
GL, GI: FEW PROBLEMS

QUESTION 1 Let GL be the Gentzen style

proof system for classical logic. Prove, by

constructing a proper decomposition tree

that

(1) `GL((¬a ⇒ b) ⇒ (¬b ⇒ a)).

Solution: By definition we have that

`GL((¬a ⇒ b) ⇒ (¬b ⇒ a)) if and only if

`GL −→ ((¬a ⇒ b) ⇒ (¬b ⇒ a)).
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T→A

−→ ((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

¬b, (¬a ⇒ b) −→ a

| (→ ¬)

(¬a ⇒ b) −→ b, a∧
(⇒−→)

−→ ¬b, b, a

| (→ ¬)

b −→ b, a

axiom

b −→ b, a

axiom

All leaves of the tree are axioms, hence we

have found the proof of A in GL.
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(2) Let GL be the Gentzen style proof sys-
tem for classical propositional logic. Prove,
by constructing proper decomposition trees
that

6 `GL((a ⇒ b) ⇒ (¬b ⇒ a)).

DEFINITION `GL A iff There is a tree
T→A such that all its leaves are axioms.

Hence 6 `GL A iff any decomposition tree
T→A has an non-axiom leaf.

Solution: Observe that for any formula A,
its decomposition tree T→A in GL is not
unique. Hence when constructing decom-
position trees we have to cover all possible
cases.

We construct the decomposition tree for
−→ A as follows.
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T1→A

−→ ((a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(one choice)

(a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

(first of two choices)

¬b, (a ⇒ b) −→ a

| (¬ →)

(one choice)

(a ⇒ b) −→ b, a∧
(⇒−→)

(one choice)

−→ a, b, a

non− axiom

b −→ b, a

axiom

The tree contains a non- axiom leaf −→ a, b, a,

hence it is not a proof in GL. We have only

one more tree to construct. Here it is.
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T2→A

−→ ((a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(one choice)

(a ⇒ b) −→ (¬b ⇒ a)∧
(⇒−→)

(second of two choices)

−→ (¬b ⇒ a), a

(−→⇒)

(one choice)

¬b −→ a, a

| (¬ →)

(one choice)

−→ a, a, b

non− axiom

b −→ (¬b ⇒ a)

| (→⇒)

(one choice)

b,¬b −→ a

| (¬ →)

(one choice)

b −→ a, b

axiom

All possible trees end with an non-axiom leave
whet proves that

6 `GL((a ⇒ b) ⇒ (¬b ⇒ a)).
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QUESTION 2 Does the tree below consti-

tute a proof in GL? Justify your answer.

T→A

−→ ¬¬((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→ ¬)

¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→
| (¬ →)

−→ ((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

(¬a ⇒ b),¬b −→ a

| (¬ →)

(¬a ⇒ b) −→ b, a∧
(⇒−→)

−→ ¬a, b, a

| (→ ¬)

a −→ b, a

axiom

b −→ b, a

axiom
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Q2 Solution: The tree is a not a proof in

GL because a rule corresponding to the

decomposition step below does not ex-

ists in it.

(¬a ⇒ b),¬b −→ a

| (¬ →)

(¬a ⇒ b) −→ b, a

The tree is a proof is some system GL1 that
has all the rules of GL except its (¬ →)
rule:

(¬ →)
Γ
′
,Γ −→ ∆, A,∆

′

Γ′,¬A,Γ −→ ∆,∆′ ,

This rule has to be replaced by the rule:

(¬ →)1
Γ,Γ

′ −→ ∆, A,∆
′

Γ,¬A,Γ′ −→ ∆,∆′ .
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QUESTION 3 Let GL be the Gentzen style

proof system for classical logic defined in

chapter 11. Prove, by constructing a counter-

model defined by a proper decomposition

tree that

6|= ((a ⇒ (¬b ∩ a)) ⇒ (¬b ⇒ (a ∪ b))).

Solution next page
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T→A

−→ ((a ⇒ (¬b ∩ a)) ⇒ (¬b ⇒ (a ∪ b)))

| (→⇒)

(a ⇒ (¬b ∩ a)) −→ (¬b ⇒ (a ∪ b))

| (→⇒))

one of two choices

¬b, (a ⇒ (¬b ∩ a)) −→ (a ∪ b))

| (→ ∪)

one of two choices

¬b, (a ⇒ (¬b ∩ a)) −→ a, b

| (¬ →)

(a ⇒ (¬b ∩ a)) −→ b, a, b∧
(⇒−→)

−→ ¬a, b, a, b

| (→ ¬)

a −→ b, a, b

axiom

−→ (¬b ∩ a), b, a

∧
(−→ ∩)

−→ ¬b, b, a, b

| (→ ¬)

b −→ b, a, b

axiom

−→ a, b, a, b

non− axiom
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The counter-model model determined by the

non-axiom leaf

−→ a, b, a, b

is any truth assignment that evaluates it to F .

Observe that (we use a shorthand notation)

−→ a, b, a, b represents semantically T −→ a, b, a, b

and hence

−→ a, b, a, b = F iff T −→ a, b, a, b = F ,

what happens only if

T ⇒ a ∪ b ∪ a ∪ b = F,

i.e when a = F and b = F .
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QUESTION 4 Prove the COMPLETENESS

theorem for GL. Assume that the Sound-

ness has been already proved and the De-

compositions Trees are already defined.

Solution

Formula Completeness: For any A ∈ F,

|= A iff `GL → A

Soundness part: for any A ∈ F,

If `GL → A, then |= A

Completeness part : for any A ∈ F,

If |= A, then `GL → A
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We prove the logically equivalent form of the

Completeness part: for any A ∈ F,

If 6`GL → A then 6|= A,

proof Assume 6`GL → A, i.e. → A does not

have a proof in GL. Let TA be a set of all

decomposition trees of → A. As 6`GL → A,

each T ∈ TA has a non-axiom leaf. We

choose an arbitrary TA ∈ TA. Let Γ′ →
∆′,Γ′,∆′ ∈ V AR∗ be an non-axiom leaf of

TA, i.e. {Γ′} ∩ {∆′} = ∅.
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The non-axiom leaf

Γ′ → ∆′

defines a truth assignment v : V AR → {T, F}
which falsifies A, as follows:

v(a) =

{
T if a appears in Γ′
F if a appears in ∆′

This proves, by strong soundness of the rules

of inference of GL that 6|= A.
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QUESTION 5 Let LI be the Gentzen sys-

tem for intuitionistic logic as defined in

chapter 12.

Show that

`LI ¬¬((¬a ⇒ b) ⇒ (¬b ⇒ a)).

Solution: Observe that

`LI ¬¬((¬a ⇒ b) ⇒ (¬b ⇒ a))

if and only if

`LI −→ ¬¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) .

Consider the following decomposition tree

T→A of → ¬¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) in

LI.
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T→A

−→ ¬¬((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→ ¬)

¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→
| (contr →)

¬((¬a ⇒ b) ⇒ (¬b ⇒ a)),¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→
| (¬ →)

¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→ ((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b),¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→ (¬b ⇒ a)

| (→⇒)

¬b, (¬a ⇒ b),¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→ a

| (exch →)

(¬a ⇒ b),¬b,¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→ a∧
(⇒−→)
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Left premiss

¬b,¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→ ¬a

| (→ ¬)

a,¬b,¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→
| (exch →)

a,¬((¬a ⇒ b) ⇒ (¬b ⇒ a)),¬b −→
| (exch →)

¬((¬a ⇒ b) ⇒ (¬b ⇒ a)), a,¬b −→
| (¬ →)

a,¬b −→ ((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b), a,¬b −→ (¬b ⇒ a)

| (→⇒)

¬b, (¬a ⇒ b), a,¬b −→ a

axiom

Right premiss

b,¬b,¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→ a

| (exch →)

¬b, b,¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→ a

| (→ weak), (¬ →)

b,¬((¬a ⇒ b) ⇒ (¬b ⇒ a)) −→ b

axiom



All leaves of T→A are axioms, we have hence

found a proof.
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QUESTION 6 We know that the formulas

below are not Intuitionistic Tautologies.

Verify whether H semantics (chapter 5)

provides a counter-model for them.

((a ⇒ b) ⇒ (¬a ∪ b))

((¬a ⇒ ¬b) ⇒ (b ⇒ a))

Solution

First Formula:

We evaluate:((a ⇒ b) ⇒ (¬a ∪ b)) =⊥ iff

(a ⇒ b) = T and (¬a ∪ b) =⊥. Observe

that (¬a ∪ b) =⊥ in 3 cases, two of which

for ¬a =⊥ are impossible. We have hence

only one case to consider: ¬a = F, b =⊥,

i.e. a =⊥ or a = T and b =⊥. Both of

them provide a counter-model.
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Solution for second formula

((¬a ⇒ ¬b) ⇒ (b ⇒ a)) =⊥
if and only if

(¬a ⇒ ¬b) = T

and

(b ⇒ a) =⊥ .

The case (b ⇒ a) =⊥ holds iff b = T and

a =⊥. In this case (¬a ⇒ ¬b) = (¬ ⊥⇒
¬T ) = F ⇒ F = T . We have a counter-

model.
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QUESTION 7 Show that

`LI ¬¬((¬a ⇒ ¬b) ⇒ (b ⇒ a))

Solution We did work it out in class and in

the book.

QUESTION 8 Use the heuristic method

defined in chapter 11 to prove that

6 `LI((¬a ⇒ b) ⇒ (¬b ⇒ a)).

Solution: To prove that our formula is not

provable in LI we construct its possible

decomposition trees following our heuris-

tic, discuss their relationship and show that

each of them must have an non-axiom leaf.

First tree is as follows.
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T1

−→ ((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

¬b, (¬a ⇒ b) −→ a

| (exch →)

(¬a ⇒ b),¬b,−→ a∧
(⇒−→)

¬b −→ ¬a

| (→ ¬)

a,¬b −→
| (exch →)

¬b, a −→
| (¬ →)

a −→ b

non− axiom

b,¬b −→ a

| (exch →)

¬b, b −→ a

| (→ weak)

¬b, b −→
| (¬ →)

b −→ b

axiom

20



T2

−→ ((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)∧
(⇒−→)

−→ ¬a

| (→ ¬)

a −→
non− axiom

b −→ (¬b ⇒ a)

| (→⇒)

b,¬b −→ a

| (exch →)

¬b, b −→ a

| (→ weak)

¬b, b −→
| (¬ →)

b −→ b

axiom

21



Observe that T1 and T2 have identical sub-

trees ending with identical leaves.

Third tree is obtained by the third choice of

the decomposition rule at the second node

of the tree T1, namely the use of rule

(contr →). This step produces a node

(¬a ⇒ b), (¬a ⇒ b) −→ (¬b ⇒ a)

Observe that next decomposition steps would

give trees similar to T1 and T2. We write

down, as an example one of them, which

follows the pattern of the tree T1.
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T3

−→ ((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (contr →)

(¬a ⇒ b), (¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

¬b, (¬a ⇒ b), (¬a ⇒ b) −→ a

| (exch →)

(¬a ⇒ b),¬b, (¬a ⇒ b) −→ a∧
(⇒−→)
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Left premiss

¬b, (¬a ⇒ b) −→ ¬a

| (→ ¬)

a,¬b, (¬a ⇒ b) −→
| (exch →)

¬b, a, (¬a ⇒ b) −→
| (¬ →)

a, (¬a ⇒ b) −→ b

| (exch →)

(¬a ⇒ b), a −→ b∧
(⇒−→)

a −→ ¬a

| (→ ¬)

a, a −→
non− axiom

b, a −→ b

axiom

Right premiss

b,¬b, (¬a ⇒ b) −→ a

| (exch →)

¬b, b, (¬a ⇒ b) −→ a

| (→ weak)

¬b, b, (¬a ⇒ b) −→
| (¬ →)

b, (¬a ⇒ b) −→ b

axiom
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Observe that the rule (contr →) didn’t and

will never bring information to the tree con-

struction which would replace a non-axiom

leaf by an axiom leaf.

Next tree can be obtained by exploring sec-

ond choice at the node 3 of the first tree.
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T4

−→ ((¬a ⇒ b) ⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

¬b, (¬a ⇒ b) −→ a

| (→ weak)

¬b, (¬a ⇒ b) −→
| (¬ →)

(¬a ⇒ b) −→ b∧
(⇒−→)

−→ ¬a

| (→ ¬)

a −→
non− axiom

b −→ b

axiom
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Observe that here again the rule (contr →)

applied to any node to the tree T4 would

never gives us a possibility of replacing a

non-axiom leaf by an axiom leaf.

Conclusion All possible decomposition trees

will always contain a non- axiom leaf what

ends the proof.
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GENERAL REMARK We are using the word

”PROOF” in two distinct senses.

In the first sense, we use it as a formal proof

within a fixed proof system, namely LI and

is represented as a proof tree, or sequence

of expressions of the language L of LI.

In the second sense, it also designates cer-

tain sequences of sentences of English lan-

guage (supplemented by some technical terms,

if needed) that are supposed to serve as an

argument justifying some assertions about

the language L, or proof system based on

it.
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In general, the language we are studying, in

this case L, is called an OBJECT LAN-

GUAGE.

The language in which we formulate and prove

the results about the object language is

called the METALANGUAGE. The met-

alanguage might also be formalized and

made the object of study, which we would

carry in a meta-metalanguage.
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We use English as our not formalized meta-

language, although, we use only a mathe-

matically weak portion of the English lan-

guage. enddescription

The contrast between the language and met-

alanguage is also present in study for ex-

ample, a foreign language. In French study

class, French is the object language, while

the metalanguage, the language we use, is

English.
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The distinction between proof and meta-proof,

i.e. a proof in the metalanguage, is as fol-

lows.

We construct (in the metalanguage) a decom-

position tree which is a formal proof in

the object language.

By doing so, we prove in the metalanguage,

that the proof in the object language ex-

ists.

Such proof is called a meta-proof, and the

fact thus proved is called a meta-theorem.
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