CSE541 INTRODUCTION EXERCISES on SETS

SOLVE ALL PROBLEMS as PRACTICE

FINITE and INFINITE SETS

Definition 1 A set A is FINITE iff there is a natural number $n \in N$ and there is a $1-1$ function f that maps the set $\{1,2, \ldots n\}$ onto A.

Definition 2 A set A is INFINITE iff it is NOT FINITE.
QUESTION 1 Use the above definition to prove the following
FACT 1 A set A is INFINITE iff it contains a countably infinite subset, i.e. one can define a $1-1$ sequence $\left\{a_{n}\right\}_{n \in N}$ of some elements of A.

Definition 3 Two sets A, B have the same CARDINALITY iff there is a function f that maps A one-to-one onto the set B. we denote it $|A|=|B|=\mathcal{M}$ and \mathcal{M} is called a cardinal number of sets A and B.

QUESTION 2 Use the above definition and FACT 1 from Question 1 to prove the following characterization of infinite sets.

Dedekind Theorem A set A is INFINITE iff there is a set proper subset B of the set A such that $|A|=|B|$.
QUESTION 3 Use technique from DEDEKIND THEOREM to prove the following
Theorem For any infinite set A and its finite subset $B,|A|=|A-B|$.
QUESTION 4 Use DEDEKIND THEOREM to prove that the set N of natural numbers is infinite.
QUESTION 5 Use DEDEKIND THEOREM to prove that the set R of real numbers is infinite.
QUESTION 6 Use technique from DEDEKIND THEOREM to prove that the interval $[a, b], a<b$ of real numbers is infinite and that $|[a, b]|=|(a, b)|$.

CARDINALITIES OF SETS

Definition 4 For any sets A, B, let $|A|=\mathcal{N}$ and $|B|=\mathcal{M}$. We say $\mathcal{N} \leq \mathcal{M}$ iff $|A|=|C|$ for some $C \subseteq B$. We say $\mathcal{N}<\mathcal{M}$ iff $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{N} \neq \mathcal{M}$.

QUESTION 7 Prove, using the above definitions 3 and 4 that for any cardinal numbers $\mathcal{M}, \mathcal{N}, \mathcal{K}$ the following formulas hold:

$$
\begin{gathered}
1 . \mathcal{N} \leq \mathcal{N} \\
\text { 2.If } \mathcal{N} \leq \mathcal{M} \text { and } \mathcal{M} \leq \mathcal{K}, \text { then } \mathcal{N} \leq \mathcal{K} .
\end{gathered}
$$

QUESTION 8 Prove, for any sets A, B, C the following holds.

Fact 2

$$
\text { If } A \subseteq B \subseteq C \text { and }|A|=|C|, \text { then }|A|=|B|
$$

To prove $|A|=|B|$ you must use definition 3, i.e to construct a proper function. Use the construction from proofs of Fact 1 and Question 3

QUESTION 9 Prove the following
Berstein Theorem (1898) For any cardinal numbers \mathcal{M}, \mathcal{N}

$$
\mathcal{N} \leq \mathcal{M} \text { and } \mathcal{M} \leq \mathcal{N} \text { then } \mathcal{N}=\mathcal{M}
$$

1. Prove first the case when the sets A, B are disjoint.
2. Generalize the construction for 1 . to the not-disjoint case.

REMINDER
Definition 5 A set A is INFINITELY COUNTABLE iff A has the same cardinality as Natural numbers N, i.e. $|A|=|N|=\aleph_{0}$

Definition 6 A set A is COUNTABLE iff A is finite or infinitely countable.
Definition 7 A set A is UNCOUNTABLE iff A is NOT countable.

