the $\mathbf{S 2}$, the set S^{*} is consistent and so is the set S

This ends the proof of the Compactness Theorem

Proof of Step S1

Here are the details and proofs needed for completion of steps S1-S4

Step S1 We introduce the following definition Definition of Maximal Finitely Consistent Set (MFC)
Any set

$$
S \subseteq P \mathcal{F}
$$

is maximal finitely consistent if it is finitely consistent and for every formula A,
either $A \in S$ or $\neg A \in S$
We use notation MFC for maximal finitely consistent set, and
FC for the finitely consistent set

Proof of Step S2

Step S2 consists of proving the following Lemma MFC Lemma

Any MFC set is consistent

Proof

Given a MFC set denoted by S^{*}
We prove consistency of S^{*} by constructing model for it
It means we are going to construct a truth assignment

$$
v: \mathcal{P} \longrightarrow\{T, F\}
$$

such that for all $A \in S^{*}$

$$
v^{*}(A)=T
$$

Proof of Step S2

Observe that directly from the definition we have the following property of the the MFC sets.

Property

For any MFC set S^{*} and for every $A \in P \mathcal{F}$, exactly one of the formulas $A, \neg A$ belongs to S^{*}

In particular, for any atomic formula $P \in \mathcal{P}$, we have that exactly one of formulas $P, \neg P$ belongs to S^{*}

This justifies the correctness of the following definition

Proof of Step S2

Definition

For any MFC set S^{*}, a mapping

$$
v: \mathcal{P} \longrightarrow\{T, F\}
$$

such that

$$
v(P)= \begin{cases}T & \text { if } P \in S^{*} \\ F & \text { if } P \notin S^{*}\end{cases}
$$

is called a truth assignment defined by S^{*}

Proof of Step S2

We extend v to

$$
v^{*}: P \mathcal{F} \longrightarrow\{T, F\}
$$

in a usual, standard way and we prove that the truth assignment v is a model for S^{*}

It means we show for any $A \in P \mathcal{F}$,

$$
v^{*}(A)= \begin{cases}T & \text { if } A \in S^{*} \\ F & \text { if } A \notin S^{*}\end{cases}
$$

We prove it by induction on the degree of the formula A as follows.

Proof of Step S2

The base case of atomic formula $P \in \mathcal{P}$ follows immediately from the definition of v

Inductive Case: $A=\neg C$

1. Assume that $A \in S^{*}$

This means $\neg C \in S^{*}$ and by the MFC Property we have that $C \notin S^{*}$. So by the inductive assumption $v^{*}(C)=F$ and we get

$$
v^{*}(A)=v^{*}(\neg C)=\neg v^{*}(C)=\neg F=T
$$

2. Assume now that $A \notin S^{*}$.

By MFC Property we have that $C \in S^{*}$
By the inductive assumption $v^{*}(C)=T$ and

$$
v^{*}(A)=v^{*}(\neg C)=\neg v^{*}(T)=\neg T=F
$$

Proof of Step S2

We proved that for any formula $A \in P \mathcal{F}$,

$$
v^{*}(\neg A)=\left\{\begin{array}{cl}
T & \text { if } \neg A \in S^{*} \\
F & \text { if } \neg A \notin S^{*}
\end{array}\right.
$$

Inductive Case: $A=(B \cup C)$

1. Assume that $A \in S^{*}$. i.e. $(B \cup C) \in S^{*}$

It is enough to prove that in this case $B \in S^{*}$ or $C \in S^{*}$, because then from the inductive assumption $v^{*}(B)=T$ and $v^{*}(B \cup C)=v^{*}(B) \cup v^{*}(C)=T \cup v^{*}(C)=T$ for any C
The case $C \in S^{*}$ is similar

Proof of Step S2

Assume that $(B \cup C) \in S^{*}, B \notin S^{*}$ and $C \notin S^{*}$
Then by MFC Property we have that $\neg B \in S^{*}, \neg C \in S^{*}$ and consequently the set

$$
\{(B \cup C), \neg B, \neg C\}
$$

is a finite inconsistent subset of S^{*}, what contradicts the fact that S^{*} is finitely consistent
2. Assume now that $(B \cup C) \notin S^{*}$

By MFC Property, $\neg(B \cup C) \in S^{*}$ and by already proven case of $A=\neg C$ we have that $v^{*}(\neg(B \cup C))=T$
But $v^{*}(\neg(B \cup C))=\neg v^{*}((B \cup C))=T$
This means that $v^{*}((B \cup C))=F$, what ends the proof of this case

Step S3

The remaining cases of $A=(B \cap C)$ and $A=(B \Rightarrow C)$ are similar to the above and are left to the as an exercise
This ends the proof of MFC Lemma and completes the step S2

S3: Maximal finitely consistent (MFC) extension S^{*}

Given a finitely consistent set S
We construct the MFC extension S^{*} of the set S as follows

Proof of Step S3

The set of all formulas of \mathcal{L} is infinitely countable and so is the set $P \mathcal{F}$. We assume that the set $P \mathcal{F}$ of all propositional formulas form a one-to-one sequence

$$
(*) \quad A_{1}, A_{2}, \ldots, A_{n}, \ldots,
$$

We define a chain

$$
(* *) \quad S_{0} \subseteq S_{1} \subseteq S_{2}, \ldots, \subseteq S_{n} \subseteq, \ldots
$$

of extensions of the set S as follows

$$
S_{0}=S
$$

$$
S_{n+1}= \begin{cases}S_{n} \cup\left\{A_{n}\right\} & \text { if } S_{n} \cup\left\{A_{n}\right\} \text { is finitely consistent } \\ S_{n} \cup\left\{\neg A_{n}\right\} & \text { otherwise } .\end{cases}
$$

Proof of Step S3

We take

$$
S^{*}=\bigcup_{n \in N} S_{n}
$$

Obviously $S \subseteq S^{*}$ also is MFC as clearly and for every A, either $A \in S^{*}$ or $\neg A \in S^{*}$

To complete the proof that S^{*} is MFC set we have to show that it is finitely consistent

First, let observe that if all sets S_{n} are finitely consistent, so is the set $S^{*}=\bigcup_{n \in N} S_{n}$. Namely, let

$$
S_{F}=\left\{B_{1}, \ldots, B_{k}\right\}
$$

be a finite subset of S^{*}

Proof of Step S3

This means that there are sets $S_{i_{1}}, \ldots S_{i_{k}}$ in the chain (**) such that

$$
B_{m} \in S_{i_{m}} \text { for } m=1, \ldots k
$$

Let $M=\max \left(i_{1}, \ldots i_{k}\right)$. Obviously

$$
S_{F} \subseteq S_{M}
$$

and the set S_{M} is finitely consistent as an element of the chain $(* *)$. This proves that if all sets S_{n} are finitely consistent, so is S^{*}

Now we have to prove only that all sets S_{n}
are FC (finitely consistent)
We carry the proof by induction over the length of the chain

Proof of Step S3

Base Case
$S_{0}=S$, so it is FC (finitely consistent) by assumption of the Compactness Theorem

Inductive Step

Assume now that S_{n} is FC (finitely consistent)
We prove that S_{n+1} is $F C$
We have two cases to consider
Case $1 \quad S_{n+1}=S_{n} \cup\left\{A_{n}\right\}$
Then S_{n+1} is FC by the definition of the chain
Case $2 S_{n+1}=S_{n} \cup\left\{\neg A_{n}\right\}$
Observe that this can happen only if $S_{n} \cup\left\{A_{n}\right\}$ is not FC, i.e. there is a finite subset $S_{n}^{\prime} \subseteq S_{n}$, such that $S_{n}^{\prime} \cup\left\{A_{n}\right\}$ is not consistent

Proof of Step S3

Suppose now that S_{n+1} is not FC
This means that there is a finite subset $S_{n}^{\prime \prime} \subseteq S_{n}$, such that $S_{n}^{\prime \prime} \cup\left\{\neg A_{n}\right\}$ is not consistent
Take $S_{n}^{\prime} \cup S_{n}^{\prime \prime}$. It is a finite subset of S_{n} so it is consistent by the inductive assumption
Let v be a model of $S_{n}^{\prime} \cup S_{n}^{\prime \prime}$
Then one of $v^{*}(A), v^{*}(\neg A)$ must be T
This contradicts the inconsistency of both

$$
S_{n}^{\prime} \cup\left\{A_{n}\right\} \quad \text { and } \quad S_{n}^{\prime} \cup\left\{\neg A_{n}\right\}
$$

Thus, in ether case, S_{n+1} is FC

We hence proved that all sets S_{n} are $F C$ (finitely consistent)

Compactness Theorem

This completes the proof of the step S3

We complete the proof of the Compactness Theorem for propositional logic of \mathcal{L} via the following argument as presented in the step S4 Given a finitely consistent set S

We extend it, via construction defined in the step $\mathbf{S} 3$ to a maximal finitely consistent set S^{*}

By the $\mathbf{S 2}$, the set S^{*} is consistent and so is the set S

This ends the proof of the Compactness Theorem

Chapter 9
 Hilbert Proof Systems
 Completeness of Classical Predicate Logic

Slides Set 2

PART 2:
Henkin Method
Reduction to Propositional Logic Theorem, Compactness Theorem,

Löwenheim-Skolem Theorem

Henkin Method

Propositional tautologies within \mathcal{L} barely scratch the surface of the collection of predicate (first -order) tautologies
For example the following first-order formulas are propositional tautologies

$$
\begin{gathered}
(\exists x A(x) \cup \neg \exists x A(x)), \quad(\forall x A(x) \cup \neg \forall x A(x) \\
(\neg(\exists x A(x) \cup \forall x A(x)) \Rightarrow(\neg \exists x A(x) \cap \neg \forall x A(x)))
\end{gathered}
$$

but the following are predicate (first order) tautologies that are not propositional tautologies

$$
\begin{gathered}
\forall x(A(x) \cup \neg A(x)) \\
(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))
\end{gathered}
$$

Henkin Method

To stress the difference between the propositional tautologies of a propositional language and predicate tautologies the word tautology is used only for the propositional tautologies of a propositional language

The word a valid formula is used for the predicate tautologies in this case

We use here both notions, with preference to word predicate tautology or tautology for short when there is no room for misunderstanding

To make sure that there is no misunderstandings we remind the following basic definitions from chapter 8

Basic Definitions

Given a first order language \mathcal{L} with the set of variables VAR and the set of formulas \mathcal{F}. Let

$$
\mathcal{M}=[M, I]
$$

be a structure for the language \mathcal{L}, with the universe M and the interpretation I and let

$$
s: V A R \longrightarrow M
$$

be an assignment of \mathcal{L} in M

Here are some basic definitions

Basic Definitions

D1. A is satisfied in \mathcal{M}
Given a structure $\mathcal{M}=[M, I]$, we say that a formula A is satisfied in \mathcal{M} if there is an assignment $s: V A R \longrightarrow M$ such that

$$
(\mathcal{M}, s) \models A
$$

D2. A is true in \mathcal{M}
Given a structure $\mathcal{M}=[M, I]$, we say that a formula A is true in \mathcal{M} if

$$
(\mathcal{M}, s) \models A
$$

for all assignments $s: V A R \longrightarrow M$

Basic Definitions

D3. Model \mathcal{M}
If A is true in a structure $\mathcal{M}=[M, I]$, then \mathcal{M} is called a model for A
We denote it as

$$
\mathcal{M} \models A
$$

D4. A is predicate tautology (valid)
A formula A is a predicate tautology (valid) if it is true in all structures $\mathcal{M}=[M, I]$, i.e. if all structures are models of A

We use use the term predicate tautology and and denote it, when there is no confusion with propositional case as

Basic Definitions

Case: A is a sentence
If the formula A is a sentence, then the truth or falsity of the statement $(\mathcal{M}, s) \models A$ is completely independent of s
Thus we write

$$
\mathcal{M} \models A
$$

and read \mathcal{M} is a model of A, if for some (hence every) valuation s

$$
(\mathcal{M}, s) \models A
$$

D5. Model of a set S of formulas
\mathcal{M} is a model of a set S (of sentences) if and only if $\mathcal{M} \models A$ for all $A \in S$. We write it

$$
\mathcal{M} \models S
$$

Predicate and Propositional Models

Relationship

Given a predicate language \mathcal{L}
The predicate models for \mathcal{L} are defined in terms of
structures $\mathcal{M}=[M, I]$ and assignments $s: V A R \longrightarrow M$
The propositional models for \mathcal{L} are defined in terms of of

$$
\text { truth assignments } v: \mathcal{P} \longrightarrow\{T, F\}
$$

The relationship between the predicate models and propositional models is established by the following Lemma

Relationship Lemma

Lemma

Let $\mathcal{M}=[M, I]$ be a structure for the language \mathcal{L} and let $s: V A R \longrightarrow M$ an assignment in \mathcal{M}
There is a truth assignment

$$
v: \mathcal{P} \longrightarrow\{T, F\}
$$

such that for all formulas A of \mathcal{L},

$$
(\mathcal{M}, s) \models A \text { if and only if } v^{*}(A)=T
$$

In particular, for any set S of sentences of \mathcal{L},
if $\mathcal{M} \models S$ then S is consistent in the propositional sense

Relationship Lemma Proof

Proof

For any prime formula $A \in P$ we define

$$
v(A)= \begin{cases}T & \text { if }(\mathcal{M}, s) \models A \\ F & \text { otherwise } .\end{cases}
$$

Since every formula in \mathcal{L} is either prime or is built up from prime formulas by means of propositional connectives, the conclusion is obvious

Relationship Lemma

Observe, that the converse of the Lemma implication:
if $\mathcal{M} \models S$ then S is consistent in the propositional sense is far from true

Consider a set

$$
S=\{\forall x(A(x) \Rightarrow B(x)), \forall x A(x), \exists x \neg B(x)\}
$$

All formulas of S are different prime formulas
So S has and obvious model and hence is consistent in the propositional sense
Obviously S has no predicate model

Language with Equality

Definition (Language with Equality)

Let \mathcal{L} be a predicate (first order) language with equality

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

Equality Axioms

For any free variable or constant of \mathcal{L}, i.e for any
$u, w, u_{i}, w_{i} \in(V A R \cup C)$,
E1 $u=u$
E2 $(u=w \Rightarrow w=u)$
E3 $\quad\left(\left(u_{1}=u_{2} \cap u_{2}=u_{3}\right) \Rightarrow u_{1}=u_{3}\right)$
E4
$\left(\left(u_{1}=w_{1} \cap \ldots \cap u_{n}=w_{n}\right) \Rightarrow\left(R\left(u_{1}, \ldots, u_{n}\right) \Rightarrow R\left(w_{1}, \ldots, w_{n}\right)\right)\right)$
E5
$\left(\left(u_{1}=w_{1} \cap \ldots \cap u_{n}=w_{n}\right) \Rightarrow\left(t\left(u_{1}, \ldots, u_{n}\right) \Rightarrow t\left(w_{1}, \ldots, w_{n}\right)\right)\right)$
where $R \in \mathbf{P}$ and $t \in \mathbf{T}$, i.e. R is an arbitrary n -ary relation
symbol of \mathcal{L} and $t \in \mathbf{T}$ is an arbitrary n -ary term of \mathcal{L}

Language with Equality

Observe that given any structure $\mathcal{M}=[M, I]$
We have by simple verification that
for all $s: V A R \longrightarrow M$, and
for all $A \in\{E 1, E 2, E 3, E 4, E 5\}$,

$$
(\mathcal{M}, s) \models A
$$

This proves the following

Fact

All equality axioms are predicate tautologies of \mathcal{L}

This is why we call logic with equality axioms added to it, still just a logic

Henkin's Witnessing Expansion of \mathcal{L}

Henkin's Witnessing Expansion

Now we are going to define notions that are fundamental to the Henkin's technique for reducing predicate logic to propositional logic
The first one is that of witnessing expansion of \mathcal{L}
We construct an expansion of the language \mathcal{L} by adding a set of new constants to it
It means the we add a specially constructed the set C to the set \mathbf{C} of constants of \mathcal{L} such that

$$
C \cap \mathbf{C}=\emptyset
$$

The language such constructed is called witnessing expansion of the language \mathcal{L}
The construction of the expansion is described as follows

Henkin's Witnessing Expansion

Definition

For any predicate language

$$
\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

the language

$$
\mathcal{L}(C)=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C} \cup C))
$$

is called a witnessing expansion of \mathcal{L}
The set C of new constants and the language $\mathcal{L}(C)$ defined by the construction described below
We denote $\mathcal{L}(C)$ as

$$
\mathcal{L}(C)=\mathcal{L} \cup C
$$

Henkin's Witnessing Expansion

Construction of the witnessing expansion of \mathcal{L}

We define the set C of new constants by constructing (by induction) an infinite sequence

$$
C_{0}, C_{1}, \ldots, C_{n}, \ldots
$$

of sets of constants together with an infinite sequence

$$
\mathcal{L}_{0}, \mathcal{L}_{1}, \ldots, \mathcal{L}_{n}, \ldots
$$

of languages as follows

$$
C_{0}=\emptyset \quad \text { and } \quad \mathcal{L}_{0}=\mathcal{L} \cup C_{0}=\mathcal{L}
$$

We denote by

$$
A[x]
$$

the fact that the formula A has exactly one free variable

Henkin's Witnessing Expansion

For each such a formula $A[x]$ we introduce a distinct new constant denoted by

$$
c_{A[x]}
$$

We define

$$
C_{1}=\left\{C_{A[x]}: \quad A[x] \in \mathcal{L}_{0}\right\} \quad \text { and } \quad \mathcal{L}_{1}=\mathcal{L} \cup C_{1}
$$

Assume that we have already defined the set C_{n} of constants and the language \mathcal{L}_{n}
To each formula $A[x]$ of \mathcal{L}_{n} which is not already a formula of \mathcal{L}_{n-1} we assign distinct new constant symbol

Henkin’s Witnessing Expansion

We write it informally as $A[x] \in\left(\mathcal{L}_{n}-\mathcal{L}_{n-1}\right)$ to denote that $A[x]$ of \mathcal{L}_{n} which is not already a formula of \mathcal{L}_{n-1}
We define

$$
\begin{gathered}
C_{n+1}=C_{n} \cup\left\{c_{A[x]}: A[x] \in\left(\mathcal{L}_{n}-\mathcal{L}_{n-1}\right)\right\} \\
\mathcal{L}_{n+1}=\mathcal{L} \cup C_{n+1}
\end{gathered}
$$

We put

$$
\text { (*) } \quad C=\bigcup C_{n} \quad \text { and } \quad \mathcal{L}(C)=\mathcal{L} \cup C
$$

For any formula $A(x)$, a constant $C_{A[x]} \in C$ as defined by $(*)$ is called a witnessing constant

Reduction to Propositional Logic Theorem

Henkin Axioms

Definition(Henkin Axioms)

The following sentences
H1 $\quad\left(\exists x A(x) \Rightarrow A\left(c_{A[x]}\right)\right)$
H2 $\quad\left(A\left(c_{\neg A[x]}\right) \Rightarrow \forall x A(x)\right)$
are called Henkin axioms

The informal idea behind the Henkin axioms is the following
The axiom $\mathbf{H 1}$ says:
If $\exists x A(x)$ is true in a structure, choose an element a satisfying $A(x)$ and give it a new name $c_{A[x]}$
The axiom $\mathbf{H} 2$ says:
If $\forall x A(x)$ is false, choose a counter example b and call it by a new name $c_{\neg A[x]}$

Quantifiers Axioms

Definition (Quantifiers Axioms)

The following sentences
Q1 $\quad(\forall x A(x) \Rightarrow A(t))$
where t is a closed term of $\mathcal{L}(C)$
Q2 $(A(t) \Rightarrow \exists x A(x))$
where t is a closed term of $\mathcal{L}(C)$
re called quantifiers axioms

Observe that the quantifiers axioms Q1, Q2 obviously are predicate tautologies

Henkin Set

Henkin Set

Any set of sentences of $\mathcal{L}(C)$ which are either Henkin axioms or quantifiers axioms is called the Henkin set and denoted by
$S_{\text {Henkin }}$
The sentences of $S_{\text {Henkin }}$ are obviously not true in every $\mathcal{L}(C)$-structure. But we are going to show now the following

Every \mathcal{L}-structure can be transformed into an $\mathcal{L}(C)$-structure which is a model of $S_{\text {Henkin }}$

Before we do so we need to introduce two new notions

Reduct and Expansion

Reduct and Expansion

Given two languages \mathcal{L} and \mathcal{L}^{\prime} such that

$$
\mathcal{L} \subseteq \mathcal{L}^{\prime}
$$

Let $\mathcal{M}^{\prime}=\left[M, I^{\prime}\right]$ be a structure for \mathcal{L}^{\prime}. The structure

$$
\mathcal{M}=\left[M, I^{\prime} \mid \mathcal{L}\right]
$$

is called the reduct of \mathcal{M}^{\prime} to the language \mathcal{L} and \mathcal{M}^{\prime} is called the expansion of \mathcal{M} to the language \mathcal{L}^{\prime}

Thus the reduct of \mathcal{M}^{\prime} and the expansion of \mathcal{M} are the same except that \mathcal{M}^{\prime} assigns meanings to the symbols in $\mathcal{L}-\mathcal{L}^{\prime}$

Reduct and Expansion Lemma

Lemma

Let $\mathcal{M}=[M, I]$ be any structure for the language \mathcal{L} and let $\mathcal{L}(C)$ be the witnessing expansion of \mathcal{L}
There is an expansion $\mathcal{M}^{\prime}=\left[M, I^{\prime}\right]$ of $\mathcal{M}=[M, I]$ such that

$$
\mathcal{M}^{\prime} \models S_{\text {Henkin }}
$$

Proof

In order to define the expansion of \mathcal{M} to \mathcal{M}^{\prime} we have to define the interpretation I^{\prime} for the symbols of the language $\mathcal{L}(C)=\mathcal{L} \cup C$, such that l^{\prime} restricted to \mathcal{L} is the interpretation I, i.e. such that

$$
I^{\prime} \mid \mathcal{L}=1
$$

Lemma Proof

This means that we have to define $c_{l^{\prime}}$ for all $c \in C$

By the definition, $c_{\rho^{\prime}} \in M$, so this also means that we have to assign the elements of M to all constants $c \in C$ in such a way that the resulting expansion is a model for all sentences from $S_{\text {Henkin }}$

The quantifier axioms are predicate tautologies so they are going to be true regardless. So we have to worry only about the Henkin axioms

Lemma Proof

Observe now that if the Lemma holds for the Henkin axiom H1 $\quad\left(\exists x A(x) \Rightarrow A\left(c_{A[x]}\right)\right)$
then it must hold for the axiom $\mathbf{H} 2$
Namely, let's consider the axiom H2:

$$
\left(A\left(c_{\neg A[x]}\right) \Rightarrow \forall x A(x)\right)
$$

Assume that $A\left(c_{\neg A[x]}\right)$ is true in the expansion \mathcal{M}^{\prime}, i.e. that

$$
\mathcal{M}^{\prime} \models A\left(c_{\neg A[x]}\right) \quad \text { and that } \quad \mathcal{M}^{\prime} \not \models \forall x A(x)
$$

This means that

$$
\mathcal{M}^{\prime} \models \neg \forall x A(x)
$$

and by the De Morgan Laws

$$
\mathcal{M}^{\prime} \models \exists x \neg A(x)
$$

Lemma Proof

But we have assumed that \mathcal{M}^{\prime} is a model for H1 In particular

$$
\mathcal{M}^{\prime} \models\left(\exists x \neg A(x) \Rightarrow \neg A\left(c_{\neg A[x]}\right)\right)
$$

and hence as $\mathcal{M}^{\prime} \models \exists x \neg A(x)$ we have that

$$
\mathcal{M}^{\prime} \models \neg A\left(c_{\neg A[x]}\right)
$$

This contradicts the assumption that

$$
\mathcal{M}^{\prime} \models A\left(c_{\neg A[x]}\right)
$$

Thus we proved that
if \mathcal{M}^{\prime} is a model for all axioms of the type $\mathbf{H} 1$, it is also a model for all axioms of the type H2

Lemma Proof

We define now $c_{l^{\prime}}$ for all $c \in C$, where

$$
C=\bigcup C_{n}
$$

We do so by induction on n
Base case: $n=1$ and $c_{A[x]} \in C_{1}$
By definition,

$$
C_{1}=\left\{c_{A[x]}: \quad A[x] \in \mathcal{L}\right\}
$$

In this case we have that $\exists x A(x) \in \mathcal{L}$ and hence the notion

$$
\mathcal{M} \models \exists x A(x)
$$

is well defined, as $\mathcal{M}=[M, I]$ is the structure for the language \mathcal{L}

Lemma Proof

As we consider arbitrary structure \mathcal{M}, there are two possibilities:

$$
\mathcal{M} \models \exists x A(x) \text { or } \mathcal{M} \nLeftarrow \exists x A(x)
$$

We define $c_{l^{\prime}}$, for all $c \in C_{1}$ as follows

If $\mathcal{M} \models \exists x A(x)$, then $\left(\mathcal{M}, v^{\prime}\right) \models A(x)$ for certain $v^{\prime}(x)=a \in M$. We set

$$
\left.\left(c_{A[x]]}\right)\right)_{l^{\prime}}=a
$$

If $\mathcal{M} \not \vDash \exists x A(x)$, we set
$\left(c_{A[x])}\right)_{\prime^{\prime}}$ arbitrarily

Lemma Proof

This makes all the positive $\mathbf{H 1}$ type Henkin axioms about the $C_{A[x]} \in C_{1}$ true, i.e.

$$
\mathcal{M}=(M, I) \models\left(\exists x A(x) \Rightarrow A\left(c_{A[x]}\right)\right)
$$

But once $c_{A[x]} \in C_{1}$ are all interpreted in M, then the notion

$$
\mathcal{M}^{\prime} \models A
$$

is defined for all formulas $A \in \mathcal{L} \cup C_{1}$

We carry the same argument and define $c_{l^{\prime}}$, for all $c \in C_{2}$ and so on...

Lemma Proof

The inductive step is performed in the exactly the same way as the one above

Observe that we have aleady we proved that if \mathcal{M}^{\prime} is a model for all axioms of the type $\mathbf{H 1}$, it is also a model for all axioms of the type H2

Hence this ends the proof of the Lemma

Canonical Structure

Definition (Canonical Structure)

Given a structure $\mathcal{M}=[M, I]$ for the language \mathcal{L}
The expansion

$$
\mathcal{M}^{\prime}=\left[M, I^{\prime}\right]
$$

of $\mathcal{M}=[M, I]$ is called a canonical structure for $\mathcal{L}(C)$ if all $a \in M$ are denoted by some $c \in C$. That is

$$
M=\left\{c_{l^{\prime}}: c \in C\right\}
$$

Now we are ready to state and prove a theorem that provides the essential step in the proof of the completeness theorem for predicate logic

The Reduction to Propositional Logic

Theorem (The Reduction Theorem)
Let $\mathcal{L}=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ be a predicate language and let $\mathcal{L}(C)=\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C} \cup C)$ be a witnessing expansion of \mathcal{L}
For any set S of sentences of \mathcal{L} the following conditions are equivalent
(i) S has a model, i.e. there is a structure $\mathcal{M}=[M, I]$ for the language \mathcal{L} such that $\mathcal{M} \models A$ for all $A \in S$
(ii) There is a canonical structure $\mathcal{M}=[M, I]$ for $\mathcal{L}(C)$ which is a model for S, i.e. such that $\mathcal{M} \models A$ for all $A \in S$ (iii) The set $S \cup S_{\text {Henkin }} \cup E Q$ is consistent in sense of propositional logic, where $E Q$ denotes the equality axioms E1-E5

Reduction Theorem Proof

Proof

We have to prove that the conditions (i), (ii), (iii) of the theorem are equivalent

The implication (ii) \rightarrow (i) is immediate
The implication (i) \rightarrow (iii) follows from the Lemma
We have to prove only the implication (iii) \rightarrow (ii)
Assume (iii), i.e. that the set $S \cup S_{\text {Henkin }} \cup E Q$ is consistent in sense of propositional logic and let v be a truth assignment to the prime sentences of $\mathcal{L}(C)$, such that

$$
v^{*}(A)=T \quad \text { for all } \quad A \in S \cup S_{\text {Henkin }} \cup E Q
$$

Reduction Theorem Proof

To prove the theorem, we construct a canonical $\mathcal{L}(C)$ structure $\mathcal{M}=[M, I]$ such that, for all sentences A of $\mathcal{L}(C)$,

$$
\mathcal{M} \models A \quad \text { if and only if } \quad v^{*}(A)=T
$$

By assumption, the truth assignment v is a propositional model for the set $S_{\text {Henkin, }}$ so v^{*} satisfies the following conditions:
(i) $v^{*}(\exists x A(x))=T \quad$ if and only if $\quad v^{*}\left(A\left(c_{A[x]}\right)\right)=T$
(ii) $\quad v^{*}(\forall x A(x))=T \quad$ if and only if $\quad v^{*}(A(t))=T$
for all closed terms t of $\mathcal{L}(C)$

Reduction Theorem Proof

The conditions (i) and (ii) allow us to construct the canonical $\mathcal{L}(C)$ model $\mathcal{M}=[M, I]$ out of the constants in C in the following way
To define $\mathcal{M}=[M, I]$ we must
(1.) specify the universe M of \mathcal{M}
(2.) define, for each n-ary predicate symbol $R \in \mathbf{P}$, the interpretation R_{l} as an n-argument relation in M
(3.) define, for each n-ary function symbol $f \in \mathbf{F}$, the interpretation $f_{l}: M^{n} \rightarrow M$, and
(4.) define, for each constant symbol c of $\mathcal{L}(C)$, i.e.
$c \in \mathbf{C} \cup C$, its interpretation as element $c_{l} \in M$

Reduction Theorem Proof

The construction of the structure

$$
\mathcal{M}=[M, I]
$$

must be such that the condition
(CM) $\quad \mathcal{M} \models A \quad$ if and only if $\quad v^{*}(A)=T$
holds for for all sentences A of $\mathcal{L}(C)$

This condition (CM) tells us how to construct the definitions
(1.) - (4.) above

Reduction Theorem Proof

Here are the definitions
(1.) Definition of the universe M of \mathcal{M}

In order to define the universe M we first define a relation \approx on C as follows

$$
c \approx d \quad \text { if and only if } \quad v(c=d))=T
$$

The equality axioms $E Q$ guarantee that the relation \approx is equivalence relation on C. Here is the proof
Reflexivity of \approx
All equality axioms $E Q$ are predicate tautologies, so $v(c=d))=T$ by axiom E1 and we have

$$
c \approx c \text { for all } c \in C
$$

Reduction Theorem Proof

Symmetry condition

$$
\text { if } c \approx d \text {, then } d \approx c
$$

holds by axiom E2
Assume $c \approx d$, by definition $v(c=d))=T$
By axiom E2

$$
v^{*}((c=d \Rightarrow d=c))=v(c=d) \Rightarrow v(d=c)=T
$$

i.e. $T \Rightarrow v(d=c)=T$

This is possible only if $v(d=c)=T$
This proves that $d \approx c$

Reduction Theorem Proof

We prove transitivity in a similar way
Assume now that $c \approx d$ and $d \approx e$
By the axiom E3 we have that

$$
v^{*}(((c=d \cap d=e) \Rightarrow c=e))=T
$$

Since $v(c=d))=T$ and $v(d=e))=T$ by the assumption $c \approx d$ and $d \approx e$, we evaluate
$v^{*}((c=d \cap d=e) \Rightarrow c=e)=(T \cap T \Rightarrow c=e)=$
$(T \Rightarrow c=e)=T$ and get that $(c=e)=T$ and hence

$$
d \approx e
$$

Reduction Theorem Proof

We denote by [c] the equivalence class of c and we define the universe M of \mathcal{M} as

$$
M=\{[c]: c \in C\}
$$

(2.) Definition of $R_{I} \subseteq M^{n}$

Let M be the the universe defined above
We define $R_{l} \subseteq M^{n}$ as follows
$\left(\left[c_{1}\right],\left[c_{2}\right], \ldots,\left[c_{n}\right]\right) \in R_{l}$ if and only if $v\left(R\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right)=T$
We have to prove now that R_{l} is well defined by the condition above

Reduction Theorem Proof

In order to prove that R_{l} is well defined we must verify:

$$
\begin{gathered}
\text { if }\left[c_{1}\right]=\left[d_{1}\right], \ldots,\left[c_{n}\right]=\left[d_{n}\right] \text { and }\left(\left[c_{1}\right],\left[c_{2}\right], \ldots,\left[c_{n}\right]\right) \in R_{l} \\
\text { then }\left(\left[d_{1}\right],\left[d_{2}\right], \ldots,\left[d_{n}\right]\right) \in R_{l}
\end{gathered}
$$

We have by the axiom E4 that
$v^{*}\left(\left(\left(c_{1}=d_{1} \cap \ldots c_{n}=d_{n}\right) \Rightarrow\left(R\left(c_{1}, . ., c_{n}\right) \Rightarrow R\left(d_{1}, . ., d_{n}\right)\right)\right)\right)=T$
By the assumption $\left[c_{1}\right]=\left[d_{1}\right], \ldots,\left[c_{n}\right]=\left[d_{n}\right]$ we have that

$$
v\left(c_{1}=d_{1}\right)=T, \ldots, v\left(c_{n}=d_{n}\right)=T
$$

Reduction Theorem Proof

By the assumption $\left(\left[c_{1}\right],\left[c_{2}\right], \ldots,\left[c_{n}\right]\right) \in R_{1}$, we have that

$$
v\left(R\left(c_{1}, \ldots, c_{n}\right)\right)=T
$$

Hence the axiom E4 condition becomes

$$
\left(T \Rightarrow\left(T \Rightarrow v\left(R\left(d_{1}, \ldots, d_{n}\right)\right)\right)\right)=T
$$

It holds only when $v\left(R\left(d_{1}, \ldots, d_{n}\right)\right)=T$ and so we proved that

$$
\left(\left[d_{1}\right],\left[d_{2}\right], \ldots,\left[d_{n}\right]\right) \in R_{l}
$$

Reduction Theorem Proof

(3.) Definition of $f_{l}: M^{n} \rightarrow M$

Let $c_{1}, c_{2}, \ldots, c_{n} \in C$ and $f \in \mathbf{F}$
We claim that there is $c \in C$ such that

$$
f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c \text { and } v\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c\right)=T
$$

For consider the formula
$A[x]$ given by $f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=x$

$$
\text { If } v^{*}(\exists x A(x))=v^{*}\left(\exists x f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=x\right)=T
$$

we want to prove

$$
v^{*}\left(A\left(c_{A[x]}\right)\right)=T \quad \text { i.e. } \quad v\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c_{A}\right)=T
$$

Reduction Theorem Proof

So suppose that $v\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c_{A}\right)=F$
But one member of he Henkin set $S_{\text {Henkin }}$ is the sentence

$$
\left(A\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right) \Rightarrow \exists x A(x)\right)
$$

so we must have that

$$
v^{*}\left(A\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right)\right)=F
$$

But this says that v assigns F to the atomic sentence

$$
f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=f\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Reduction Theorem Proof

By the axiom E1, $v\left(c_{i}=c_{i}\right)=T$ for $i=1,2 \ldots n$
By axiom E5 we have that
$\left(v^{*}\left(c_{1}=c_{1} \cap \ldots c_{n}=c_{n}\right) \Rightarrow v^{*}\left(f\left(c_{1}, \ldots, c_{n}\right)=f\left(c_{1}, \ldots, c_{n}\right)\right)\right)=T$
there is $c \in C$ such that

$$
f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c \text { and } v\left(f\left(c_{1}, c_{2}, \ldots, c_{n}\right)=c\right)=T
$$

We hence define
$f_{l}\left(\left(\left[c_{1}\right], \ldots,\left[c_{n}\right]\right)=[c]\right.$ for c such that $v\left(f\left(c_{1}, \ldots, c_{n}\right)=c\right)=T$
The argument similar to the one used in (2.) proves that f_{l} is well defined

Reduction Theorem Proof

(4.) Definition of $c_{l} \in M$

For any $c \in C$ we take

$$
c_{I}=[c]
$$

If $d \in \mathbf{C}$, then an argument similar to that used on (3.) shows that there is $c \in C$ such that $v(d=c)=T$, i.e. $d \approx c$, so we put

$$
d_{l}=[c]
$$

We hence completed the construction of the canonical structure $\mathcal{M}=[M, I]$

Reduction Theorem Proof

Observe that directly from the definition of the canonical structure $\mathcal{M}=[M, I]$ we have that the property

$$
\text { (CM) } \quad \mathcal{M} \models A \quad \text { if and only if } \quad v^{*}(A)=T
$$

holds for atomic propositional sentences, i.e. we proved that

$$
\mathcal{M} \models B \text { if and only if } v^{*}(B)=T \text { for sentences } B \in \mathcal{P}
$$

To complete the proof of the Reduction Theorem we prove now that the property (CM) holds for all other sentences

We carry the proof by induction on length of formulas
The Base Case is already proved
The Inductive Case is as follows

Reduction Theorem Proof

Case of propositional connectives is similar to the case of a formula $(A \cap B)$ below

$$
\mathcal{M} \models(A \cap B) \text { if and only if } \mathcal{M} \models A \text { and } \mathcal{M} \models B
$$

It follows directly from the satisfaction definition
$\mathcal{M} \models A$ and $\mathcal{M} \models B$ if and only if $v^{*}(A)=T$ and $v^{*}(B)=T$ if and only if $v^{*}(A \cap B)=T$

It holds by the induction hypothesis
We proved

$$
\mathcal{M} \models(A \cap B) \text { if and only if } v^{*}(A \cap B)=T
$$

for all sentences A, B of $\mathcal{L}(C)$

Reduction Theorem Proof

We prove now the case of a sentence B of the form

$$
\exists x A(x)
$$

We want to show that

$$
\mathcal{M} \models \exists x A(x) \text { if and only if } v^{*}(\exists x A(x))=T
$$

Let $v^{*}(\exists x A(x))=T$
Then there is a c such that $v^{*}(A(c))=T$, so by induction hypothesis, $\mathcal{M} \models A(c)$ so by definition

$$
\mathcal{M} \models \exists x A(x)
$$

Reduction Theorem Proof

On the other hand, if $v^{*}(\exists x A(x))=F$, then by $S_{\text {Henking }}$ quantifier axiom Q2 we have that

$$
v^{*}(A(t))=F
$$

for all closed terms t of $\mathcal{L}(C)$. In particular, for every $c \in C$

$$
v^{*}(A(c))=F
$$

By induction hypothesis,

$$
\mathcal{M} \models \neg A(c) \text { for all } \quad c \in C
$$

Since every element of M is denoted by some $c \in C$ we have that

$$
\mathcal{M} \models \neg \exists x A(x)
$$

The proof of the case of a sentence B of the form $\forall x A(x)$ is similar and is left as and exercise This ends the proof of the Reduction Theorem

Compactness Theorem and
 Löwenheim-Skolem Theorem

Compactness and Löwenheim-Skolem Theorems

The Reduction to Propositional Logic Theorem provides a powerful method of constructing models of theories out of symbols in a form of canonical models

It also gives us immediate proofs of the two important theorems: Compactness Theorem for the predicate logic and the Löwenheim-Skolem Theorem

Compactness Theorem

Compactness theorem

Let S be any set of predicate formulas of \mathcal{L}
The set S has a model if and only if any finite subset S_{0} of
S has a model
Proof
Assume that S is a set of predicate formulas such that every finite subset S_{0} of S has a model
We need to show that S has a model

The implication (iii) \rightarrow (i) of the Reduction Theorem says:
" If The set $S \cup S_{\text {Henkin }} \cup E Q$ is consistent in sense of propositional logic, then S has a model"
So showing that S has a model this is equivalent to proving that $S \cup S_{\text {Henkin }} \cup E Q$ is consistent in the sense of propositional logic

Compactness Theorem

By already proved Compactness Theorem for propositional ogic of \mathcal{L}, it suffices to prove that for every finite subset $S_{0} \subset S$, the set $S_{0} \cup S_{\text {Henkin }} \cup E Q$ has a model

This follows from the assumption that S is a set such that every finite subset S_{0} of S has a model and the implication
(i) \rightarrow (iii) of the Reduction Theorem that says:
" if S_{0} has a model, then the set $S_{0} \cup S_{\text {Henkin }} \cup E Q$ is consistent, "i.e. has a model

Löwenheim-Skolem Theorem

Löwenheim-Skolem Theorem

Let κ be an infinite cardinal
Let \mathcal{L} be a predicate language with the alphabet \mathcal{A} such that $\operatorname{card}(\mathcal{A}) \leq \kappa$
Let Γ be a set of at most κ formulas of the \mathcal{L}

If the set S has a model, then there is a model

$$
\mathcal{M}=[M, I]
$$

of S such that

$$
\operatorname{cardM} \leq \kappa
$$

Löwenheim-Skolem Theorem

Proof

Let \mathcal{L} be a predicate language with the alphabet \mathcal{A} such that $\operatorname{card}(\mathcal{A}) \leq \kappa$
Obviously, $\operatorname{card}(\mathcal{F}) \leq \kappa$
By the definition of the witnessing expansion $\mathcal{L}(C)$ of \mathcal{L}, $C=U_{n} C_{n}$ and for each $n, \operatorname{card}\left(C_{n}\right) \leq \kappa$. So also card $C \leq \kappa$
Thus any canonical structure for $\mathcal{L}(C)$ has $\leq \kappa$ elements
By the implication (i) \rightarrow (ii) of the Reduction Theorem that
says: " if there is a model of S, then there is a canonical structure $\mathcal{M}=[M, I]$ for $\mathcal{L}(C)$ which is a model for S "
S has a model (canonical structure) with $\leq \kappa$ elements
This ends the proof

Chapter 9
 Hilbert Proof Systems
 Completeness of Classical Predicate Logic

Slides Set 3

PART 3: Proof of theCompleteness Theorem

Completeness Theorem

The proof of Gödel's completeness theorem given by
Kurt Gdel in his doctoral dissertation of 1929 and published as an article in 1930 is not easy to read today

It uses concepts and formalism that are no longer used and terminology that is often obscure

Gödel's proof was then simplified in 1947, when
Leon Henkin observed in his Ph.D. thesis that the hard part
of the Gödel's proof can be presented in the form of his
Model Existence Theorem which published in 1949

Henkin's proof was simplified by Gisbert Hasenjaeger in 1953

Completeness Theorem

Other now classical proofs have been published by
Rasiowa and Sikorski in 1951, 1952 using
Boolean algebraic methods and by Beth in 1953, using topological methods

Still yet other proofs may be found in Hintikka (1955) and in Beth (1959)

We follow a modern version of of Henkin proof

Hilbert-style Proof System H

We define now a Hilbert style proof system H we are going to prove the completeness theorem for

Language \mathcal{L}

The language \mathcal{L} of the proof system H is a predicate (first order) language with equality
We assume that the sets P, F, C are infinitely enumerable
We also assume that \mathcal{L} has a full set of propositional connectives, i.e.

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

Hilbert-style Proof System H

Logical Axioms LA
The set $L A$ of logical axioms consists of three groups of axioms:
propositional axioms $P A$, equality axioms $E A$, and quantifiers axioms QA

We write it symbolically as

$$
L A=\{P A, E A, Q A\}
$$

For the set PA of propositional axioms we choose any complete set of axioms for propositional logic with a full set $\{\neg, \cap, \cap, \Rightarrow\}$ of propositional connectives

Hilbert-style Proof System H

In some formalizations, including the one in the Handbook of Mathematical Logic, Barwise, ed. (1977) we base our proof system H on, the authors just say for this group PA of propositional axioms: "all tautologies"

They of course mean all predicate formulas of \mathcal{L} that are substitutions of propositional tautologies

This is done for the need of being able to use freely these predicate substitutions of propositional tautologies in the proof of completeness theorem for the proof system they formalize this way.

Hilbert-style Proof System H

In this case these tautologies are listed as axioms of the system and hence are provable in it

This is a convenient approach, but also the one that makes such a proof system not to be finitely axiomatizable

We avoid the infinite axiomatization by choosing a proper finite set of predicate language version of propositional axioms that is known (proved already for propositional case) to be complete, i.e. the one in which all propositional tautologies are provable

We choose, for name of the proof system H for Hilbert
Moreover, historical sake, we adopt Hilbert (1928) set of axioms from chapter 5

Hilbert-style Proof System H

For the set $E A$ of equational axioms we choose the same set as in before because they were used in the proof of Reduction to Propositional Logic Theorem

We want to be able to carry this proof within the system H

For the set $Q A$ of quantifiers axioms we choose the axioms
such that the Henkin set $S_{\text {Henkin }}$ axioms Q1, Q2 are their particular cases

This again is needed, so the proof of the Reduction Theorem can be carried within H

Hilbert-style Proof System H

Rules of inference \mathcal{R}
There are four inference rules:
Modus Ponens (MP) and three quantifiers rules (G), (G1), (G2), called Generalization Rules

We define the proof system H as follows
$\mathbf{H}=\left(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C}), \mathcal{F}, L A, \mathcal{R}=\{(M P),(G),(G 1),(G 2)\}\right)$
where $\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ is predicate language
with equality
We assume that the sets $\mathbf{P}, \mathrm{F}, \mathrm{C}$ are infinitely enumerable
\mathcal{F} is the set of all well formed formulas of \mathcal{L}

Hilbert-style Proof System H

$L A$ is the set of logical axioms

$$
L A=\{P A, E A, Q A\}
$$

for PA, EA, QA defined as follows

PA is the set of propositional axioms (Hilbert, 1928)
A1 $\quad(A \Rightarrow A)$
A2 $(A \Rightarrow(B \Rightarrow A))$
A3 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A4 $\quad((A \Rightarrow(A \Rightarrow B)) \Rightarrow(A \Rightarrow B))$
A5 $\quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow(B \Rightarrow(A \Rightarrow C)))$
A6 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$

Hilbert-style Proof System H

A7 $\quad((A \cap B) \Rightarrow A)$
A8 $\quad((A \cap B) \Rightarrow B)$
A9 $\quad((A \Rightarrow B) \Rightarrow((A \Rightarrow C) \Rightarrow(A \Rightarrow(B \cap C)))$
A10 $(A \Rightarrow(A \cup B))$
A11 $\quad(B \Rightarrow(A \cup B))$
A12 $\quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C)))$
A13 $((A \Rightarrow B) \Rightarrow((A \Rightarrow \neg B) \Rightarrow \neg A))$
A14 $\quad(\neg A \Rightarrow(A \Rightarrow B))$
$\mathrm{A} 15(A \cup \neg A)$
for any $A, B, C \in \mathcal{F}$

Hilbert-style Proof System H

$E A$ is the set of equality axioms

E1 $\quad u=u$
E2 $\quad(u=w \Rightarrow w=u)$
E3 $\quad\left(\left(u_{1}=u_{2} \cap u_{2}=u_{3}\right) \Rightarrow u_{1}=u_{3}\right)$
E4
$\left(\left(u_{1}=w_{1} \cap \ldots \cap u_{n}=w_{n}\right) \Rightarrow\left(R\left(u_{1}, \ldots, u_{n}\right) \Rightarrow R\left(w_{1}, \ldots, w_{n}\right)\right)\right)$
E5
$\left(\left(u_{1}=w_{1} \cap \ldots \cap u_{n}=w_{n}\right) \Rightarrow\left(t\left(u_{1}, \ldots, u_{n}\right) \Rightarrow t\left(w_{1}, \ldots, w_{n}\right)\right)\right)$
for any free variable or constant of $\mathcal{L}, R \in \mathbf{P}$, and $t \in \mathbf{T}$ where R is an arbitrary n -ary relation symbol of \mathcal{L} and $t \in \mathrm{~T}$ is an arbitrary n-ary term of \mathcal{L}

Hilbert-style Proof System H

$Q A$ is the set of quantifiers axioms.

Q1 $\quad(\forall x A(x) \Rightarrow A(t))$
Q2 $(A(t) \Rightarrow \exists x A(x))$
where where t is a term
$A(t)$ is a result of substitution of t for all free occurrences of x in $A(x)$ and
t is free for x in $A(x)$, i.e. no occurrence of a variable in t becomes a bound occurrence in $A(t)$

Hilbert-style Proof System H

\mathcal{R} is the set of rules of inference

$$
\mathcal{R}=\{(M P),(G),(G 1),(G 2)\}
$$

(MP) is Modus Ponens rule

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

for any formulas $A, B \in \mathcal{F}$
(G) is a quantifier generalization rule

$$
\text { (G) } \frac{A}{\forall x A}
$$

where $A \in \mathcal{F}$ and in particular we write

$$
\text { (G) } \frac{A(x)}{\forall x A(x)}
$$

for $A(x) \in \mathcal{F}$ and $x \in \operatorname{VAR}$

Hilbert-style Proof System H

(G1) is a quantifier generalization rule

$$
\text { (G1) } \frac{(B \Rightarrow A(x))}{(B \Rightarrow \forall x A(x))}
$$

where for $A(x), B \in \mathcal{F}, x \in V A R$, and B is such that x is not free in B
(G2) is a quantifier generalization rule

$$
\text { (G2) } \frac{(A(x) \Rightarrow B)}{(\exists x A(x) \Rightarrow B)}
$$

where for $A(x), B \in \mathcal{F}, x \in V A R$, and B is such that x is not free in B

Hilbert-style Proof System H

We define now, as we do for any proof system, a notion of a formal proof of a formula A from a set S of formulas in H as a finite sequence

$$
B_{1}, B_{2}, \ldots B_{n}
$$

of formulas with each of which is either a logical axiom of \mathbf{H}, a member of S, or else follows from earlier formulas in the sequence by one of the inference rules from \mathcal{R} and is such that

$$
B_{n}=A
$$

We write it formally as follows.

Formal Proof in \mathbf{H}

Definition

Let $\Gamma \subseteq \mathcal{F}$ be any set of formulas of \mathcal{L}
A proof in H of a formula $A \in \mathcal{F}$ from a set Γ of formulas is a sequence

$$
B_{1}, B_{2}, \ldots B_{n}
$$

of formulas, such that

$$
B_{1} \in L A \cup \Gamma, \quad B_{n}=A
$$

and for each $1<i \leq n$, either $B_{i} \in L A \cup \Gamma$ or B_{i} is a conclusion of some of the preceding expressions in the sequence $B_{1}, B_{2}, \ldots B_{n}$ by virtue of one of the rules of inference from \mathcal{R}

Formal Proof in \mathbf{H}

We write

$$
\Gamma \vdash_{\mathbf{H}} A
$$

to denote that the formula A has a proof from Γ in H
The case when $\Gamma=\emptyset$ is a special one
By the definition, $\emptyset \vdash_{\mathrm{H}} A$ means that in the proof of A only logical axioms $L A$ are used. We hence write
${ }^{+} \mathrm{H} A$
to denote that a formula A has a proof in \mathbf{H}

Formal Proof in \mathbf{H}

As we work now with a fixed (and only one) proof system H, we use the notation

$$
\Gamma \vdash A \text { and } \vdash A
$$

to denote the proof of a formula A from a set Γ in H and the proof of a formula A in H , respectively

Completeness Theorem

Any proof of the completeness theorem for a given proof system consists always of two parts

First we have show that
all formulas that have a proof in the system are tautologies

This is called a soundness theorem or soundness part of the completeness theorem

Completeness Theorem

The second implication says:
if a formula is a tautology then it has a proof in the proof system

This alone is sometimes called a completeness theorem (on assumption that the proof system issound)

Traditionally it is called a completeness part of the completeness theorem

Soundness Theorem

We know that all axioms of H are predicate tautologies (proved in chapter 8)

All rules of inference from \mathcal{R} are sound as the corresponding formulas were also proved in chapter 8 to be predicate tautologies and so the system H is sound i.e. the following holds for H

Soundness Theorem

For every formula $A \in \mathcal{F}$ of the language \mathcal{L} of the proof system H,
if $\vdash A$ then $\vDash A$

Completeness Theorem

The soundness theorem proves that the proofs in the system H "produce" only tautologies

We show here, as the next step that our proof system \mathbf{H} "produces" not only tautologies, but that all tautologies are provable in it

This is called a completeness theorem for classical predicate (first order logic, as it all is proven with respect to classical semantics

This is why it is called a completeness of classical predicate logic

Completeness Theorem

The goal is now to prove the completeness part of the following original theorem Gödel's theorem

Theorem (completeness of predicate logic)
For any formula A of the language \mathcal{L} of the proof system H ,
A is provable in H if and only if
A is a predicate tautology (valid)

We write it symbolically as
$\vdash A$ if and only if $\models A$

Completeness Theorem

We are going to prove the above Theorem (completeness of predicate logic) as a particular case of the Gödel Completeness Theorem that follows

This theorem is its more general, and more modern version

Its formulation, as well as the method of proving it, was first introduced by Henkin in 1947

It uses a notion of a logical implication, and some other notions that we introduce now below

Completeness Theorem

Sentence, Closure

Any formula of \mathcal{L} without free variables is called a sentence
For any formula $A\left(x_{1}, \ldots x_{n}\right)$, a sentence

$$
\forall x_{1} \forall x_{2} \ldots \forall x_{n} A\left(x_{1}, \ldots x_{n}\right)
$$

is called a closure of $A\left(x_{1}, \ldots x_{n}\right)$
Directly from the above definition have that the following hold

Closure Fact

For any formula $A\left(x_{1}, \ldots x_{n}\right)$,
$\models A\left(x_{1}, \ldots x_{n}\right)$ if and only if $\models \forall x_{1} \forall x_{2} \ldots \forall x_{n} A\left(x_{1}, \ldots x_{n}\right)$

Completeness Theorem

Logical Implication

For any set $\Gamma \subseteq \mathcal{F}$ of formulas of \mathcal{L} and any $A \in \mathcal{F}$, we say that the set Γ logically implies the formula A and write it as

$$
\ulcorner\models A
$$

if and only if all models of Γ are models of A

Observe, that in order to prove that $\Gamma \models B$ we have to show that the implication

$$
\text { if } \mathcal{M} \models \Gamma \text { then } \mathcal{M} \models B
$$

holds for all structures $\mathcal{M}=[U, I]$ for \mathcal{L}

Completeness Theorem

Directly from the Closure Lemma we get the following
Lemma
Let 「 be a set of sentences of \mathcal{L}
For any formula $A\left(x_{1}, \ldots x_{n}\right)$ that is not a sentence,
$\Gamma \vdash A\left(x_{1}, \ldots x_{n}\right)$ if and only if $\Gamma \models \forall x_{1} \forall x_{2} \ldots \forall x_{n} A\left(x_{1}, \ldots x_{n}\right)$

Completeness Theorem

The above Lemma and Closure Lemma show that we need to consider only sentences (closed formulas) of \mathcal{L} since they prove two properties:
(1) a formula of \mathcal{L} is a tautology if and only if its closure is a tautology
(2) a formula of \mathcal{L} is provable from Γ if and only if its closure is provable from Γ

This justifies the following generalization of the original Gödel's completeness of predicate logic theorem

Completeness Theorem

Gödel Completeness Theorem

Let 「 be any set of sentences and A any sentence of a language \mathcal{L} of Hilbert proof system H

A sentence A is provable from Γ in H if and only if the set「 logically implies A

We write it in symbols,
$\Gamma \vdash A$ if and only if $\Gamma \models A$.

Completeness Theorem

Remark

We want to remind that the Section: Reduction Predicate Logic to Propositional Logic is an integral and the first part of the proof the Gödel Completeness Theorem
We presented it separately for two reasons

R1. The reduction method and theorems and their proofs are purely semantical in their nature and hence are independent of the proof system H

R2. Because of the reason R1. the reduction method can be used/adapted to a proof of completeness theorem of any other proof system one needs to prove the classical completeness theorem for

Consistency

There are two definitions of consistency: semantical and syntactical

The semantical definition uses the notion of a model and says, in plain English:
a set of formulas is consistent if it has a model
The syntactical one uses the notion of provability and says:
a set of formulas is consistent if one can't prove a contradiction from it

We have used, in the Proof Two of the Completeness Theorem for propositional logic (chapter 5) the syntactical definition of consistency
We use now the following semantical definition

Consistency

Definition (Consistent/Inconsistent)

A set $\Gamma \subseteq \mathcal{F}$ of formulas of \mathcal{L} is consistent
if and only if it has a model, otherwise, is inconsistent

Directly from the above definition we have the following
Inconsistency Lemma
For any set $\Gamma \subseteq \mathcal{F}$ of formulas of \mathcal{L} and any $A \in \mathcal{F}$,
if $\Gamma \models A$, then the set $\Gamma \cup\{\neg A\}$ is inconsistent
Proof
Assume $\Gamma \models A$ and $\Gamma \cup\{\neg A\}$ is consistent
It means there is a structure $\mathcal{M}=[U, I]$, such that
$\mathcal{M} \models \Gamma$ and $\mathcal{M} \models \neg A$, i.e. $\mathcal{M} \not \models A$
This is a contradiction with $\Gamma \models A$

Crucial Lemma

Now we are going to prove the following Lemma that is crucial, to the proof of the Completeness Theorem

Crucial Lemma

Let Γ be any set of sentences of a language \mathcal{L} of H
The following conditions hold for any formulas $A, B \in \mathcal{F}$ of \mathcal{L}
(i) If $\Gamma \vdash(A \Rightarrow B)$ and $\Gamma \vdash(\neg A \Rightarrow B)$, then $\Gamma \vdash B$
(ii) If $\Gamma \vdash((A \Rightarrow C) \Rightarrow B)$, then $\Gamma \vdash(\neg A \Rightarrow B)$ and
$\Gamma \vdash(C \Rightarrow B)$
(iii) If x does not appear in B and if
$\Gamma \vdash((\exists y A(y) \Rightarrow A(x)) \Rightarrow B)$, then $\Gamma \vdash B$
(iv) If x does not appear in B and if
$\Gamma \vdash((A(x) \Rightarrow \forall y A(y)) \Rightarrow B)$, then $\Gamma \vdash B$

Crucial Lemma Proof

Proof

(i) Notice that the formula $((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$
is a substitution of a propositional tautology, hence by definition of H , is provable in it
By monotonicity, $\quad \Gamma \vdash((A \Rightarrow B) \Rightarrow((\neg A \Rightarrow B) \Rightarrow B))$
By assuption $\Gamma \vdash(A \Rightarrow B)$ and by Modus Ponens we get

$$
\Gamma \vdash((\neg A \Rightarrow B) \Rightarrow B)
$$

By assuption $\Gamma \vdash(\neg A \Rightarrow B)$ and Modus Ponens we get

$$
\Gamma \vdash B
$$

Crucial Lemma Proof

(ii) The formulas

$$
\begin{gathered}
\text { (1) }(((A \Rightarrow B) \Rightarrow(\neg A \Rightarrow B))) \\
\text { (2) } \quad(((A \Rightarrow B) \Rightarrow B) \Rightarrow(C \Rightarrow B))
\end{gathered}
$$

are substitution of a propositional tautologies, hence are provable in H
Assume $\Gamma \vdash((A \Rightarrow C) \Rightarrow B)$
By monotonicity and (1) we get

$$
\Gamma \vdash(\neg A \Rightarrow B)
$$

and by (2) we get

$$
\vdash(C \Rightarrow B)
$$

Crucial Lemma Proof

(iii) Assume

$$
\Gamma \vdash((\exists y A(y) \Rightarrow A(x)) \Rightarrow B)
$$

Observe that it is a particular case of assumption

$$
\Gamma \vdash((A \Rightarrow C) \Rightarrow B)
$$

in (ii), for $A=\exists y A(y), C=A(x)$ and $B=B$
Hence by (ii) we have that

$$
\Gamma \vdash(\neg \exists y A(y) \Rightarrow B) \text { and } \Gamma \vdash(A(x) \Rightarrow B)
$$

Apply Generalization Rule G2 to

$$
\Gamma \vdash(A(x) \Rightarrow B)
$$

and we have

$$
\ulcorner\vdash(\exists y A(y) \Rightarrow B)
$$

Crucial Lemma Proof

Then by (i) applied to

$$
\Gamma \vdash(\exists y A(y) \Rightarrow B) \quad \text { and } \quad \Gamma \vdash(\neg \exists y A(y) \Rightarrow B)
$$

we get

$$
\Gamma \vdash B
$$

The proof of (iv) is similar to (iii) but uses the Generalization Rule G1

This ends the proof of the Lemma

Completeness Theorem for \mathbf{H}

Now we are ready to conduct the proof of the Completeness Theorem for \mathbf{H} stated as follows

H Completeness Theorem

Let Γ be any set of sentences and A any sentence of a language \mathcal{L} of Hilbert proof system \mathbf{H}

$$
\ulcorner\vdash A \text { if and only if }\ulcorner\models A
$$

In particular, for any formula A of \mathcal{L},

$$
\vdash A \text { if and only if } \models A
$$

Proof of Completeness Theorem for \mathbf{H}

Proof

We prove the completeness part , i.e. we prove the implication

$$
\text { if }\ulcorner\models A \text {, then }\ulcorner\vdash A
$$

Suppose that $\Gamma \models A$
This means that we assume that all \mathcal{L} models of Γ are models of A

By the Inconsistency Lemma the set $\Gamma \cup\{\neg A\}$ is inconsistent
Let $\mathcal{M} \models \Gamma$
We construct, as a next step, a witnessing expansion language $\mathcal{L}(C)$ of \mathcal{L}

Proof of Completeness Theorem for \mathbf{H}

By the Reduction Theorem the set

$$
\Gamma \cup S_{\text {Henkin }} \cup E Q
$$

is consistent in a sense of propositional logic in \mathcal{L}
The set $S_{\text {Henkin }}$ is a Henkin Set and $E Q$ are equality axioms that are also the equality axioms $E Q$ of H
By the Compactness Theorem for propositional logic of \mathcal{L} there is a finite set

$$
S_{0} \subseteq \Gamma \cup S_{\text {Henkin }} \cup E Q
$$

such that $S_{0} \cup\{\neg A\}$ is inconsistent in the sense of propositional logic in \mathcal{L}

Proof of Completeness Theorem for \mathbf{H}

We list all elements of S_{0} in a sequence

$$
A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2}, \ldots, B_{m}
$$

where the sequence

$$
A_{1}, A_{2}, \ldots, A_{n}
$$

consists of those elements of S_{0} which are either in $\Gamma \cup E Q$ or else are quantifiers axioms that are particular cases of the quantifiers axioms QA of H . We list them in any order
The sequence
$B_{1}, B_{2}, \ldots, B_{m}$
consists of elements of S_{0} which are Henkin Axioms but listed carefully as to be described as follows

Proof of Completeness Theorem for \mathbf{H}

Observe that by definition,

$$
\mathcal{L}(C)=\bigcup_{n \in N} \mathcal{L}_{n} \text { for } \mathcal{L}=\mathcal{L}_{0} \subseteq \mathcal{L}_{1} \subseteq \ldots
$$

We define the rank of $A \in \mathcal{L}(C)$ to be the least n, such that $A \in \mathcal{L}_{n}$
Now we choose for B_{1} a Henkin Axiom in S_{0} of the maximum rank

We choose for B_{2} a Henkin Axiom in $S_{0}-\left\{B_{1}\right\}$ of the maximum rank

We choose for B_{3} a Henkin Axiom in $S_{0}-\left\{B_{1}, B_{2}\right\}$ of the maximum rank, etc. ...

Proof of Completeness Theorem for \mathbf{H}

The point of choosing the formulas B_{i} in this way is to make sure that the witnessing constant about which B_{i} speaks, does not appear in

$$
B_{i+1}, B_{i+2}, \ldots, B_{m}
$$

For example, if B_{1} is

$$
\left(\exists x A(x) \Rightarrow A\left(c_{A[x]}\right)\right)
$$

then $A[x]$ does not appear in any of the other B_{2}, \ldots, B_{m}, by the maximality condition on B_{1}

Proof of Completeness Theorem for \mathbf{H}

We know that that $S_{0} \cup\{\neg A\}$ is inconsistent in the sense of propositional logic, i.e.
$S_{0} \cup\{\neg A\}$ does not have a (propositional) model
This means that

$$
v^{*}(\neg A) \neq T \text { for all } v \text { and so } v^{*}(A)=T \text { for all } v
$$

Hence a sentence
(S) $\quad\left(A_{1} \Rightarrow\left(A_{2} \Rightarrow \ldots\left(A_{n} \Rightarrow\left(B_{1} \Rightarrow \ldots\left(B_{m} \Rightarrow A\right)\right) ..\right)\right.\right.$
is a propositional tautology

Proof of Completeness Theorem for \mathbf{H}

We now replace in the sentence (S) each witnessing constant by a distinct new variable and write the result as

$$
\left(S^{\prime}\right)\left(A _ { 1 } ^ { \prime } \Rightarrow \left(A_{2}^{\prime} \Rightarrow \ldots\left(A_{n}^{\prime} \Rightarrow\left(B_{1}^{\prime} \Rightarrow \ldots\left(B_{m}^{\prime} \Rightarrow A\right)\right) . .\right)\right.\right.
$$

We have $A^{\prime}=A$ since A has no witnessing constant in it

The result is still a tautology and hence is provable in H from propositional axioms PA and Modus Ponens
By monotonicity

$$
S_{0} \vdash\left(A _ { 1 } ^ { \prime } \Rightarrow \left(A_{2}^{\prime} \Rightarrow \ldots\left(A_{n}^{\prime} \Rightarrow\left(B_{1}^{\prime} \Rightarrow \ldots\left(B_{m}^{\prime} \Rightarrow A\right)\right) . .\right)\right.\right.
$$

Proof of Completeness Theorem for \mathbf{H}

Each of $A_{1}{ }^{\prime}, A_{2}{ }^{\prime}, \ldots, A_{n}{ }^{\prime}$ is either a quantifiers axiom from QA of H or else in S_{0}, so

$$
S_{0} \vdash A_{i}^{\prime} \quad \text { for all } \quad 1 \leq i \leq n
$$

We apply Modus Ponens to the above and (S') n times and get

$$
S_{0} \vdash\left(B_{1}^{\prime} \Rightarrow\left(B_{2}^{\prime} \Rightarrow \ldots\left(B_{m}^{\prime} \Rightarrow A\right)\right) . .\right)
$$

Proof of Completeness Theorem for \mathbf{H}

For example, if $B_{1}{ }^{\prime}$ is

$$
(\exists x C(x) \Rightarrow C(x))
$$

we have

$$
S_{0} \vdash((\exists x C(x) \Rightarrow C(x)) \Rightarrow B)
$$

for $\left.B=\left(B_{2}{ }^{\prime} \Rightarrow \ldots\left(B_{m}{ }^{\prime} \Rightarrow A\right)\right) ..\right)$

By the Crucial Lemma part (iii) that says:
(iii) If x does not appear in B and if
$\Gamma \vdash((\exists y A(y) \Rightarrow A(x)) \Rightarrow B)$, then $\Gamma \vdash B$ we get $\quad S_{0} \vdash B$, i.e.

$$
\left.S_{0} \vdash\left(B_{2}^{\prime} \Rightarrow \ldots\left(B_{m}^{\prime} \Rightarrow A\right)\right) . .\right)
$$

Proof of Completeness Theorem for \mathbf{H}

If, for example, $B_{2}{ }^{\prime}$ is

$$
(D(x) \Rightarrow \forall x D(x))
$$

we have

$$
\begin{aligned}
& \qquad S_{0} \vdash((\exists x C(x) \Rightarrow C(x)) \Rightarrow D) \\
& \text { for } \left.D=\left(B_{3}^{\prime} \Rightarrow \ldots\left(B_{m}^{\prime} \Rightarrow A\right)\right) . .\right)
\end{aligned}
$$

By the Crucial Lemma part (iv) that says: (iv) If x does not appear in B and if $\Gamma \vdash((A(x) \Rightarrow \forall y A(y)) \Rightarrow B)$, then $\Gamma \vdash B$ we get $S_{0} \vdash D$, i.e.

$$
\left.S_{0} \vdash\left(B_{3}^{\prime} \Rightarrow \ldots\left(B_{m}^{\prime} \Rightarrow A\right)\right) . .\right)
$$

Proof of Completeness Theorem for \mathbf{H}

We hence apply parts (iii) and (iv) of the Crucial Lemma to successively remove all

$$
B_{1}{ }^{\prime}, \ldots, B_{m}{ }^{\prime}
$$

and obtain

$$
S_{0} \vdash A
$$

This ends the proof that

$$
\Gamma \vdash A
$$

We hence we completed the proof of the completeness part of the first part

$$
\ulcorner\vdash A \text { if and only if }\ulcorner\models A
$$

of the H Completeness Theorem

Gödel' s Completeness Theorem

The soundness part of the H Completeness Theorem i.e. the implication

$$
\text { if }\ulcorner\vdash A \text {, then }\ulcorner\models A
$$

holds for any sentence A of \mathcal{L} directly by Closure Lemma and Soundness Theorem
The original Gödel's Theorem, is expressed by the second part of the H Completeness Theorem:
$\vdash A$ if and only if $\models A$
It follows from Closure Lemma and the first part for $\Gamma=\emptyset$

Chapter 9
 Hilbert Proof Systems
 Completeness of Classical Predicate Logic

Slides Set 4

PART 4: Deduction Theorem
PART 5: Some other Axiomatizations

Chapter 9
 Hilbert Proof Systems
 Completeness of Classical Predicate Logic

Slides Set 4

PART 4: Deduction Theorem

Deduction Theorem

In mathematical arguments, one often assumes a statement A on the assumption (hypothesis) of some other statement B and then concludes that we have proved the implication
"if A, then B "

This reasoning is justified by the following theorem, called a Deduction Theorem

It was first formulated and proved for a certain Hilbert proof system S for the classical propositional logic by Herbrand in 1930 in a form stated as follows

Deduction Theorem

Deduction Theorem (Herbrand,1930)

For any formulas A, B of the language of a propositional proof system S,

$$
\text { if } A \vdash s B \text { then } \vdash s(A \Rightarrow B)
$$

In chapter 5 we formulated and proved the following, more genera I version of the Herbrand Theorem for a very simple (two logical axioms and Modus Ponens) propositional proof system H1

Deduction Theorem

Deduction Theorem

For any subset Γ of the set of formulas \mathcal{F} of H_{1} and for any formulas $A, B \in \mathcal{F}$,

$$
\Gamma, A \vdash_{H_{1}} B \text { if and only if } \Gamma \vdash_{H_{1}}(A \Rightarrow B)
$$

In particular,

$$
A \vdash_{H_{1}} B \text { if and only if } \vdash_{H_{1}}(A \Rightarrow B)
$$

A natural question arises:
does deduction theorem hold for the predicate logic in general and for its proof system H we defined here?.

Deduction Theorem

The Deduction Theorem can not be carried directly to the predicate logic, but it nevertheless holds with some modifications. Here is where the problem lays.

Fact

Given the proof system

$$
\mathbf{H}=(\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C}), \mathcal{F}, L A, \mathcal{R}=\{(M P),(G),(G 1),(G 2)\})
$$

For any formula $A(x) \in \mathcal{F}$,

$$
A(x) \vdash \forall x A(x)
$$

but it is not always the case that

$$
\vdash(A(x) \Rightarrow \forall x A(x))
$$

Deduction Theorem

Proof

Obviously, $A(x) \vdash \forall x A(x)$ by Generalization rule (G)
Let now $A(x)$ be an atomic formula $P(x)$

By the H Completeness Theorem

$$
\vdash(P(x) \Rightarrow \forall x P(x)) \text { if and only if } \models(P(x) \Rightarrow \forall x P(x))
$$

Consider a structure

$$
\mathcal{M}=[M, I]
$$

where M contains at least two elements c and d
We define $P_{l} \subseteq M$ as a property that holds only for c, i.e.

$$
P_{I}=\{c\}
$$

Deduction Theorem

Take any assignment $s: V A R \longrightarrow M$
Then $(\mathcal{M}, s) \models P(x)$ only when $s(x)=c$ for all $x \in \operatorname{VAR}$

$$
\mathcal{M}=[M, I] \text { is a counter model for }(P(x) \Rightarrow \forall x P(x))
$$

as we found s such $(\mathcal{M}, s) \models P(x)$ and obviously $(\mathcal{M}, s) \not \models \forall x P(x)$
We proved that $\forall=(P(x) \Rightarrow \forall x P(x))$
By the \mathbf{H} Completeness Theorem this is equivalent to

$$
\nvdash(P(x) \Rightarrow \forall x P(x))
$$

and the Deduction Theorem fails as

$$
P x \vdash \forall x P(x)
$$

Deduction Theorem

The Fact shows that the problem is with application of the generalization rule (G) to the formula $A \in \Gamma$

To handle this we introduce, after Mendelson(1987) the following notion

Deduction Theorem

Definition

Let A be one of formulas in Γ and let

$$
\text { (P) } \quad B_{1}, B_{2}, \ldots, B_{n}
$$

be a proof (deduction) of B_{n} from Γ, together with justification at each step. We say that the formula
B_{i} depends upon A in the proof $B_{1}, B_{2}, \ldots, B_{n}$
if and only if the following holds
(1) B_{i} is A and the justification for B_{i} is $B_{i} \in \Gamma$
or
(2) B_{i} is justified as direct consequence by MP
or
(G) of some preceding formulas in the proof sequence (P), where at least one of these preceding formulas depends
upon A

Deduction Theorem

Example

Here is a proof (deduction)

$$
B_{1}, B_{2}, \ldots, B_{5}
$$

showing that

$$
A,(\forall x A \Rightarrow C) \vdash \forall x C
$$

$B_{1} \quad A$
Hyp
B_{1} depends upon A
$B_{2} \quad \forall x A$
$B_{1},(G)$
B_{2} depends upon A
$B_{3} \quad(\forall x A \Rightarrow C)$
Hyp
B_{3} depends upon $(\forall x A \Rightarrow C)$

Deduction Theorem

$B_{3} \quad(\forall x A \Rightarrow C)$
Hyp
B_{3} depends upon $(\forall x A \Rightarrow C)$
$B_{4} \quad C$
MP on B_{2}, B_{3}
B_{4} depends upon A and $(\forall x A \Rightarrow C)$
$B_{5} \quad \forall x C$
(G)
B_{4} depends upon A and $(\forall x A \Rightarrow C)$
Observe that the formulas A, C may, or may not have x as a free variable

Deduction Theorem

DT Lemma

If B does not depend upon A in a proof (deduction) showing that $\Gamma, A \vdash B$, then $\lceil\vdash B$

Proof

Let

$$
B_{1}, B_{2}, \ldots, B_{n}=B
$$

be a proof (deduction) of B from Γ, A,
in which B does not depend upon A
We prove by induction over the length of the proof that

$$
\Gamma \vdash B
$$

Deduction Theorem

Assume that DT Lemma holds for all proofs of the length less than n
If $B \in \Gamma$ or $B \in L A$, by definition then $\Gamma \vdash B$
If B is a direct consequence of two preceding formulas, then, since B does not depend upon A, neither do theses preceding formulas
By inductive hypothesis, theses preceding formulas have a proof from 「 alone
Hence so does B, i.e.

$$
\Gamma \vdash B
$$

Now we are ready to formulate and prove the Deduction Theorem for predicate logic

Deduction Theorem

Deduction Theorem

For any formulas A, B of the language of proof system \mathbf{H} the following holds
(1) Assume that in some proof (deduction) showing that

$$
\Gamma, A \vdash B
$$

no application of the generalization rule (G) to a formula that depends upon A has as its quantified variable a free variable of the formula A

Then we have that

$$
\Gamma \vdash(A \Rightarrow B)
$$

(2) If $\Gamma \vdash(A \Rightarrow B)$, then $\Gamma, A \vdash B$

Deduction Theorem

Proof

The proof we present extends the proof of the Deduction Theorem for propositional logic from chapter 5

We adopt the propositional proof to the system H and add the relevant predicate cases

For the sake of clarity and independence we write now the whole proof in all details

Deduction Theorem

(1) Assume that

$$
\ulcorner, A \vdash B
$$

i.e. that we have a formal proof

$$
B_{1}, B_{2}, \ldots, B_{n}
$$

of B from the set of formulas $\Gamma \cup\{A\}$
In order to prove that

$$
\Gamma \vdash(A \Rightarrow B)
$$

we will prove the following a stronger statement
(S) $\Gamma \vdash\left(A \Rightarrow B_{i}\right)$ for all $B_{i}(1 \leq i \leq n)$ in the proof of B

Deduction Theorem

Hence, in particular case, when $i=n$, we will obtain that also

$$
\Gamma \vdash(A \Rightarrow B)
$$

The proof of the statement (\mathbf{S}) is conducted by induction on $1 \leq i \leq n$
Base Step $i=1$
When $i=1$, it means that the formal proof contains only one element B_{1}
By the definition of the formal proof from $\ulcorner\cup\{A\}$, we have that $B_{1} \in L A$, or $B_{1} \in \Gamma$, or $B_{1}=A$, i.e.

$$
B_{1} \in L A \cup \Gamma \cup\{A\}
$$

Here we have two cases

Deduction Theorem

Case $1 \quad B_{1} \in L A \cup \Gamma$
Observe that the formula

$$
\left(B_{1} \Rightarrow\left(A \Rightarrow B_{1}\right)\right)
$$

is a particular case of the axiom A 2 of H
By assumption $B_{1} \in L A \cup \Gamma$, hence we get the required proof of $\left(A \Rightarrow B_{1}\right)$ from Γ by the following application of the MP rule

$$
(M P) \frac{B_{1} ;\left(B_{1} \Rightarrow\left(A \Rightarrow B_{1}\right)\right)}{\left(A \Rightarrow B_{1}\right)}
$$

Deduction Theorem

Case $2 B_{1}=A$
When $B_{1}=A$, then to prove

$$
\Gamma \vdash(A \Rightarrow B)
$$

means to prove $\Gamma \vdash(A \Rightarrow A)$
But $(A \Rightarrow A) \in L A \quad$ (axiom A1) of H , i.e. $\vdash(A \Rightarrow A)$. By the monotonicity of the consequence we have that

$$
Г \vdash(A \Rightarrow A)
$$

The above cases conclude the proof of the Base Case $i=1$

Deduction Theorem

Inductive Step

Assume that

$$
\Gamma \vdash\left(A \Rightarrow B_{k}\right)
$$

for all $k<i$, we will show that using this fact we can conclude that also

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right)
$$

Consider a formula B_{i} in the proof sequence By the definition, $B_{i} \in L A \cup \Gamma \cup\{A\}$
or B_{i} follows byMP from certain B_{j}, B_{m} such that $j<m<i$
We have to consider againtwo cases

Deduction Theorem

Case 1

$B_{i} \in L A \cup \Gamma \cup\{A\}$
The proof of $\left(A \Rightarrow B_{i}\right)$ from Γ in this case is obtained from the proof of the Base Step for $i=1$ by replacement B_{1} by B_{i} and will be omitted here as a straightforward repetition

Case 2

B_{i} is a conclusion of MP
If B_{i} is a conclusion of MP, then we must have two formulas B_{j}, B_{m} in the proof sequence, such that $j<i, m<i, j \neq m$ and

$$
(M P) \frac{B_{j} ; B_{m}}{B_{i}}
$$

item[[] By the inductive assumption, the formulas B_{j}, B_{m} are such that

$$
\Gamma \vdash\left(A \Rightarrow B_{j}\right) \quad \text { and } \quad \Gamma \vdash\left(A \Rightarrow B_{m}\right)
$$

Deduction Theorem

Moreover, by the definition of the Modus Ponens rule, the formula B_{m} has to have a form $\left(B_{j} \Rightarrow B_{i}\right)$, i.e.

$$
B_{m}=\left(B_{j} \Rightarrow B_{i}\right)
$$

and the the inductive assumption can be re-written as

$$
(*) \Gamma \vdash\left(A \Rightarrow B_{j}\right) \text { and } \Gamma \vdash\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \text { for } j<i
$$

Observe now that the formula

$$
\left(\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \Rightarrow\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)\right)
$$

is a substitution of the axiom A 3 of H and hence

$$
\vdash\left(\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \Rightarrow\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)\right)
$$

Deduction Theorem

By the monotonicity,

$$
(* *)\left\ulcorner\vdash\left(\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \Rightarrow\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)\right)\right.
$$

Applying the rule MP to formulas (*) and (**) i.e. performing the following

$$
(M P) \frac{\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) ;\left(\left(A \Rightarrow\left(B_{j} \Rightarrow B_{i}\right)\right) \Rightarrow\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)\right)}{\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)}
$$

we get that also

$$
\Gamma \vdash\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)
$$

Deduction Theorem

Applying again the rule MP to formulas (*) and the above

$$
\Gamma \vdash\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)
$$

i.e. performing the following

$$
(M P) \frac{\left(A \Rightarrow B_{j}\right) ;\left(\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow B_{i}\right)\right)}{\left(A \Rightarrow B_{i}\right)}
$$

we get that

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right)
$$

Deduction Theorem

Finally, suppose that there is some $j<i$ such that

$$
B_{i} \text { is } \forall x B_{j}
$$

By inductive assumption

$$
\Gamma \vdash\left(A \Rightarrow B_{j}\right)
$$

and either
(i) B_{j} does not depend upon A or
(ii) x is not free variable in A

We want to prove

$$
\Gamma \vdash B_{i}
$$

We have theses two cases (i) and (ii) to consider.

Deduction Theorem

Case (i)

$$
\Gamma \vdash\left(A \Rightarrow B_{j}\right)
$$

and B_{j} does not depend upon A
Then by DT Lemma we have that $\Gamma \vdash B_{j}$
and, consequently, by the generalization rule (G)

$$
\Gamma \vdash \forall x B_{j}
$$

Thus we proved

$$
\Gamma \vdash B_{i}
$$

Deduction Theorem

Now, from just proved

$$
\Gamma \vdash B_{i}
$$

and axiom A 2 of H

$$
\vdash\left(B_{i} \Rightarrow\left(A \Rightarrow B_{i}\right)\right)
$$

and monotonicity

$$
\Gamma \vdash\left(B_{i} \Rightarrow\left(A \Rightarrow B_{i}\right)\right)
$$

and MP applied to them we get

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right)
$$

Deduction Theorem

Case (ii)

$\Gamma \vdash\left(A \Rightarrow B_{j}\right)$ and x is not free variable in A
We know that $\models\left(\forall x\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow \forall x B_{j}\right)\right)$
hence the Completeness Theorem we get
$\vdash\left(\forall x\left(A \Rightarrow B_{j}\right) \Rightarrow\left(A \Rightarrow \forall x B_{j}\right)\right)$
Since $\Gamma \vdash\left(A \Rightarrow B_{j}\right)$ by inductive assumption, we get by the generalization rule (G) and nmonotonicity

$$
\Gamma \vdash \forall x\left(A \Rightarrow B_{j}\right)
$$

By MP applied to the above

$$
\Gamma \vdash\left(A \Rightarrow \forall x B_{j}\right)
$$

That is we got

$$
\left.\Gamma \vdash A \Rightarrow B_{i}\right)
$$

Deduction Theorem

Since $\Gamma \vdash\left(A \Rightarrow B_{j}\right)$ by inductive assumption, we get by the generalization rule (G),

$$
\Gamma \vdash \forall x\left(A \Rightarrow B_{j}\right)
$$

and so, by MP

$$
\left.\Gamma \vdash A \Rightarrow \forall x B_{j}\right)
$$

That is we proved

$$
\Gamma \vdash\left(A \Rightarrow B_{i}\right)
$$

This completes the induction and the proves part (1) of the Deduction Theorem

Deduction Theorem

Deduction Theorem part (2)
The proof of the implication

$$
\text { if } \Gamma \vdash(A \Rightarrow B) \text { then } \Gamma, A \vdash B
$$

is straightforward
Assume $\Gamma \vdash(A \Rightarrow B)$. By monotonicity we have also that

$$
\Gamma, A \vdash(A \Rightarrow B)
$$

Obviously, $\Gamma, A \vdash A$. Applying MP to the above, we get the proof of B from $\{\Gamma, A\}$ i.e. we have proved that

$$
\Gamma, A \vdash B
$$

This ends the proof of the Deduction Theorem for H

PART 5: Some other Axiomatizations

Hilbert and Ackermann (1928)

We present here some of most known, and historically important axiomatizations of classical predicate logic, i.e. the following Hilbert style proof systems

1. Hilbert and Ackermann (1928)

This formalization is based on D. Hilbert and W. Ackermann book Grundzügen der Theoretischen Logik (Principles of Theoretical Logic), Springer - Verlag, 1928

The book grew from the courses on logic and foundations of mathematics Hilbert gave in years 1917-1922 He received help in writeup from Barnays and the material was put into the book by Ackermann and Hilbert

Hilbert and Ackermann

The Hilbert and Ackermann book was conceived as an introduction to mathematical logic and was followed by another two volumes book written by D. Hilbert and P. Bernays, Grundzügen der Mathematik I, II, Springer -Verlag, 1934, 1939

Hilbert and Ackermann formulated and asked a question of the completeness for their deductive (proof) system

It was answered affirmatively by Kurt Gödel in 1929 with proof of his Completeness Theorem

Hilbert and Ackermann

We define the Hilbert and Ackermann proof system HA following a pattern established for the H system
The original language used by Hilbert and Ackermann contained only negation \neg and disjunction \cup and so do we We define

$$
\mathbf{H A}=\left(\mathcal{L}_{\{\neg, \cup\}}(\mathbf{P}, \mathbf{F}, \mathbf{C}), \mathcal{F}, L A, \mathcal{R}\right)
$$

where

$$
\mathcal{R}=\{(M P),(S B),(G 1),(G 2)\}
$$

The set $L A$ of logical axioms is as follows

Hilbert and Ackermann (1928)

Propositional Axioms

A1 $\quad(\neg(A \cup A) \cup A)$
A2 $(\neg A \cup(A \cup B))$
A3 $(\neg(A \cup B) \cup(B \cup A))$
A4 $(\neg(\neg B \cup C) \cup(\neg(A \cup B) \cup(A \cup C)))$
for any $A, B, C, \in \mathcal{F}$
Quantifiers Axioms
Q1 $\quad(\neg \forall x A(x) \cup A(x))$
Q2 $(\neg A(x) \cup \exists x A(x))$
Q3 $(\neg A(x) \cup \exists x A(x))$,
for any $A(x) \in \mathcal{F}$

Hilbert and Ackermann

Rules of Inference \mathcal{R}

(MP) is the Modus Ponens rule. It has, in the language $\mathcal{L}_{\{\neg, \mathrm{U}\}}$, a form

$$
(M P) \frac{A ;(\neg A \cup B)}{B}
$$

$(S B)$ is a substitution rule

$$
(S B) \frac{A\left(x_{1}, x_{2}, \ldots x_{n}\right)}{A\left(t_{1}, t_{2}, \ldots t_{n}\right)}
$$

where $A\left(x_{1}, x_{2}, \ldots x_{n}\right) \in \mathcal{F}$ and $t_{1}, t_{2}, \ldots t_{n} \in \mathbf{T}$

Hilbert and Ackermann

(G1),(G2) are quantifiers generalization rules

$$
\begin{aligned}
& \text { (G1) } \frac{(\neg B \cup A(x))}{(\neg B \cup \forall x A(x))} \\
& \text { (G2) } \frac{(\neg A(x) \cup B)}{(\neg \exists x A(x) \cup B)}
\end{aligned}
$$

where $A(x), B \in \mathcal{F}$ and B is such that x is not free in B

Hilbert and Ackermann

The HA system is usually written now with the use of implication, i.e. is based on a language

$$
\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})
$$

We define

$$
\mathbf{H A I}=\left(\mathcal{L}_{\{\neg, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C}), \mathcal{F}, L A, \mathcal{R}\right)
$$

for

$$
\mathcal{R}=\{(M P),(S B),(G 1),(G 2)\}
$$

and the set LA of logical axioms as follows

Hilbert and Ackermann

Propositional Axioms

A1 $\quad((A \cup A) \Rightarrow A)$
A2 $(A \Rightarrow(A \cup B))$
A3 $\quad((A \cup B) \Rightarrow(B \cup A))$
A4 $\quad((\neg B \cup C) \Rightarrow((A \cup B) \Rightarrow(A \cup C)))$
for any
$A, B, C, \in \mathcal{F}$
Quantifiers Axioms
Q1 $(\forall x A(x) \Rightarrow A(x))$
Q2 $\quad(A(x) \Rightarrow \exists x A(x))$
for any $A(x) \in \mathcal{F}$

Hilbert and Ackermann

Rules of Inference \mathcal{R}

(MP) is Modus Ponens rule

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

for any formulas $A, B \in \mathcal{F}$
$(S B)$ is a substitution rule

$$
(S B) \frac{A\left(x_{1}, x_{2}, \ldots x_{n}\right)}{A\left(t_{1}, t_{2}, \ldots t_{n}\right)}
$$

where $A\left(x_{1}, x_{2}, \ldots x_{n}\right) \in \mathcal{F}$ and $t_{1}, t_{2}, \ldots t_{n} \in \mathbf{T}$

Hilbert and Ackermann

(G1), (G2) are quantifiers generalization rules.

$$
\begin{aligned}
& \text { (G1) } \frac{(B \Rightarrow A(x))}{(B \Rightarrow \forall x A(x))} \\
& \text { (G2) } \frac{(A(x) \Rightarrow B)}{(\exists x A(x) \Rightarrow B)}
\end{aligned}
$$

where $A(x), B \in \mathcal{F}$ and B is such that x is not free in B

The form of the quantifiers axioms Q1, Q2, and quantifiers generalization rule (G2) is due to Bernays

Mendelson (1987)

Here is the first order logic proof system as introduced in Elliott Mendelson's book Introduction to Mathematical Logic (1987). Hence the name HM

HM is a generalization to the predicate language of the proof system H_{2} for propositional logic defined after Mendelson's book and studied in Chapter 5

$$
\mathbf{H M}=\left(\mathcal{L}_{\{\neg, \cup\}}(\mathbf{P}, \mathbf{F}, \mathbf{C}), \mathcal{F}, L A, \mathcal{R}=\{(M P),(G)\}\right)
$$

The HM components are as follows

Mendelson (1987)

Propositional Axioms

A1 $\quad(A \Rightarrow(B \Rightarrow A))$

A2 $\quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$

A3 $\quad((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B)))$
for any $A, B, C, \in \mathcal{F}$

Mendelson

Quantifiers Axioms

Q1 $\quad(\forall x A(x) \Rightarrow A(t))$
where t is a term, $A(t)$ is a result of substitution of t for all free occurrences of x in $A(x)$ and t is free for x in $A(x)$, i.e. no occurrence of a variable in t becomes a bound occurrence in $A(t)$

Q2 $\quad(\forall x(B \Rightarrow A(x)) \Rightarrow(B \Rightarrow \forall x A(x)))$
where $A(x), B \in \mathcal{F}$ and B is such that x is not free in B

Mendelson

Rules of Inference \mathcal{R}

$(M P)$ is the Modus Ponens rule

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

for any formulas $A, B \in \mathcal{F}$
(G) is the generalization rule

$$
\text { (G) } \frac{A(x)}{\forall x A(x)}
$$

where $A(x) \in \mathcal{F}$ and $x \in V A R$

Rasiowa and Sikorski (1950)

Rasiowa, Sikorski (1950)

Helena Rasiowa and Roman Sikorski are the authors of the first algebraic proof of the Gödel completeness theorem ever given in 1950

Other algebraic proofs were later given by Rieger, Beth, Łos in 1951, and Scott in 1954

Rasiowa and Sikorski (1950)

Here is Rasiowa- Sikorski original formalization

$$
R S=\left(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C}), \mathcal{F}, L A, \mathcal{R}\right)
$$

for

$$
\mathcal{R}=\{(M P),(S B),(Q 1),(Q 2),(Q 3),(Q 4)\}
$$

The logical axioms LA are as follows

Propositional Axioms

A1 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A2 $(A \Rightarrow(A \cup B))$
A3 $(B \Rightarrow(A \cup B))$

Rasiowa and Sikorski

A4 $\quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C)))$
A5 $\quad((A \cap B) \Rightarrow A)$
A6 $\quad((A \cap B) \Rightarrow B)$
A7 $\quad((C \Rightarrow A) \Rightarrow((C \Rightarrow B) \Rightarrow(C \Rightarrow(A \cap B)))$
A8 $\quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C))$
A9 $\quad(((A \cap B) \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C))$
A10 $\quad(A \cap \neg A) \Rightarrow B)$
A11 $((A \Rightarrow(A \cap \neg A)) \Rightarrow \neg A)$
A12 $(A \cup \neg A)$
for any $A, B, C \in \mathcal{F}$

Rasiowa and Sikorski

Rules of Inference \mathcal{R}

(MP) is Modus Ponens rule

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

for any formulas $A, B \in \mathcal{F}$
$(S B)$ is a substitution rule

$$
(S B) \frac{A\left(x_{1}, x_{2}, \ldots x_{n}\right)}{A\left(t_{1}, t_{2}, \ldots t_{n}\right)}
$$

where $A\left(x_{1}, x_{2}, \ldots x_{n}\right) \in \mathcal{F}$ and $t_{1}, t_{2}, \ldots t_{n} \in \mathbf{T}$

Rasiowa and Sikorski

(G1), (G2) are the following quantifiers introduction rules

$$
\begin{aligned}
& \text { (G1) } \frac{(B \Rightarrow A(x))}{(B \Rightarrow \forall x A(x))} \\
& \text { (G2) } \frac{(A(x) \Rightarrow B)}{(\exists x A(x) \Rightarrow B)}
\end{aligned}
$$

where $A(x), B \in \mathcal{F}$ and B is such that x is not free in B

Rasiowa and Sikorski

(G3), (G3) are the following quantifiers elimination rules.

$$
\begin{array}{ll}
\text { (G3) } & \frac{(B \Rightarrow \forall x A(x))}{(B \Rightarrow A(x))} \\
\text { (G4) } & \frac{\exists x(A(x) \Rightarrow B)}{(A(x) \Rightarrow B)}
\end{array}
$$

where $A(x), B \in \mathcal{F}$ and B is such that x is not free in B

Rasiowa and Sikorski

The algebraic logic starts from purely logical considerations, abstracts from them, places them into a general algebraic context, and makes use of other branches of mathematics such as topology, set theory, and functional analysis

For example, Rasiowa and Sikorski algebraic generalization of the completeness theorem for classical predicate logic is the following

Rasiowa and Sikorski

Algebraic Completeness Theorem (Rasiowa, Sikorski 1950)

For every formula A of the classical predicate calculus $R S$ the following conditions are equivalent
i $\quad A$ is derivable in RS;
ii $\quad A$ is valid in every realization of \mathcal{L};
iii $\quad A$ is valid in every realization of \mathcal{L} in any complete Boolean algebra;
iv $\quad A$ is valid in every realization of \mathcal{L} in the field $B(X)$ of all subsets of any set $X \neq \emptyset$;

Rasiowa and Sikorski

v A is valid in every semantic realization of \mathcal{L} in any enumerable set;
vi there exists a non-degenerate Boolean algebra \mathcal{A} and an infinite set J such that A is valid in every realization of \mathcal{L} in J and \mathcal{A};
vii $\quad A_{R}(I)=V$ for the canonical realization R of \mathcal{L} in the Lindenbaum-Tarski algebra $\mathcal{L T}$ of $R S$ and the identity valuation I;
viii A is a predicate tautology.

