CSE541 INTRODUCTION EXERCISES on SETS SOLUTIONS

QUESTION 1 Use the above definition to prove the following

FACT 1 A set A is INFINITE iff it contains a countably infinite subset, i.e. one can define a 1-1 sequence $\{a_n\}_{n\in\mathbb{N}}$ of some elements of A.

SOLUTION 1. Implication \rightarrow

If A is infinite, then we can define a 1-1 sequence of elements of A.

Let A be infinite,

We define a sequence

$$a_1,\ldots,a_n,\ldots$$

as follows.

1. Observe that $A \neq \emptyset$, because if $A = \emptyset$, A would be finite. contradiction.

So there is an element of $a \in A$.

We define

$$a_1 = a$$

2. Consider a set $A - \{a_a\} = A_1$. $A_1 \neq \emptyset$ because if $A = \emptyset$, then $A - \{a_1\} = \emptyset$ and A is Finite. Contradiction. So there is an element $a_2 \in A - \{a_1\}$ and $a_1 \neq a_2$.

We defined

$$a_1, a_2$$

3. Assume now that we have defined an n-elements and sequence

$$a_1, \ldots, a_n$$
 for $a_1 \neq a_2 \neq \ldots \neq a_n$

Consider a set $A_n = A - \{a_1, \dots, a_n\}$.

The set $A_n \neq \emptyset$ because if $A - \{a_1, \dots, a_n\} = \emptyset$, then A is finite. Contradiction

So there is an element

$$a_{n+1} \in A - \{a_1, \dots, a_n\}$$

and $a_{n+1} \neq a_n \neq \cdots \neq a_1$

By mathematical induction,

we have defined a 1-1 sequence

$$a_1, a_2, \ldots, a_n, \ldots$$

elements of A.

2. Implication \leftarrow

If A contain a 1-1 sequence, then A is infinite.

Assume A is not infinite; i.e A is finite. Every subset of finite set is finite, so we can't have a 1-1 infinite sequence of elements of A. Contradiction.

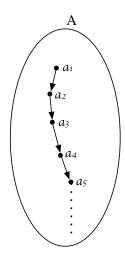


Figure 1: problem 1

QUESTION 2 Use the above definition and FACT 1 from Question 1 to prove the following characterization of infinite sets.

Dedekind Theorem A set A is INFINITE iff there is a set proper subset B of the set A such that |A| = |B|.

SOLUTION Part1. If A is infinite, then there is $B \subsetneq A$ and

$$f: A \xrightarrow[onto]{1-1} B$$

A is infinite, by Q1, we have a 1-1 sequence

$$a_1, a_2, \ldots, a_n, \ldots$$

of elements A.

We take $B = A - \{a_1\}$, $B \subsetneq A$ and we define a function

$$f: A \xrightarrow[onto]{1-1} B$$

as follows

$$f(a_1) = a_2$$

$$f(a_2) = a_3$$

:

$$f(a_n) = a_{n+1}$$

f(a) = a, for all other $a \in A$

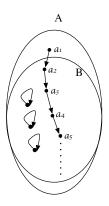


Figure 2: problem 2:part 1

obviously, f is 1-1,onto

Observe: we have other choises of B!.

Part 2. Assume that we have $B \subsetneq A$ are

$$f: A \xrightarrow[onto]{1-1} B$$

We use Q1 to show that A is infinite; i.e we construct an 1-1 sequence $a_1 \dots a_n$ of elements of A_n as follows.

 $B \subsetneq A$, so $A - B \neq \emptyset$ and we have $b \in A - B$. This is our first element of the sequence. Observe: $f: A \xrightarrow[onto]{1-1} B$, so $f(b) \in B$ and $b \in A - B$, hence $f(b) \neq b$ and f(b) is our second element of the sequence.

We have now,

 $f(b) \neq b, b \in A - B, f(b) \leftarrow B$ b, f(b)

Take new,

ff(b). As f is 1-1 and $f(b) \neq b$, we get $ff(b) \neq f(b) \neq b$, $ff(b) \in B$ and the sequence b, f(b), ff(b) is 1-1. We create $ff(b) = f^2(b)$

We continue the construction by mathematical induction.

Assume that we have constructed a 1-1 sequence

$$b, f(b), f^{(b)}, f^{(3)}, \dots, f^{(n)}$$

Observe that $ff^n(b) = f^{n+1}(b) \neq f^n(b)$ as f is 1-1.

By mathematical induction, we have that $\{f^n(b)\}_{n\in\mathbb{N}}$ is a 1-1 sequence of elements of A and hence A is infinite.

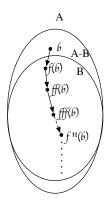


Figure 3: problem 2:part 2

QUESTION 3 Use technique from DEDEKIND THEOREM to prove the following

Theorem For any infinite set A and its finite subset B, |A| = |A - B|.

SOLUTION A is infinite, then by Q1 there is a 1-1 sequence:

$$a_1, a_2, \ldots, a_n, \ldots$$

of elements of A.

Let |B| = K. We choose K 1-1 sequence $\{C_n^k\}_{n \in \mathbb{N}}$ of the sequence $\{a_n\}_{n \in \mathbb{N}}$. Let $B = \{b_1, \dots, b_k\}$. We construct a function $f : A \xrightarrow[onto]{1-1} A - \{b_1, \dots, b_k\}$ as follows

$$f(b_1) = c_1^1, f(c_1^1) = c_2^1, \dots, f(c_n^1) = c_{n+1}^1$$

$$f(b_2) = c_1^2, f(c_1^2) = c_2^2, \dots, f(c_n^2) = c_{n+1}^2$$

$$\vdots$$

$$f(b_k) = c_1^k, f(c_1^k) = c_2^k, \dots, f(c_n^k) = c_{n+1}^k$$

$$f(b_k) = c_1^k,$$
 $f(c_1^k) = c_2^k, \dots, f(c_n^k) = c_{n+1}^k$
 $f(a) = a \text{ all } a \in A - B$

As all sequences $\{C_n^m\}_{n\in\mathbb{N}, m=1,\dots,k}$ are 1-1, the function f is 1-1 and obviously ONTO A-B.

QUESTION 4 Use DEDEKIND THEOREM to prove that the set N of natural numbers is infinite.

SOLUTION We use Dedekind theorem i.e we must define $f: N \xrightarrow[onto]{1-1} B \subsetneq N$. There are many such function for example $f(n) = n + 1.f: N \xrightarrow[onto]{1-1} N - \{0\}$

One can also use Q1 and define any 1-1 sequences in N.

QUESTION 5 Use DEDEKIND THEOREM to prove that the set R of real numbers is infinite.

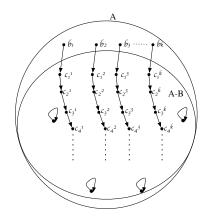


Figure 4: problem 3

SOLUTION We use Dedekind theorem

$$f(x) = 2^x x \in R$$

 $f: R \xrightarrow[onto]{1-1} R^+$

One can also use Q1 and define any 1-1 sequences in R.

QUESTION 6 Use technique from DEDEKIND THEOREM to prove that the interval [a,b], a < b of real numbers is infinite and that |[a,b]| = |(a,b)|.

SOLUTION1 Use construction in the proof of Q3.
$$f: [a,b] \xrightarrow[onto]{1-1} [a,b] - \{a,b\} = (a,b)$$

This is the soution I had in mine!

SOLUTION2 Use Q3 (a, b) = [a, b] - B, B: finite

QUESTION 7 Prove, using the above definitions 3 and 4 that for any cardinal numbers $\mathcal{M}, \mathcal{N}, \mathcal{K}$ the following formulas hold:

$$1.\mathcal{N} \leq \mathcal{N}$$

$$2.If \ \mathcal{N} \leq \mathcal{M} \ and \ \mathcal{M} \leq \mathcal{K}, \ then \ \mathcal{N} \leq \mathcal{K}.$$

SOLUTION 1. $\mathcal{N} \leq \mathcal{N}$ means that for any set $A, |A| \leq |A|$

$$f(a) = a$$
 establishes $f: A \xrightarrow{1-1} A$

2.
$$\mathcal{N} \leq \mathcal{M}$$
 and $\mathcal{M} \leq \mathcal{K}$, then $\mathcal{N} \leq \mathcal{K}$.

We have $|A| = \mathcal{N}, |b| = \mathcal{M}, |C| = \mathcal{K}$ and $f: A \xrightarrow{1-1} B$ and $g: B \xrightarrow{1-1} C$, then we have to construct $h: A \xrightarrow{1-1} C.$

h is a composition of f and g. i.e h(a) = g(f(a)), all $a \in A$

QUESTION 8 Prove, for any sets A, B, C the following holds.

Fact 2

If
$$C \subseteq B \subseteq A$$
 and $|A| = |C|$, then $|A| = |B| = |C|$.

To prove |A| = |B| you must use definition 3, i.e to construct a proper function. Use the construction from proofs of Fact 1 and Question 3

SOLUTION 1. A, B, C are finite and |A| = |C|, and $C \subseteq B \subseteq A$, so A = B = C, and have |A| = |B| = |C|2. A, B, C are infinite sets, we have |A| = |C| i.e we have $f : A \xrightarrow[onto]{1-1} C$ We want to construct a function

$$g: A \xrightarrow[onto]{1-1} B$$
, where $A \subseteq B \subseteq C$

Take A-B. We assume that $A-B\neq\emptyset$, if not, A=B, and |A|=|C| given |A|=|B|=|C|. We consider case $C\subset B\subset A$. Take any $a\in (A-B)$, as $f:A\xrightarrow[onto]{1-1}C$, $f(a)\in C$, f is 1-1 so $ff(a)\neq f(a)$... in general $f^n(a)\neq f^{n+1}(a)$ and we have a sequence for any $a\in A-B$ $f(a), f^2(a), \ldots, f^n(a) \ldots$ of elements of C.

We construct a function $g: A \xrightarrow[onto]{1-1} B$

$$g(a) = f(a)$$

$$g(f(a)) = f^{2}(a)$$

$$g(f^{2}(a)) = f^{3}(a)$$

$$\vdots$$

$$g(f^{n}(a)) = f^{n+1}(a)$$

$$g(x) = x \quad \text{for all other } x \in A$$

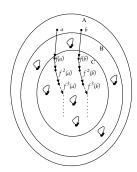


Figure 5: problem 8: Figure of function $g: A \xrightarrow[onto]{1-1} B$. a,b represent any two element of A

QUESTION 9 Prove the following

Berstein Theorem (1898) For any cardinal numbers \mathcal{M}, \mathcal{N}

$$\mathcal{N} \leq \mathcal{M}$$
 and $\mathcal{M} \leq \mathcal{N}$ then $\mathcal{N} = \mathcal{M}$.

SOLUTION Let A,B be two sets such that $|A| = \mathcal{N}, |B| = \mathcal{M}$, we rewrite on theorem as

Berstein Theorem For any sets A,B

If
$$|A| \leq |B|$$
 and $|B| \leq |A|$, then $|A| = |B|$

case1. The sets A, B are disjoint.

As $|A| \leq |B|$, we have a function $f: A \xrightarrow{1-1} B$, i.e $f: A \xrightarrow{1-1} fA \subseteq B$ and |A| = |fA| where fA denotes the image of A under f.

As $|B| \le |A|$, we have a function $g: B \xrightarrow[onto]{1-1} gB \subseteq A$ and |B| = |gB| We picture it as follow.

$$|B| = gB|, |A| = |fA|$$

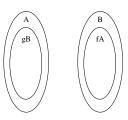


Figure 6: problem 9

As $f: A \xrightarrow{1-1} B$ and $gB \subseteq A$, we get $fgB \subseteq fA$ and hence

$$fgB \subseteq fA \subseteq A \tag{1}$$

Also, $gB\subseteq A$ and $g:B\xrightarrow{1-1}B$. Hence, $fg:B\xrightarrow[onto]{1-1}fgB$ and

$$|B| = |fgB| \tag{2}$$

We have a following picture.

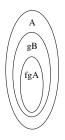


Figure 7: problem 9

By eq.2, |B|=|fgB| and by eq.1, $fgB\subseteq fA\subseteq B$ and |B|=|fA| By Q8, we get

$$|fA| = |B|$$

Hence, |B| = |A|

case2. the set A,B are NOT disjoint.

Repeat the same(or Google the proof) for the following picture.

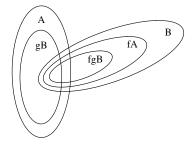


Figure 8: problem 9