CSE541 EXERCISE 3

SOLVE ALL PROBLEMS as PRACTICE and only AFTER look at the SOLUTIONS!!

Reminder: We define **H** semantics operations \cup and \cap as follows

$$a \cup b = max\{a, b\}, \quad a \cap b = min\{a, b\}.$$

The Truth Tables for Implication and Negation are: H-Implication

\Rightarrow	F	\perp	Т
F	Т	Т	Т
\perp	F	Т	Т
Т	F	\perp	Т

H Negation

$$\begin{array}{c|ccc} \neg & \mathbf{F} & \bot & \mathbf{T} \\ \hline & \mathbf{T} & F & \mathbf{F} \\ & & & \end{array}$$

QUESTION 1 We know that

is such that

$$v: VAR \longrightarrow \{F, \bot, T\}$$
$$v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \bot$$

under **H** semantics. **evaluate** $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b)).$

QUESTION 2

We define a 4 valued \mathbf{L}_4 logic semantics as follows. The language is $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$. The logical connectives $\neg, \Rightarrow, \cup, \cap$ of \mathbf{L}_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$, defined as follows. Negation \neg is a function \neg : $\{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that

$$\neg \perp_1 = \perp_1, \ \neg \perp_2 = \perp_2, \ \neg F = T, \ \neg T = F$$

Conjunction \cap is a function \cap : $\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$, $a \cap b = min\{a, b\}$.

Disjunction \cup is a function \cup : $\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$, $a \cup b = max\{a, b\}$.

Implication \Rightarrow is a function \Rightarrow : $\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$,

$$a \Rightarrow b = \begin{cases} \neg a \cup b & \text{if } a > b \\ T & \text{otherwise} \end{cases}$$

Part 1 Write all Truth Tables for \mathbf{L}_4

Part 2 Verify whether

$$\models_{\mathbf{L}_{4}}((a \Rightarrow b) \Rightarrow (\neg a \cup b))$$

QUESTION 3 Prove using proper logical equivalences (list them at each step) that

1. $\neg (A \Leftrightarrow B) \equiv ((A \cap \neg B) \cup (\neg A \cap B)),$

2. $((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv ((B \Rightarrow C) \cup (A \Rightarrow B)).$

QUESTION 4 We define an EQUIVALENCE of LANGUAGES as follows:

Given two languages: $\mathcal{L}_1 = \mathcal{L}_{CON_1}$ and $\mathcal{L}_2 = \mathcal{L}_{CON_2}$, for $CON_1 \neq CON_2$. We say that they are **logically equivalent**, i.e.

$$\mathcal{L}_1 \equiv \mathcal{L}_2$$

if and only if the following conditions C1, C2 hold.

C1: For every formula A of \mathcal{L}_1 , there is a formula B of \mathcal{L}_2 , such that

 $A \equiv B$,

C2: For every formula C of \mathcal{L}_2 , there is a formula D of \mathcal{L}_1 , such that

 $C \equiv D.$

 ${\bf Prove \ that} \quad {\cal L}_{\{\neg,\cap\}} \equiv {\cal L}_{\{\neg,\Rightarrow\}}.$